SADLIER-OXFORD
Algebra 1
Correlation to the Minnesota
Academic Standards in Mathematics for Grades 9-11

STRAND: ALGEBRA

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.2.1 Understand the concept of function, and identify important features of functions and other relations using symbolic and graphical methods where appropriate.

9.2.1.1 Understand the definition of a function. Use functional notation and evaluate a function at a given point in its domain. For example: If $f(x)=\frac{1}{x^{2}-3}$, find $f(-4)$.	Chapter 4 Relations and Functions 4-2 Introduction to Functions-TE pp. 96-99B; SB pp. 96-99 / PB pp. 91-92 4-3 Write Function Rules-TE pp. 100-101B; SB pp. 100-101 / PB pp. 93-94
9.2.1.2 Distinguish between functions and other relations defined symbolically, graphically or in tabular form.	Chapter 4 Relations and Functions 4-1 Introduction to Relations-TE pp. 94-95B; SB pp. 94-95 / PB pp. 89-90 4-2 Introduction to Functions-TE pp. 96-99B; SB pp. 96-99 / PB pp. 91-92
9.2.1.3 Find the domain of a function defined symbolically, graphically or in a real-world context. For example: The formula $f(x)=\pi x^{2}$ can represent a function whose domain is all real numbers, but in the context of the area of a circle, the domain would be restricted to positive x.	Chapter 4 Relations and Functions 4-1 Introduction to Relations-TE pp. 94-95B; SB pp. 94-95 / PB pp. 89-90 4-2 Introduction to Functions-TE pp. 96-99B; SB pp. 96-99 / PB pp. 91-92 *4-2A Graphs of Functions-Online
9.2.1.4 Obtain information and draw conclusions from graphs of functions and other relations. For example: If a graph shows the relationship between the elapsed flight time of a golf ball at a given moment and its height at that same moment, identify the time interval during which the ball is at least 100 feet above the ground.	Chapter 4 Relations and Functions 4-1 Introduction to Relations-TE pp. 94-95B; SB pp. 94-95 / PB pp. 89-90 4-2 Introduction to Functions-TE pp. 96-99B; SB pp. 96-99 / PB pp. 91-92 *4-2A Graphs of Functions-Online 4-4 Arithmetic Sequences-TE pp. 102-105B; SB pp. 102-105 / PB pp. 95-96 4-5 Geometric Sequences-TE pp. 106-109B; SB pp. 106-109 / PB pp. 97-98 *4-5B Features of Functions-Online

STRAND: ALGEBRA

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.2.1 Understand the concept of function, and identify important features of functions and other relations using symbolic and graphical methods where appropriate.
9.2.1.5 Identify the vertex, line of symmetry and intercepts of the parabola corresponding to a quadratic function, using symbolic and graphical methods, when the function is expressed in the form $f(x)=a x^{2}+b x+c$, in the form $f(x)=a(x-h)^{2}+k$, or in factored form.

Chapter 10 Quadratic Functions and Equations

10-1 Identify Quadratic Functions and Their Graphs-TE pp. 246-249D; SB pp. 246-249 / PB pp. 243-246
10-2 Graph Quadratic Functions: Parabola-TE pp. 250-253B; SB pp. 250-253 / PB pp. 247-248
*10-2A Features of Quadratic Functions-Online
10-3 Solve Quadratic Equations by FactoringTE pp. 254-257B; SB pp. 254-257 / PB pp. 249-252
10-4 Solve Verbal Problems Involving Quadratic Equations-TE pp. 258-259B; SB pp. 258-259 / PB pp. 253-254
10-5 Solve Quadratic Equations by Completing the Square-TE pp. 260-261B; SB pp. 260-261 / PB pp. 255-256
10-7 Solve Quadratic Equations with the Quadratic Formula-TE pp. 264-265B; SB pp. 264-265 / PB pp. 259-260
10-8 Solve Linear-Quadratic Systems-TE pp. 266-269B; SB pp. 266-269 / PB pp. 261-262
10-10 Technology: Families of Quadratic
Functions-TE pp. 272-273B; SB pp. 272-273
/ PB pp. 265-266
*10-10A Compare Quadratic Functions-Online

Chapter 4 Relations and Functions

*4-5B Features of Functions-Online

Chapter 5 Linear Functions

5-3 Equations in Slope-Intercept Form-TE pp. 122-125B; SB pp. 122-125 / PB pp. 115-116
5-4 Equations in Point-Slope Form-TE pp. 126-127B; SB pp. 126-127 / PB pp. 117-118 continued

STRAND: ALGEBRA

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.2.1 Understand the concept of function, and identify important features of functions and other relations using symbolic and graphical methods where appropriate.

	5-5 Change the Form of a Linear Equation-TE pp. 128-131B; SB pp. 128-131 / PB pp. 119-120 5-10 Technology: Families of Lines-TE pp. 142-143B; SB pp. 142-143 / PB pp. 129-130 Chapter 10 Quadratic Functions and Equations 10-1 Identify Quadratic Functions and Their Graphs-TE pp. 246-249D; SB pp. 246-249 / PB pp. 243-246 *10-2A Features of Quadratic Functions-Online 10-9 Technology: Find the Zeros of Polynomial Functions-TE pp. 270-271B; SB pp. 270-271 / PB pp. 263-264 *10-10A Compare Quadratic Functions-Online Chapter 13 Exponential and Other Nonlinear Functions *13-2A Features of Quadratic Functions-Online 13-4 Identify Exponential Functions and Their Graphs-TE pp. 338-341B; SB pp. 338-341/ PB pp. 337-340 *13-4A Features of Exponential Functions-Online *13-5D Growth of Linear, Quadratic, and Exponential Functions-Online
9.2.1.7 Understand the concept of an asymptote and identify asymptotes for exponential functions and reciprocals of linear functions, using symbolic and graphical methods.	Chapter 13 Exponential and Other Nonlinear Functions 13-1 Inverse Variation-TE pp. 330-331B; SB pp. 330-331 / PB pp. 331-332 13-2 Graph Rational Functions-TE pp. 332335B; SB pp. 332-335 / PB pp. 333-334 13-6 Technology: Graph Rational FunctionsTE pp. 346-347B; SB pp. 346-347 / PB pp. 343-344

STRAND: ALGEBRA

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.2.1 Understand the concept of function, and identify important features of functions and other relations using symbolic and graphical methods where appropriate.
9.2.1.8 Make qualitative statements about the rate of change of a function, based on its graph or table of values.

