

Latest Trends in IEEE 802.11ax/11be (Wi-Fi 6E/WLAN Standards)

Brian Davis

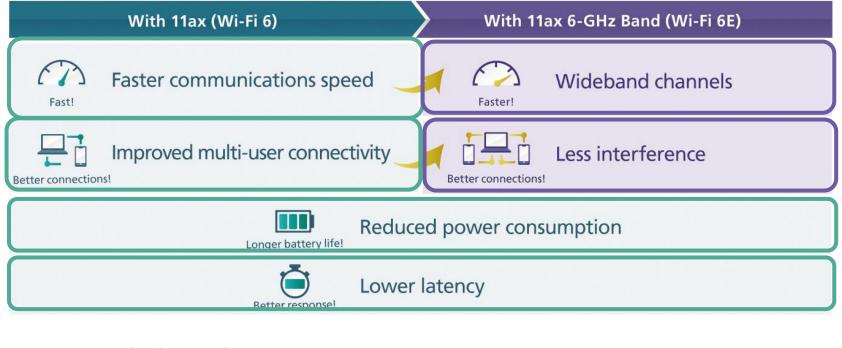
Market Development Manager Anritsu

June 15, 2021

Introduction

envision: ensure

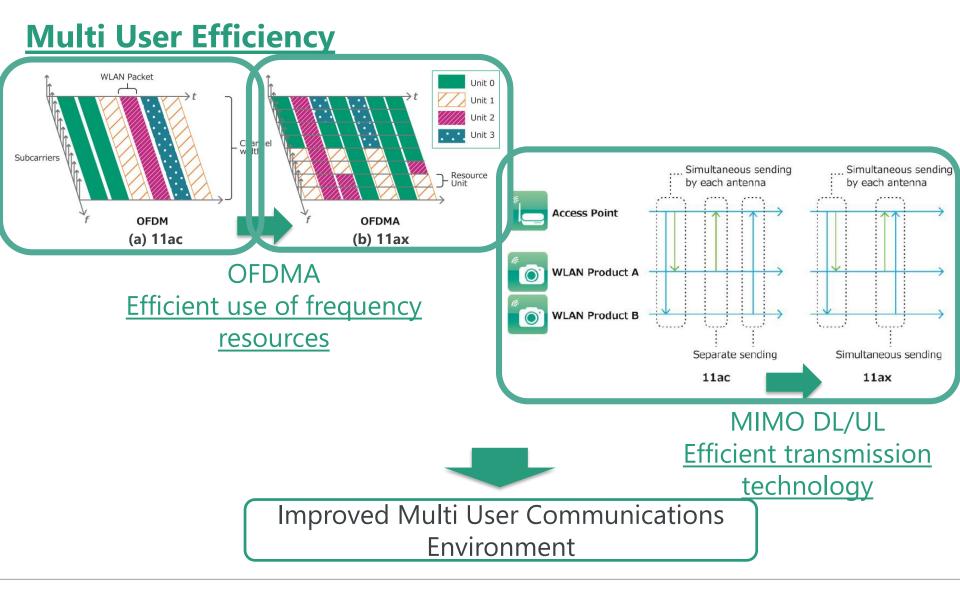
Wi-Fi is now a commonly used connection method for indoor wireless communications, starting first with smartphones and PCs. Moreover, with the spread of IoT, wireless LAN (WLAN) technology, supporting configuration of high-speed, large-capacity, low-cost communications environments is being used increasingly by home electrical goods, such as televisions, automobiles, and industrial machinery.