For example: The function $f(x)=3^{2}$ increases for all x, but it increases faster when $x>2$ than it does when $x<2$.
9.2.1.9 Determine how translations affect the symbolic and graphical forms of a function. Know how to use graphing technology to examine translations.

For example: Determine how the graph of $f(x)=$ $|x-h|+k$ changes as h and k change.

Chapter 5 Linear Functions

5-1 Identify Linear Functions and Their Graphs-
TE pp. 116-119B; SB pp. 116-119 / PB pp. 109-112
*5-6A Average Rate of Change-Online

Chapter 13 Exponential and Other Nonlinear Functions

*13-5C Compare Linear and Exponential Change-Online

Chapter 13 Exponential and Other Nonlinear Functions

13-2 Graph Rational Functions-TE pp. 332-
335B; SB pp. 332-335 / PB pp. 333-334
13-3 Graph Radical Functions-TE pp. 336-337B;
SB pp. 336-337 / PB pp. 335-336
9.2.2 Recognize linear, quadratic, exponential and other common functions in real-world and mathematical situations; represent these functions with tables, verbal descriptions, symbols and graphs; solve problems involving these functions, and explain results in the original context.
9.2.2.1 Represent and solve problems in various contexts using linear and quadratic functions.

For example: Write a function that represents the area of a rectangular garden that can be surrounded with 32 feet of fencing, and use the function to determine the possible dimensions of such a garden if the area must be at least 50 square feet.

Chapter 5 Linear Functions

5-1 Identify Linear Functions and Their GraphsTE pp. 116-119B; SB pp. 116-119 / PB pp. 109-112
5-2 Direct Variation-TE pp. 120-121B; SB pp.
120-121 / PB pp. 113-114
5-3 Equations in Slope-Intercept Form-TE pp. 122-125B; SB pp. 122-125 / PB pp. 115-116
5-4 Equations in Point-Slope Form-TE pp. 126-127B; SB pp. 126-127 / PB pp. 117-118
5-5 Change the Form of a Linear Equation-TE
pp. 128-131B; SB pp. 128-131 / PB pp. 119-120
5-8 Absolute-Value Functions-TE pp. 138-139B;
SB pp. 138-139 / PB pp. 125-126
continued

STRAND: ALGEBRA

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.2.2 Recognize linear, quadratic, exponential and other common functions in real-world and mathematical situations; represent these functions with tables, verbal descriptions, symbols and graphs; solve problems involving these functions, and explain results in the original context.

	Chapter 10 Quadratic Functions and Equations 10-1 Identify Quadratic Functions and Their Graphs-TE pp. 246-249D; SB pp. 246-249 / PB pp. 243-246 10-2 Graph Quadratic Functions: Parabola-TE pp. 250-253B; SB pp. 250-253 / PB pp. 247-248 10-3 Solve Quadratic Equations by FactoringTE pp. 254-257B; SB pp. 254-257 / PB pp. 249-252 10-4 Solve Verbal Problems Involving Quadratic Equations-TE pp. 258-259B; SB pp. 258-259 / PB pp. 253-254 10-5 Solve Quadratic Equations by Completing the Square-TE pp. 260-261B; SB pp. 260-261 / PB pp. 255-256 10-7 Solve Quadratic Equations with the Quadratic Formula-TE pp. 264-265B; SB pp. 264-265 / PB pp. 259-260
9.2.2.2 Represent and solve problems in various contexts using exponential functions, such as investment growth, depreciation and population growth.	Chapter 13 Exponential and Other Nonlinear Functions 13-5 Exponential Growth and Decay (compound interest, depreciation)-TE pp. 342-345B; SB pp. 342-345 / PB pp. 341-34 *13-5A Transform Exponential Functions-Online *13-5B Identify Linear and Exponential Functions-Online *13-5C Compare Linear and Exponential Change-Online

STRAND: ALGEBRA

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.2.2 Recognize linear, quadratic, exponential and other common functions in real-world and mathematical situations; represent these functions with tables, verbal descriptions, symbols and graphs; solve problems involving these functions, and explain results in the original context.
9.2.2.3 Sketch graphs of linear, quadratic and exponential functions, and translate between graphs, tables and symbolic representations. Know how to use graphing technology to graph these functions.

Chapter 4 Relations and Functions

*4.2A Graphs of Functions-Online
*4-5B Features of Functions-Online

Chapter 5 Linear Functions

5-1 Identify Linear Functions and Their GraphsTE pp. 116-119D; SB pp. 116-119 / PB pp. 109112
5-3 Equations in Slope-Intercept Form-TE pp. 122-125B; SB pp. 122-125 / PB pp. 115-116
5-4 Equations in Point-Slope Form-TE pp. 126-127B; SB pp. 126-127 / PB pp. 117-118
5-5 Change the Form of a Linear Equation-TE pp. 128-131B; SB pp. 128-131 / PB pp. 119-120
5-9 Technology: Graph Linear Functions and Inequalities-TE pp. 140-141B; SB pp. 140-141 / PB pp. 127-128

Chapter 10 Quadratic Functions and Equations

10-1 Identify Quadratic Functions and Their Graphs-TE pp. 246-249B; SB pp. 246-249 / PB pp. 243-246
10-2 Graph Quadratic Functions: Parabola-TE pp. 250-253B; SB pp. 250-253 / PB pp. 247-248
*10-10B Write a Quadratic Function Rule-Online

Chapter 13 Exponential and Other Nonlinear Functions

13-4 Identify Exponential Functions and Their Graphs-TE pp. 338-341B; SB pp. 338-341 / PB pp. 337-340
*13-4A Features of Exponential Functions (sketch)-Online
continued

STRAND: ALGEBRA

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.2.2 Recognize linear, quadratic, exponential and other common functions in real-world and mathematical situations; represent these functions with tables, verbal descriptions, symbols and graphs; solve problems involving these functions, and explain results in the original context.

9.2.2.4 Express the terms in a geometric
sequence recursively and by giving an explicit
(closed form) formula, and express the partial
sums of a geometric series recursively.
For example: A closed form formula for the terms
$t_{n n}$ in the geometric sequence $3,6,12,24$,.. is $t_{n}=$
$3(2)^{n-1}$, where $n=1,2,3, .$. , and this sequence can
be expressed recursively by writing $t_{1}=3$ and $t_{n}=$
$2 t_{n-1}$, for $n \geq 2$.
Another example: The partial sums s_{n} of the series
$3+6+12+24+.$. can be expressed recursively by
writing $s_{1}=3$ and $s_{n}=3+2 s_{n-1}$, for $n \geq 2$.

9.2.2.5 Recognize and solve problems that can be modeled using finite geometric sequences and series, such as home mortgage and other compound interest examples. Know how to use spreadsheets and calculators to explore geometric sequences and series in various contexts.

*13-5A Transform Exponential Functions-Online
 13-8 Technology: Compare Exponential Growth and Decay-TE pp. 350-351B; SB pp. 350-351 / PB pp. 347-348
 Chapter 14 Data Analysis and Probability
 *14-7A Fit a Function to Data (sketch a graph)Online

Chapter 4 Relations and Functions

4-5 Geometric Sequences-TE pp. 106-109B; SB pp. 106-109 / PB pp. 97-98
*4-5A Recursive Formulas for Sequences-Online Chapter 13 Enrichment: Geometric Series (compute partial sums of geometric series)TE pp. 354-355B; SB pp. 354-355 / PB pp. 351-352

Chapter 4 Relations and Functions

4-5 Geometric Sequences-TE pp. 106-109B; SB pp. 106-109 / PB pp. 97-98
*4-5A Recursive Formulas for Sequences-Online

Chapter 13 Exponential and Other Nonlinear Functions

13-5 Exponential Growth and Decay (compound interest)-TE pp. 342-345B; SB pp. 342-345 / PB pp. 341-342
*13-5A Transform Exponential Functions-Online
*13-5D Growth of Linear, Quadratic, and
Exponential Functions (compound interest)Online
continued

STRAND: ALGEBRA

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.2.2 Recognize linear, quadratic, exponential and other common functions in real-world and mathematical situations; represent these functions with tables, verbal descriptions, symbols and graphs; solve problems involving these functions, and explain results in the original context.

	13-6 Technology: Graph Rational Functions- TE pp. 346-347B; SB pp. 346-347 / PB pp. 343-344 13-8 Technology: Compare Exponential Growth and Decay-TE pp. 350-351B; SB pp. 350-351 / PB pp. 347-348 Chapter 13 Enrichment: Geometric Series-TE pp. 354-355B; SB pp. 354-355 / PB pp. 351-352
9.2.2.6 Sketch the graphs of common non-linear functions such as $f(x)=\sqrt{x}, f(x)=\|x\|$, $f(x)=\frac{1}{x}, f(x)=x^{3}$ and translations of these functions, such as $f(x)=\sqrt{x-2}+4$. Know how to use graphing technology to graph these functions.	Chapter 4 Relations and Functions Chapter 4 Enrichment: Step Functions-TE pp. 112-113B; SB pp. 112-113 / PB pp. 101-102 Chapter 5 Linear Functions 5-8 Absolute-Value Functions-TE pp. 138-139B; SB pp. 138-139 / PB pp. 125-126 *5-8A Piecewise-Defined Functions-Online Chapter 13 Exponential and Other Nonlinear Functions 13-2 Graph Rational Functions-TE pp. 332335B; SB pp. 332-335 / PB pp. 333-334

STRAND: ALGEBRA

Standard \& Benchmark Description
9.2.3 Generate equivalent algebraic expressions involving polynomials and radicals; use algebraic properties to evaluate expressions.

9.2.3.1 Evaluate polynomial and rational expressions and expressions containing radicals and absolute values at specified points in their domains.	Chapter 9 Radical Expressions and Equations *9-4A Rational Exponents (evaluate rational expressions)-Online Related content Chapter 1 Basic Concepts of Algebra *1-5A Properties of Integer Exponents—Online 1-6 The Order of Operations (evaluate absolute values)-TE pp. 12-13B; SB pp. 12-13 / PB pp. 11-12 1-8 Algebraic Expressions-TE pp. 16-19B; SB pp. 16-19 / PB pp. 15-16 *1-8A Interpret Parts of Expressions-Online
9.2.3.2 Add, subtract and multiply polynomials; divide a polynomial by a polynomial of equal or lower degree.	Chapter 7 Operations with Polynomials 7-1 Introduction to Polynomials-TE pp. 176-177B; SB pp. 176-177 / PB pp. 169-170 7-2 Add and Subtract Polynomials-TE pp. 178-181B; SB pp. 178-181, PB pp. 171-172 7-3 Multiply a Polynomial by a Monomial-TE pp. 182-183B; SB pp. 182-183, PB pp. 173-174 7-4 Model Binomial Multiplication-TE pp. 184185B; SB pp. 184-185, PB pp. 175-176 7-5 Multiply Binomials-TE pp. 186-187B; SB pp. 186-187 / PB pp. 177-178 7-6 Multiply Polynomials-TE pp. 188-189B; SB pp. 188-189, PB pp. 179-180 *7-8A Set of Polynomials-Online 7-7 Divide a Polynomial by a Monomial-TE pp. 190-191B; SB pp. 190-191 / PB pp. 181-182 7-8 Divide Polynomials Using Long Division-TE pp. 192-193B; SB pp. 192-193 / PB pp. 183-184

STRAND: ALGEBRA

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.2.3 Generate equivalent algebraic expressions involving polynomials and radicals; use algebraic properties to evaluate expressions.