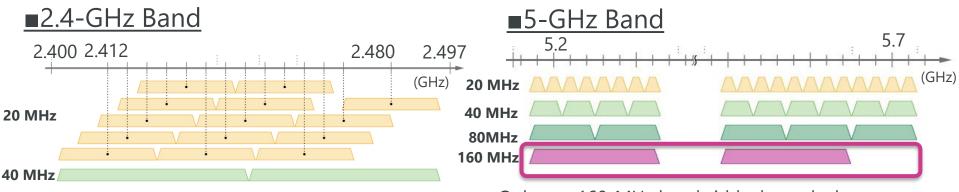


2

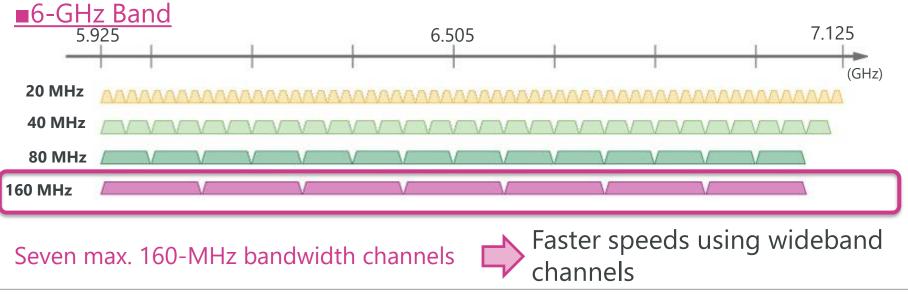
IEEE802.11 Standards

IEEE80)2.11	11b	11a	11g	11n	11ac (WiFi5)	11ax (WiFi6)
Transmission Vector Format		Non-HT (Non-High Throughput)	Non-HT (Non-High Throughput)	Non-HT (Non-High Throughput)	HT (High Throughput)	VHT (Very High Throughput)	HE (High Efficiency)
Definit	ion	1999	1999	2003	2009	2014	May 2021
Freq.	2.4GHz	\checkmark		\checkmark	\checkmark		\checkmark
	5GHz		\checkmark		\checkmark	\checkmark	\checkmark
	6GHz						\checkmark
Bandw [MHz]	vidth	22	20	20	20/40	20/40/80/16 0/80+80	20/40/80/16 0/80+80
Maxim throug rate [b	Ihput	11M	54M	54M	540M	6930M	9607.8 M
Modulation scheme		DBPSK DQPSK	BPSK QPSK 16QAM 64QAM	BPSK QPSK 16QAM 64QAM	BPSK QPSK 16QAM 64QAM	BPSK QPSK 16QAM 64QAM 256QAM	BPSK QPSK 16QAM 64QAM 256QAM 1024QAM
Stream	1	-	-	-	4x4	8x8	8x8 OFDMA


IEEE802.11ax Changes


6-GHz Band Channels

	5925 MHz		6425 MHz	6525 MHz		75 7 1Hz	7125 MHz
FCC		UNII-5	UN	-6	UNII-7	UNII-8	
ETSI	5	925-6425					
Creation and a state where a	Subdacing distribution distribution and description of the local distribution of the local distr	A A A A A A A A A A A A A A A A A A A	2 40 40 40 40 40 40 40 40	00 40 20 40 20 40 40 40 0 40 40 40 40 4 80 80 80	state and an other statements of the statement of the sta	20,20,20,20,20,20,20,20,20,20,20,20,20,2	0 20 20 40
7×160 MHz	160	160 16		160 V	160 160]


IEEE802.11ax Feature Functions

Channels in Each Frequency Band

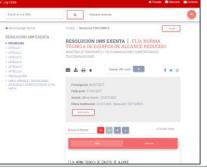
40-MHz max bandwidth channels with channel overlap causing easy susceptibility to interference. Congestion due to use of other frequencies. Only two 160-MHz bandwidth channels that cannot be used efficiently. Channel availability problems due to use of same band by satellites.

National Rollouts of 6-GHz Band

Each country opens 6GHz-band spectrum to the unlicensed use of Wireless LAN.

2020 2021 April 2020 Feb 2021 5,925-7,125MHz 5,925-7,125MHz **US** Adopts **Canada** Adopts June 2020 March 2021 5,925-6,425MHz 5,925-7,125MHz **UK** Adopts **Brazil** Adopts October 2020 March 2021 5,925-7,125MHz 5,925MHz-7,125MHz Korea Adopts **UAE** Adopt October 2020 2021 H2 5,925-7,125MHz 5,925MHz-6,425MHz **Chile** Adopts ETSI/EU Adopt (Plan) UK regulator Ofcom releases 500 MHz of 6 GHz spectrum to Wi-Fi ING NEWS) by Claus Hetting | July 24, 2020 Q. HORONGA ANNALASA Portada / Resolucide 1985 EXENTA RESOLUCIÓN 1985 EX Media Contact: Fina Pelkey, (202) 418-0536 ina.pelkey@fcc.gov

For Immediate Release

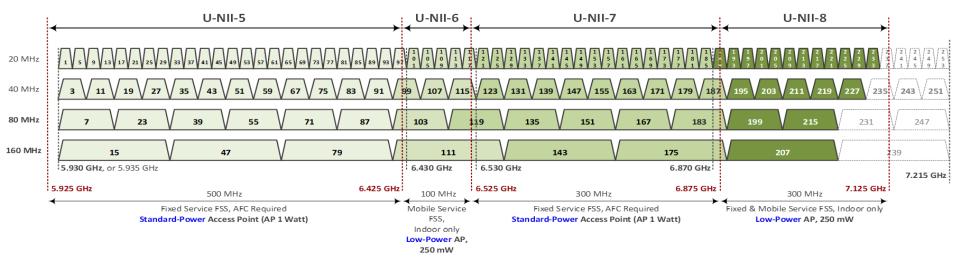

FCC ADOPTS NEW RULES FOR THE 6 GHz BAND, UNLEASHING 1,200 MEGAHERTZ OF SPECTRUM FOR UNLICENSED USE Commission Provides a Boost to Wi-Fi and Other Unlicensed Uses While Protecting Incumbent Services in the Band

WASHINGTON April 23, 2020—The Federal Communications (commission today adopted rules that make 1,200 megaheriz of spectrum in the 6 GHz hand (5 925–7125 GHz) available for unlicensed use. These new rules will usher in Wi-Fi 6, the next generation of Wi-Fi, and play a major role in the growth of the Internet of Things. Wi-Fi 6 will be over two-ands-half time faster than the current standard and will offee bretter performance for American consumers. Opening the 6 GHz hand for unlicensed use will also increase the amount of uperturm available for Wi-Fi by nearly a factor of five and help improve rule connectivity. By Claus Hetting, Wi-FI NOW CEO & Chair

"I's official: In a statement released lockay UK regulator Officem has announced its decision to five 500 MHz of spectrum in the 6 GHz band to hindon WFF lace. Officem is also allowing Very tow Power (VLP) addsor use and they're removing the much citickical differ speciesments in the United Kingdom. All in all a historic day and a tage win for WFFF and the future of unitensed wireless in the United Kingdom.

Today's regulatory decision is wireless history in the making for the United Kingdom. Ofcom this morning released a statement detailing their decision to release 500 MHz of 6 GHz band (specificulity 5253–425 MHz). WHF1 for indoor use. The decision means that the United Kingdom become only the second country in the world to release 6 GHz band to WF1 Fiollowing the FCC's decision on April 23. Ofcords decision—which was barened watered a marks counter hum who for the WF1 bind once.