9.2.3.3 Factor common monomial factors from polynomials, factor quadratic polynomials, and factor the difference of two squares. For example: $9 x^{6}-x^{4}=\left(3 x^{3}-x^{2}\right)\left(3 x^{3}+x^{2}\right)$.	Chapter 8 Factoring Polynomials 8-1 Common Monomial Factors-TE pp. 200201B; SB pp. 200-201 / PB pp. 195-196 8-3 Factor Trinomials: $a x^{2}+b x+c, a \neq 1-$ TE pp. 206-209B; SB pp. 206-209 / PB pp. 199-200 $8-4$ Special Product and Factoring: $(a \pm b)^{2}=a^{2}$ $\pm 2 a b+b^{2}$-TE pp. 210-211B; SB pp. 210-211/ PB pp. 201-202 8-5 Special Product and Factoring: $(a+b)(a-b)$ $=a^{2}-b^{2}$-TE pp. 212-213B; SB pp. 212-213 / PB pp. 203-204
9.2.3.4 Add, subtract, multiply, divide and simplify algebraic fractions. For example: $\frac{1}{1-x}+\frac{x}{1+x}$ is equivalent to $\frac{1+2 x-x^{2}}{1-x^{2}}$	Chapter 12 Rational Expressions and Equations 12-2 Simplify Rational Expressions-TE pp. 308309B; SB pp. 308-309 / PB pp. 305-306 12-3 Multiply Rational Expressions-TE pp. 310-311B; SB pp. 310-311 / PB pp. 307-308 12-4 Divide Rational Expressions-TE pp. 312313B; SB pp. 312-313 / PB pp. 309-310 12-5 Combine Rational Expressions with Like Denominators-TE pp. 314-315B; SB pp. 314-315 / PB pp. 311-312 12-6 Combine Rational Expressions with Unlike Denominators-TE pp. 316-317B; SB pp. 316-317 / PB pp. 313-314
9.2.3.5 Check whether a given complex number is a solution of a quadratic equation by substituting it for the variable and evaluating the expression, using arithmetic with complex numbers. For example: The complex number $\frac{1+i}{2}+$ is a solution of $2 x^{2}-2 x+1=0$, since $2\left(\frac{1+i}{2}\right)^{2}-2\left(\frac{1+i}{2}\right)+1=i-(1+i)+1=0$.	Chapter 10 Quadratic Functions and Equations *10-6A Complex Roots-Online

STRAND: ALGEBRA

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.2.3 Generate equivalent algebraic expressions involving polynomials and radicals; use algebraic properties to evaluate expressions.
9.2.3.6 Apply the properties of positive and negative rational exponents to generate equivalent algebraic expressions, including those involving $n^{t h}$ roots.

For example: $\sqrt{2} \times \sqrt{7}=2^{1 / 2} \times 7^{1 / 2}=14^{1 / 2}=\sqrt{14}$
Rules for computing directly with radicals may also be used: $\sqrt[3]{2} \times \sqrt[3]{x}=\sqrt[3]{2 x}$.
9.2.3.7 Justify steps in generating equivalent expressions by identifying the properties used. Use substitution to check the equality of expressions for some particular values of the variables; recognize that checking with substitution does not guarantee equality of expressions for all values of the variables.

Chapter 9 Radical Expressions and Equations

9-4 Solve Radical Equations-TE pp. 234-235B; SB pp. 234-235 / PB pp. 227-228
*9-4A Rational Exponents-Online
*9-4B Use Properties of Rational ExponentsOnline

Chapter 13 Exponential and Other Nonlinear Functions

*13-5A Transform Exponential Functions (generate equivalent expressions/use substitution)-Online
9.2.4 Represent real-world and mathematical situations using equations and inequalities involving linear, quadratic, exponential and nth root functions. Solve equations and inequalities symbolically and graphically. Interpret solutions in the original context.
9.2.4.1 Represent relationships in various contexts using quadratic equations and inequalities. Solve quadratic equations and inequalities by appropriate methods including factoring, completing the square, graphing and the quadratic formula. Find non-real complex roots when they exist. Recognize that a particular solution may not be applicable in the original context. Know how to use calculators, graphing utilities or other technology to solve quadratic equations and inequalities.

For example: A diver jumps from a 20 meter platform with an upward velocity of 3 meters per second. In finding the time at which the diver hits the surface of the water, the resulting quadratic continued

Chapter 10 Quadratic Functions and Equations
10-1 Identify Quadratic Functions and Their Graphs-TE pp. 246-249B; SB pp. 246-249 / PB pp. 243-246
10-2 Graph Quadratic Functions: Parabola-TE pp. 250-253B; SB pp. 250-253 / PB pp. 247-248
10-3 Solve Quadratic Equations by FactoringTE pp. 254-257B / SB pp. 254-257, PB pp. 249-252
10-4 Solve Verbal Problems Involving Quadratic Equations- TE pp. 258-259B / SB pp. 258259 / PB pp. 253-254

STRAND: ALGEBRA

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.2.4 Represent real-world and mathematical situations using equations and inequalities involving linear, quadratic, exponential and nth root functions. Solve equations and inequalities symbolically and graphically. Interpret solutions in the original context.
equation has a positive and a negative solution. The negative solution should be discarded because of the context.

10-5 Solve Quadratic Equations by Completing the Square- TE pp. 260-261B / SB pp. 260261 / PB pp. 255-256
10-7 Solve Quadratic Equations with the Quadratic Formula-TE pp. 264-265B; SB pp. 264-265 / PB pp. 259-260
*10-10B Write a Quadratic Function Rule-Online

Chapter 13 Exponential and Other Nonlinear Functions

13-4 Identify Exponential Functions and Their Graphs-TE pp. 338-341B; SB pp. 338-341/ PB pp. 337-340
*13-4A Features of Exponential Functions-Online
13-5 Exponential Growth and Decay-TE pp. 342-345B; SB pp. 342-345 / PB pp. 341-342
*13-5A Transform Exponential Functions-Online
13-8 Technology: Compare Exponential Growth and Decay-TE pp. 350-351B; SB pp. 350-351 / PB pp. 347-348
9.2.4.3 Recognize that to solve certain equations, number systems need to be extended from whole numbers to integers, from integers to rational numbers, from rational numbers to real numbers, and from real numbers to complex numbers. In particular, non-real complex numbers are needed to solve some quadratic equations with real coefficients.

Chapter 10 Quadratic Functions and Equations

*10-6A Complex Roots (represent expressions containing square roots of negative integers as imaginary and complex numbers and to recognize when quadratic functions have complex solutions)-Online

Chapter 6 Systems of Linear Equations and Inequalities

6-6 Graph Systems of Linear Inequalities-TE pp. 162-165B; SB pp. 162-165 / PB pp. 153-154

STRAND: ALGEBRA

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.2.4 Represent real-world and mathematical situations using equations and inequalities involving linear, quadratic, exponential and nth root functions. Solve equations and inequalities symbolically and graphically. Interpret solutions in the original context.

9.2.4.5 Solve linear programming problems in
two variables using graphical methods.

9.2.4.7 Solve equations that contain radical
expressions. Recognize that extraneous
9.2.4.7 Solve equations that contain radic
expressions. Recognize that extraneous solutions may arise when using symbolic methods.

For example: The equation $\sqrt{x-9}=9 \sqrt{x}$ may be solved by squaring both sides to obtain $x-9=81 x$, which has the solution $x=-\frac{9}{81}$. However, this is not a solution of the original (Algebra 2)

Chapter 3 Linear Inequalities

3-6 Solve Absolute-Value Inequalities-TE pp. 84-85B; SB pp. 84-85 / PB pp. 75-76
For example: If a pipe is to be cut to a length of 5 meters accurate to within a tenth of its diameter, and its diameter y satisfies the inequality $|x-5| \leq 0.1 y$. equation, so it is an extraneous solution that should be discarded. The original equation has no solution in this case.
Another example: Solve $\sqrt[3]{-x+1}=-5$.
9.2.4.8 Assess the reasonableness of a solution in its given context and compare the solution to appropriate graphical or numerical estimates; interpret a solution in the original context.

Chapter 9 Radical Expressions and Equations

9-4 Solve Radical Equations (extraneous solutions)-TE pp. 234-235B; SB pp. 234-235 / PB pp. 227-228

Chapter 12 Rational Expressions and Equations

12-8 Solve Rational Equations Resulting in Linear Equations (extraneous solutions)-TE pp. 320-321B; SB pp. 320-321 / PB pp. 317-318
12-9 Solve Rational Equations Resulting in Quadratic Equations-TE pp. 322-323B; SB pp. 322-323 / PB pp. 319-320

Chapter 1 Basic Concepts of Algebra

1-3 Add and Subtract Real Numbers (estimate/ check to see the answer is reasonable)-TE pp. 6-7B; SB pp. 6-7 / PB pp. 6-7
1-4 Multiply and Divide Real Numbers (estimate/ check to see the answer is reasonable)-TE pp. 8-9B; SB pp. 8-9 / PB pp. 7-8
continued

STRAND: ALGEBRA

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.2.4 Represent real-world and mathematical situations using equations and inequalities involving linear, quadratic, exponential and nth root functions. Solve equations and inequalities symbolically and graphically. Interpret solutions in the original context.

STRAND: ALGEBRA

Standard \& Benchmark Description
9.2.4 Represent real-world and mathematical situations using equations and inequalities involving linear, quadratic, exponential and nth root functions. Solve equations and inequalities symbolically and graphically. Interpret solutions in the original context.

	Chapter 9 Radical Expressions and Equations 9-7 Problem-Solving Strategy: Account for All Possibilities (make sure your answer makes sense)-TE pp. 240-241B; SB pp. 240-241 / PB pp. 233-234 10-11 Problem Solving Strategy: Adopt a Different Point of View (does answer make sense?)-TE pp. 274-275B; SB pp. 274-275 / PB pp. 267-268 Chapter 11 Ratio, Proportion, and Trigonometry 11-9 Problem-Solving Strategy: Guess and TestTE pp. 300-301B; SB pp. 300-301 / PB pp. 293-294 Chapter 12 Rational Expressions and Equations 12-8 Solve Rational Equations Resulting in Linear Equations-TE pp. 320-321B; SB pp. 320-321 / PB pp. 317-318 Chapter 13 Exponential and Other Nonlinear Functions 12-10 Problem Solving: Review of StrategiesTE pp. 324-325B; SB pp. 324-325 / PB pp. 321-322 Chapter 14 Data Analysis and Probability 14-17 Problem Solving: Review of Strategies (make sure your answer makes sense)-TE pp. 398-399B; SB pp. 398-399 / PB pp. 391-392

STRAND: GEOMETRY \& MEASUREMENT

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.3.1 Calculate measurements of plane and solid geometric figures; know that physical measurements depend on the choice of a unit and that they are approximations.

9.3.1.1 Determine the surface area and volume of pyramids, cones and spheres. Use measuring devices or formulas as appropriate. For example: Measure the height and radius of a cone and then use a formula to find its volume.	Chapter 2 Linear Equations 2-7 Formulas and Literal Equations-TE pp. 60-61B; SB pp. 60-61 / PB pp. 51-52 *2-7A Dimensional Analysis of Units-Online Chapter 7 Operations with Polynomials 7-6 Multiply Polynomials-TE pp. 188-189B; SB pp. 188-189, PB pp. 179-180 Chapter 11 Ratio, Proportion, and Trigonometry *11-3A Precision in Measurement-Online
9.3.1.2 Compose and decompose two- and threedimensional figures; use decomposition to determine the perimeter, area, surface area and volume of various figures. For example: Find the volume of a regular hexagonal prism by decomposing it into six equal triangular prisms.	Related content Chapter 1 Basic Concepts of Algebra *1-5A Properties of Integer Exponents (volume)Online Chapter 2 Linear Equations 2-5 Solve Multistep Equations (perimeter)-TE pp. 54-57B; SB pp. 54-57 / PB pp. 47-48 *2-7A Dimensional Analysis of Units (surface area, volume)-Online Chapter 9 Radical Expressions and Equations *9-4B Use Properties of Rational Exponents (perimeter, area, volume)-Online Chapter 10 Quadratic Functions and Equations *10-2A Features of Quadratic Functions (surface area)-Online Chapter 11 Ratio, Proportion, and Trigonometry *11-3A Precision in Measurement (area, volume)Online

STRAND: GEOMETRY \& MEASUREMENT

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.3.1 Calculate measurements of plane and solid geometric figures; know that physical measurements depend on the choice of a unit and that they are approximations.

9.3.1.3 Understand that quantities associated with physical measurements must be assigned units; apply such units correctly in expressions, equations and problem solutions that involve measurements; and convert between measurement systems.	Chapter 2 Linear Equations For example: 60 miles/hour $=60$ miles/hour \times 5280 feet/mile $\times 1$ hour/ 3600 seconds $=88$ feet/ second.

9.3.2 Construct logical arguments, based on axioms, definitions and theorems, to prove theorems and other results in geometry.
9.3.2.1 Understand the roles of axioms, definitions, undefined terms and theorems in logical arguments.

Related content

Chapter 5 Linear Functions

Chapter 5 Enrichment: Slope in Coordinate Geometry (Proving a Geometry Theorem)-TE pp. 146-147B; SB pp. 146-147 / PB pp. 133-134

STRAND: GEOMETRY \& MEASUREMENT

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.3.2 Construct logical arguments, based on axioms, definitions and theorems, to prove theorems and other results in geometry.