South Korea makes 6GHz band av Wi-Fi	ailable for
The unlicensed 6GHz band will offer download speed of up to 2.1Gbps, the Ministry of	Science and ICT said.
• In 🖬 f 🗴 a 🛞 Py Dia Ma Hyuni October 15, 2030 - 06.54 GMT (05.4 SGT) (Tapac	MORE FROM CHOMELIFYIN Microry Six Twiscom and Uber Is Six Twiscom and Uber Is
South Konva's Ministry of Science and ICT said on Thursday that it has approved 12GHz of spectrum in the 6GHz band – the 5:925MHz to 7/25MHz range – far unicensed use.	
With the ministry's eportwell, South Koree will become the second country to make the 6GHz band available for unificanced use after the United States gave the go ahead in April.	Mooliny Hyundail Moters promotec heir to cheimmen end touts focu
The decision will make the whole GGHz band at under 25mW available for free use at indoor settings across the country.	an future tech
For device-to-device connections like lethering, spectrum sitting in the 5,925MHz6-6,455MHz range will also be available for use everywhere, regardless of whether it is indoors or outdoors	Mobility Semicurg Q3 profit rises by 50%
According to the ministry, the decision to allow device to device connections in the 6GH2 band to a world-first.	AMSUNG
It will also provide more channels for Wh Fi as well as improve data transfer speed levels to that of 50 retexcise, the ministry said.	Lagal Never Sned for search
Sig Investories, the ministry sets	A second



Details of 6Ghz spectrum – Power requirements

Now there are two types of unlicensed devices to operate in 6Ghz:

Low-power Access Points (APs) and their associated client devices can occupy all 1200Mhz;

Standard-power Access Points (APs) and their associated client device, only only UNII 5 and UNI 7.

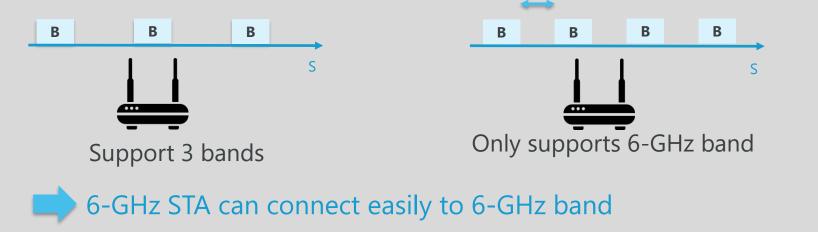
Table 3: Expanded Unlicensed Use of the 6 Gigahertz Band

Device Class	Operating Bands	Maximum EIRP	Maximum EIRP Power Spectral Density
Standard-Power Access Point (AFC Controlled)	U-NII-5 (5.925-6.425 GHz)	36 dBm	23 dBm/MHz
Client Connected to Standard-Power Access Point	U-NII-7 (6.525-6.875 GHz)	30 dBm	17 dBm/MHz
Low-Power Access Point (indoor only)	U-NII-5 (5.925-6.425 GHz) U-NII-6 (6.425-6.525 GHz)	30 dBm	5 dBm/MHz
Client Connected to Low-Power Access Point	U-NII-7 (6.525-6.875 GHz) U-NII-8 (6.875-7.125 GHz)	24 dBm	-1 dBm/MHz