9.3.2.2 Accurately interpret and use words and phrases such as "if...then," "if and only if," "all," and "not." Recognize the logical relationships between an "if...then" statement and its inverse, converse and contrapositive. For example: The statement "If you don't do your homework, you can't go to the dance" is not logically equivalent to its inverse "If you do your homework, you can go to the dance."	(Geometry)
9.3.2.3 Assess the validity of a logical argument and give counterexamples to disprove a statement.	Related content Chapter 3 Linear Inequalities 3-8 Problem-Solving Strategy: Reason Logically-TE pp. 88-89B; SB pp. 88-89 / PB pp. 79-80
9.3.2.4 Construct logical arguments and write proofs of theorems and other results in geometry, including proofs by contradiction. Express proofs in a form that clearly justifies the reasoning, such as two-column proofs, paragraph proofs, flow charts or illustrations. For example: Prove that the sum of the interior angles of a pentagon is 540° using the fact that the sum of the interior angles of a triangle is 180°.	(Geometry)
9.3.2.5 Use technology tools to examine theorems, make and test conjectures, perform constructions and develop mathematical reasoning skills in multi-step problems. The tools may include compass and straight edge, dynamic geometry software, design software or Internet applets.	(Geometry)

STRAND: GEOMETRY \& MEASUREMENT

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.3.3 Know and apply properties of geometric figures to solve real-world and mathematical problems and to logically justify results in geometry.

9.3.3.1 Know and apply properties of parallel and perpendicular lines, including properties of angles formed by a transversal, to solve problems and logically justify results. For example: Prove that the perpendicular bisector of a line segment is the set of all points equidistant from the two endpoints, and use this fact to solve problems and justify other results.	Related content Chapter 5 Linear Functions 5-6 Parallel and Perpendicular Lines-TE pp. 132-135B; SB pp. 132-135 / PB pp. 121-122
9.3.3.2 Know and apply properties of angles, including corresponding, exterior, interior, vertical, complementary and supplementary angles, to solve problems and logically justify results. For example: Prove that two triangles formed by a pair of intersecting lines and a pair of parallel lines (an " X " trapped between two parallel lines) are similar.	(Geometry)
9.3.3.3 Know and apply properties of equilateral, isosceles and scalene triangles to solve problems and logically justify results. For example: Use the triangle inequality to prove that the perimeter of a quadrilateral is larger than the sum of the lengths of its diagonals.	(Geometry)
9.3.3.4 Apply the Pythagorean Theorem and its converse to solve problems and logically justify results. For example: When building a wooden frame that is supposed to have a square corner, ensure that the corner is square by measuring lengths near the corner and applying the Pythagorean Theorem.	Chapter 9 Radical Expressions and Equations 9-5 The Pythagorean Theorem-TE pp. 236237B; SB pp. 236-237 / PB pp. 229-230 9-6 Distance in the Coordinate Plane (apply the Pythagorean Theorem)-TE pp. 238-239B; SB pp. 238-239 / PB pp. 231-232 Chapter 9 Enrichment: Extending the Pythagorean Theorem to Three DimensionsTE pp. 242-243B; SB pp. 242-243 / PB pp. 235-236

STRAND: GEOMETRY \& MEASUREMENT

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.3.3 Know and apply properties of geometric figures to solve real-world and mathematical problems and to logically justify results in geometry.

9.3.3.5 Know and apply properties of right triangles, including properties of 45-45-90 and 30-60-90 triangles, to solve problems and logically justify results.

For example: Use 30-60-90 triangles to analyze geometric figures involving equilateral triangles and hexagons.
Another example: Determine exact values of the trigonometric ratios in these special triangles using relationships among the side lengths.

Related content

Chapter 5 Linear Functions

Chapter 5 Enrichment: Slope in Coordinate Geometry (Showing That a Triangle Is a Right Triangle)—TE pp. 146-147B; SB pp. 146-147 / PB pp. 133-134

Chapter 9 Radical Expressions and Equations

9-5 The Pythagorean Theorem (right triangles)TE pp. 236-237B; SB pp. 236-237 / PB pp. 229-230

Chapter 11 Ratio, Proportion, and Trigonometry

11-6 Use Trigonometric Ratios to Solve Right Triangles-TE pp. 292-293B; SB pp. 292-293 / PB pp. 287-288
9.3.3.6 Know and apply properties of congruent and similar figures to solve problems and logically justify results.

For example: Analyze lengths and areas in a figure formed by drawing a line segment from one side of a triangle to a second side, parallel to the third side.
Another example: Determine the height of a pine tree by comparing the length of its shadow to the length of the shadow of a person of known height.
Another example: When attempting to build two identical 4-sided frames, a person measured the lengths of corresponding sides and found that they matched. Can

(Geometry)

9.3.3.7 Use properties of polygons—including quadrilaterals and regular polygons-to define them, classify them, solve problems and logically justify results.

For example: Recognize that a rectangle is a special case of a trapezoid.
Another example: Give a concise and clear definition of a kite.

Related content

Chapter 5 Linear Functions

Chapter 5 Enrichment: Slope in Coordinate Geometry (Showing That a Quadrilateral Is a Parallelogram)-TE pp. 146-147B; SB pp. 146-147 / PB pp. 133-134

STRAND: GEOMETRY \& MEASUREMENT

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.3.3 Know and apply properties of geometric figures to solve real-world and mathematical problems and to logically justify results in geometry.
9.3.3.8 Know and apply properties of a circle to solve problems and logically justify results.

For example: Show that opposite angles of a quadrilateral inscribed in a circle are supplementary.