Trends in IEEE802.11ax Standard

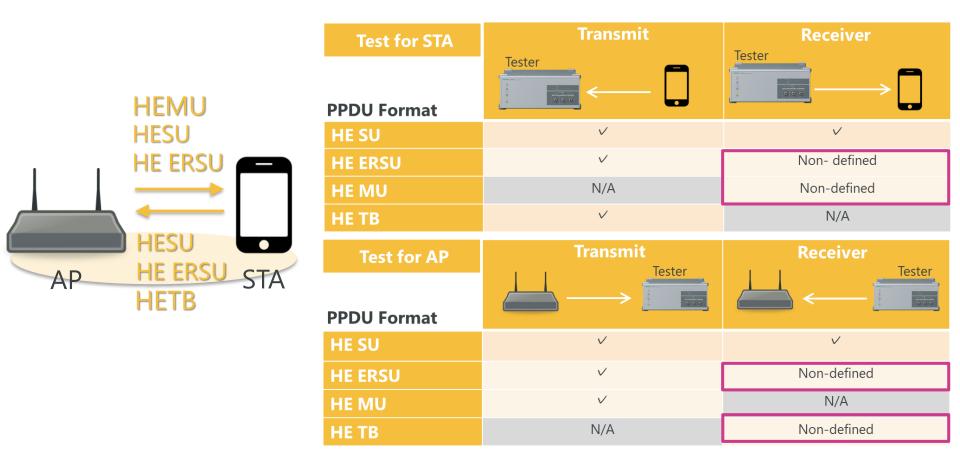
Main RF-related Changes in Draft 6.1

Channel Frequency Changes


Operating Class	Channel Starting Frequency	Channel Spacing
131	5.940 MHz → 5.950 MHz	20 MHz
132	5.940 MHz → 5.950 MHz	40 MHz
133	5.940 MHz → 5.950 MHz	80 MHz
134	5.940 MHz → 5.950 MHz	160 MHz
135	5.940 MHz → 5.950 MHz	80 MHz + 80 MHz
136	5.925 MHz	20 MHz

Trends in IEEE802.11ax Standard

Main RF-related Changes in Draft 7.0


For AP supporting only 6-GHz band, added function for sending notifications in about 20 ms or less Less than 20ms

IEEE802.11ax Evaluation Items

Evaluation Items for Each PPDU Format

IEEE802.11 evaluation items are described in each PPDU and vary according to the PPDU, so there are some undefined standard evaluation items.

PPDU: Physical layer Protocol Data Unit

IEEE802.11ax Definition RF Evaluation Items

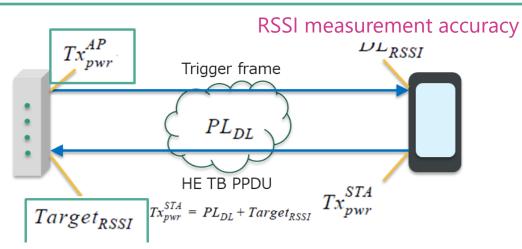
New Evaluation Items Added by 11ax

Category	Chapter	Title	Detail	DUT	Measurement
Transmit	27.3.15.3		Transmit power and RSSI measurement accuracy	STA	HETB
requirements for an HE TB			carrier frequency offset error	STA	HETB
PPDU			symbol clock error	STA	HETB
			the arrival time of the HE TB PPDU at the AP	STA	НЕТВ
	27.3.19.1	Iransmit spect	ral mask	AP/STA	All PPDU Format
	27.3.19.2	Spectral flatness		AP/STA	All PPDU Format
Transmit	27.3.19.3	Transmit cente frequency tole	r frequency and symbol clock rance	AP/STA	All PPDU Format
specification	27.3.19.4.2	Transmit cente	r frequency leakage	AP/STA	All PPDU Format
	27.3.19.4.3	Transmitter constellation error		AP/STA	All PPDU Format
	27.3.19.4.4	Transmitter modulation accuracy (EVM) test		AP/STA	All PPDU Format
Receiver	27.3.20.2	Receiver minim	num input sensitivity	AP/STA	HESU
specification	27.3.20.3	Adjacent chann	nel rejection	AP/STA	HESU
opeenreation	27.3.20.4	Nonadjacent c	hannel rejection	AP/STA	HESU
	27.3.20.5	Receiver maxin	num input level	AP/STA	HESU

Similar Evaluation Items to Previous Standards

IEEE802.11ax Featured Evaluation Items (1/3)

27.3.15.3 Transmit power and RSSI measurement accuracy


Evaluation of DUT transmitted power accuracy and RSSI measurement accuracy

Specification: Absolute Transmit Power Accuracy	Class A: ±3 dB Class B	3: ±9 dB
RSSI Measurement Accuracy	Class A: ±3 dB Class B	3: ±5 dB
Relative Transmit Power Accuracy	Class A: N/A C	lass B: ±3 dB

Measurement conditions: Must satisfy above specifications in following Tx power ranges