Related content

Chapter 10 Quadratic Functions and Equations
*10-8A Solve More Linear-Quadratic Systems
(Equation of a Circle)-Online

9.3.4 Solve real-world and mathematical geometric problems using algebraic methods.

9.3.4.1 Understand how the properties of similar right triangles allow the trigonometric ratios to be defined, and determine the sine, cosine and tangent of an acute angle in a right triangle.	Related content Chapter 11 Ratio, Proportion, and Trigonometry 11-5 The Trigonometric Ratios-TE pp. 290-291B; SB pp. 290-291 / PB pp. 285-286
9.3.4.2 Apply the trigonometric ratios sine, cosine and tangent to solve problems, such as determining lengths and areas in right triangles and in figures that can be decomposed into right triangles. Know how to use calculators, tables or other technology to evaluate trigonometric ratios. For example: Find the area of a triangle, given the measure of one of its acute angles and the lengths of the two sides that form that angle.	Related content Chapter 11 Ratio, Proportion, and Trigonometry 11-7 Use Trigonometric Ratios to Solve Verbal Problems-TE pp. 294-297B; SB pp. 294-297 / PB pp. 289-290
9.3.4.3 Use calculators, tables or other technologies in connection with the trigonometric ratios to find angle measures in right triangles in various contexts.	Related content Chapter 11 Ratio, Proportion, and Trigonometry 11-6 Use Trigonometric Ratios to Solve Right Triangles-TE pp. 292-293B; SB pp. 292-293 / PB pp. 287-288
9.3.4.4 Use coordinate geometry to represent and analyze line segments and polygons, including determining lengths, midpoints and slopes of line segments.	Related content Chapter 9 Radical Expressions and Equations 9-6 Distance in the Coordinate Plane-TE pp. 238-239B; SB pp. 238-239 / PB pp. 231-232

STRAND: GEOMETRY \& MEASUREMENT

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.3.4 Solve real-world and mathematical geometric problems using algebraic methods.

9.3.4.5 Know the equation for the graph of a circle with radius r and center (h, k), $(x-h)^{2}+(y-k)^{2}=r^{2}$, and justify this equation using the Pythagorean Theorem and properties of translations.	(Geometry)
9.3.4.6 Use numeric, graphic and symbolic representations of transformations in two dimensions, such as reflections, translations, scale changes and rotations about the origin by multiples of 90°, to solve problems involving figures on a coordinate grid. For example: If the point ($3,-2$) is rotated 90° counterclockwise about the origin, it becomes the point (2, 3).	(Geometry)
9.3.4.7 Use algebra to solve geometric problems unrelated to coordinate geometry, such as solving for an unknown length in a figure involving similar triangles, or using the Pythagorean Theorem to obtain a quadratic equation for a length in a geometric figure.	(Geometry)

STRAND: DATA ANALYSIS \& STATISTICS

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.4.1 Display and analyze data; use various measures associated with data to draw conclusions, identify trends and describe relationships.
9.4.1.1 Describe a data set using data displays, including box-and-whisker plots; describe and compare data sets using summary statistics, including measures of center, location and spread. Measures of center and location include mean, median, quartile and percentile. Measures of spread include standard deviation, range and inter-quartile range. Know how to use calculators, spreadsheets or other technology to display data and calculate summary statistics.
9.4.1.2 Analyze the effects on summary statistics of changes in data sets.

For example: Understand how inserting or deleting a data point may affect the mean and standard deviation.
Another example: Understand how the median and interquartile range are affected when the entire data set is transformed by adding a constant to each data value or multiplying each data value by a constant.
9.4.1.3 Use scatterplots to analyze patterns and describe relationships between two variables. Using technology, determine regression lines (line of best fit) and correlation coefficients; use regression lines to make predictions and correlation coefficients to assess the reliability of those predictions.

Chapter 14 Data Analysis and Probability

14-2 Measures of Central Tendency and RangeTE pp. 362-363B; SB pp. 362-363 / PB pp.
361-362
*14-2A Standard Deviation-Online
14-3 Stem-and-Leaf Plots-TE pp. 364-365B; SB pp. 364-365 / PB pp. 363-364
14-4 Histograms-TE pp. 366-369B; SB pp. 366-369 / PB pp. 365-366
14-5 Quartiles and Box-and-Whisker Plots-TE pp. 370-371B; SB pp. 370-371 / PB pp. 367368
*14-5A Compare Data Sets-Online
14-6 Percentiles-TE pp. 372-373B; SB pp. 372-373 / PB pp. 369-370

Chapter 14 Data Analysis and Probability

14-2 Measures of Central Tendency and RangeTE pp. 362-363B; SB pp. 362-363 / PB pp. 361-362
*14-2A Standard Deviation-Online
*14-5A Compare Data Sets-Online 14-16 Technology: Calculator Statistics-TE pp. 396-397B; SB pp. 396-397 / PB pp. 389-390

Chapter 14 Data Analysis and Probability

14-7 Scatter Plots-TE pp. 374-377B; SB pp.
374-377 / PB pp. 371-372
*14-7A Fit a Function to Data-Online
*14-7B Correlation Coefficient-Online

STRAND: DATA ANALYSIS \& STATISTICS

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.4.1 Display and analyze data; use various measures associated with data to draw conclusions, identify trends and describe relationships.
9.4.1.4 Use the mean and standard deviation of a data set to fit it to a normal distribution (bell-shaped curve) and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets and tables to estimate areas under the normal curve.

For example: After performing several measurements of some attribute of an irregular physical object, it is appropriate to fit the data to a normal distribution and draw conclusions about measurement error.
Another example: When data involving two very different populations is combined, the resulting histogram may show two distinct peaks, and fitting the data to a normal distribution is not appropriate.

Chapter 14 Data Analysis and Probability

14-2 Measures of Central Tendency and RangeTE pp. 362-363B; SB pp. 362-363 / PB pp.
361-362
*14-2A Standard Deviation-Online
*14-5A Compare Data Sets-Online

9.4.2 Explain the uses of data and statistical thinking to draw inferences, make predictions and justify conclusions.

9.4.2.1 Evaluate reports based on data published in the media by identifying the source of the data, the design of the study, and the way the data are analyzed and displayed. Show how graphs and data can be distorted to support different points of view. Know how to use spreadsheet tables and graphs or graphing technology to recognize and analyze distortions in data displays.

For example: Displaying only part of a vertical axis can make differences in data appear deceptively large.

Chapter 14 Data Analysis and Probability

14-1 Sampling Techniques-TE pp. 358-361B; SB
pp. 358-361 / PB pp. 359-360

STRAND: DATA ANALYSIS \& STATISTICS

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.4.2 Explain the uses of data and statistical thinking to draw inferences, make predictions and justify conclusions.
9.4.2.2 Identify and explain misleading uses of data; recognize when arguments based on data confuse correlation and causation.

Chapter 14 Data Analysis and Probability

14-1 Sampling Techniques (misleading graphs)TE pp. 358-361B; SB pp. 358-361 / PB pp.
359-360
14-7 Scatter Plots-TE pp. 374-377B; SB pp.
374-377 / PB pp. 371-372
Related content
Chapter 14 Data Analysis and Probability
14-1 Sampling Techniques-TE pp. 358-361B; SB pp. 358-361 / PB pp. 359-360

9.4.3 Calculate probabilities and apply probability concepts to solve real-world and mathematical problems.

9.4.3.1 Select and apply counting procedures, such as the multiplication and addition principles and tree diagrams, to determine the size of a sample space (the number of possible outcomes) and to calculate probabilities.

For example: If one girl and one boy are picked at random from a class with 20 girls and 15 boys, there are $20 \times 15=300$ different possibilities, so the probability that a particular girl is chosen together with a particular boy is $1 / 300$.

Chapter 14 Data Analysis and Probability

14-10 Independent and Dependent EventsTE pp. 382-385B; SB pp. 382-385 / PB pp. 377-378
Chapter 14 Test Prep: Strategy: Organize Information (use Fundamental Counting Principle)-TE p. 402; SB p. 402 / PB p. 395
9.4.3.2 Calculate experimental probabilities by performing simulations or experiments involving a probability model and using relative frequencies of outcomes.
9.4.3.3 Understand that the Law of Large Numbers expresses a relationship between the probabilities in a probability model and the experimental probabilities found by performing simulations or experiments involving the model.

Chapter 14 Data Analysis and Probability

14-8 Empirical Probability-TE pp. 378-379B; SB pp. 378-379 / PB pp. 373-374
14-15 Technology: Simulate Events-TE pp. 394395B; SB pp. 394-395 / PB pp. 387-388

Related content

Chapter 14 Data Analysis and Probability
14-8 Empirical Probability-TE pp. 378-379B; SB pp. 378-379 / PB pp. 373-374
14-9 Theoretical Probability-TE pp. 380-381B; SB pp. 380-381 / PB pp. 375-376

STRAND: DATA ANALYSIS \& STATISTICS

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.4.3 Calculate probabilities and apply probability concepts to solve real-world and mathematical problems.
9.4.3.4 Use random numbers generated by a calculator or a spreadsheet, or taken from a table, to perform probability simulations and to introduce fairness into decision making.

For example: If a group of students needs to fairly select one of its members to lead a discussion, they can use a random number to determine the selection.
9.4.3.5 Apply probability concepts such as intersections, unions and complements of events, and conditional probability and independence, to calculate probabilities and solve problems.

For example: The probability of tossing at least one head when flipping a fair coin three times can be calculated by looking at the complement of this event (flipping three tails in a row).
9.4.3.6 Describe the concepts of intersections, unions and complements using Venn diagrams. Understand the relationships between these concepts and the words AND, OR, NOT, as used in computerized searches and spreadsheets.

Chapter 14 Data Analysis and Probability

14-9 Theoretical Probability-TE pp. 380-381B; SB pp. 380-381 / PB pp. 375-376
14-10 Independent and Dependent EventsTE pp. 382-385B; SB pp. 382-385 / PB pp.
377-378
14-11 Mutually Exclusive Events-TE pp. 386387B; SB pp. 386-387 / PB pp. 379-380
14-15 Technology: Simulate Events-TE pp. 394395B; SB pp. 394-395 / PB pp. 387-388

Chapter 14 Data Analysis and Probability

14-9 Theoretical Probability-TE pp. 380-381B;
SB pp. 380-381 / PB pp. 375-376
14-12 Conditional Probability-TE pp. 388-389B;
SB pp. 388-389 / PB pp. 381-382

Chapter 14 Data Analysis and Probability

14-9 Theoretical Probability (Venn diagram)TE pp. 380-381B; SB pp. 380-381 / PB pp. 375-376
14-11 Mutually Exclusive Events (Venn diagram)TE pp. 386-387B; SB pp. 386-387 / PB pp. 379-380

STRAND: DATA ANALYSIS \& STATISTICS

Standard \& Benchmark Description

9.4.3 Calculate probabilities and apply probability concepts to solve real-world and mathematical problems.

9.4.3.7 Understand and use simple probability formulas involving intersections, unions and complements of events.

For example: If the probability of an event is p, then the probability of the complement of an event is $1-\mathrm{p}$; the probability of the intersection of two independent events is the product of their probabilities.

Another example: The probability of the union of two events equals the sum of the probabilities of the two individual events minus the probability of the intersection of the events.
9.4.3.8 Apply probability concepts to real-world situations to make informed decisions.

For example: Explain why a hockey coach might decide near the end of the game to pull the goalie to add another forward position player if the team is behind.

Another example: Consider the role that probabilities play in health care decisions, such as deciding between having eye surgery and wearing glasses.

Chapter 14 Data Analysis and Probability

14-9 Theoretical Probability-TE pp. 380-381B; SB pp. 380-381 / PB pp. 375-376

Chapter 14 Data Analysis and Probability

14-7 Scatter Plots—TE pp. 374-377B; SB pp. 374-377 / PB pp. 371-372
*14-7A Fit a Function to Data-Online 14-8 Empirical Probability—TE pp. 378-379B; SB pp. 378-379 / PB pp. 373-374
14-9 Theoretical Probability-TE pp. 380-381B; SB pp. 380-381 / PB pp. 375-376
14-10 Independent and Dependent EventsTE pp. 382-385B; SB pp. 382-385 / PB pp. 377-378
14-11 Mutually Exclusive Events-TE pp. 386387B; SB pp. 386-387 / PB pp. 379-380
14-12 Conditional Probability-TE pp. 388-389B; SB pp. 388-389 / PB pp. 381-382
14-13 Permutations-TE pp. 390-391B; SB pp. 390-391 / PB pp. 383-384
14-14 Combinations-TE pp. 392-393B; SB pp. 392-393 / PB pp. 385-386
14-15 Technology: Simulate Events-TE pp. 394395B; SB pp. 394-395 / PB pp. 387-388

STRAND: DATA ANALYSIS \& STATISTICS

Standard \& Benchmark Description

Sadlier-Oxford Algebra 1

9.4.3 Calculate probabilities and apply probability concepts to solve real-world and mathematical problems.
9.4.3.9 Use the relationship between conditional probabilities and relative frequencies in contingency tables.

For example: A table that displays percentages relating gender (male or female) and handedness (right-handed or left-handed) can be used to determine the conditional probability of being left-handed, given that the gender is male.

Chapter 14 Data Analysis and Probability
14-12 Conditional Probability-TE pp. 388-389B; SB pp. 388-389 / PB pp. 381-382