2.4-GHz band	: –82 to –20 dBm
5-/6-GHz band	: –82 to –30 dBm

RSSI measured during HE PPDU pre-amble non-HE portion transmission

 Tx_{pwr}^{AP} AP Tx power DL_{RSSI} STA Rx power (DL power) PL_{DL} Path loss Tx_{pwr}^{STA} STA Tx power $Target_{RSSI}$ STA Tx power assumed by AP

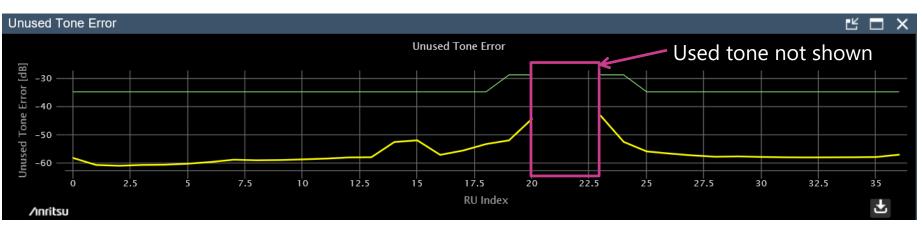
Relative transmit power accuracy = STA Tx Power Linearity (Linearity Accuracy)

IEEE802.11ax Featured Evaluation Items (2/3)

27.3.15.3 Carrier frequency offset error

Evaluates carrier frequency offset (CFO) error

Specification: CFO Error must not exceed 350 Hz where CCDF becomes 10% or less Measurement conditions: Primary 20 MHz Ch transmission at –60 dBm


CFO: Carrier Frequency Offset CCDF: Complimentary Cumulative Distribution Function

IEEE802.11ax Featured Evaluation Items (3/3)

27.3.19.4.4 EVM Test (Unused Tone)

Measures and evaluates RU Power not used on HETB format.

Specification: Unused RU (tone) must not exceed green limit line Measurement conditions: Measure EVM after RU specified using trigger and confirm unused tone

P802.11ax Definition :

the average unoccupied subcarrier error vector magnitude for each unoccupied 26-tone RU as calculated in step f) shall meet the staircase mask requirement in Equation (27-131).

$$UnusedToneError_{RMS}(k) = \frac{1}{N_{f}} \sum_{i_{f}=1}^{N_{f}} \sqrt{\frac{\sum_{i_{s}=1}^{N_{s}} \sum_{i_{sc} \in \Omega_{k}} (I_{u}(i_{f}, i_{s}, i_{sc}))^{2} + (Q_{u}(i_{f}, i_{s}, i_{RU}))^{2}}{N_{SYM} \cdot 26 \cdot P_{S}}}$$

$$\begin{aligned} & \max(UsedToneError_{RMS} - 2, -35 \text{ dB}), \\ & k \in min(max(i_{RU} \pm m, 0), N_{RU} - 1), 1 \le m \le r \\ & max(UsedToneError_{RMS} - 12, -35 \text{ dB}), \\ & k \in min(max(i_{RU} \pm m, 0), N_{RU} - 1), r + 1 \le m \le 2r \\ & max(UsedToneError_{RMS} - 22, -35 \text{ dB}), \\ & k \in min(max(i_{RU} \pm m, 0), N_{RU} - 1), 2r + 1 \le m \le 3r \\ & -35 \text{ dB}, \text{ otherwise with } k \ne i_{RU} \end{aligned}$$

Trends in IEEE802.11be Standard and Contents

IEEE802.11 Standards

* As of June 15, 2021

IEEE8	02.11	11b	11a	11g	11n	11ac	11ax	11be
	mission or Format	Non-HT (Non-High Throughput)	Non-HT (Non-High Throughput)	Non-HT (Non-High Throughput)	HT (High Throughput)	VHT (Very High Throughput)	HE (High Efficiency)	EHT (Extreme High Throughput)
Defin	ition	1999	1999	2003	2009	2014	May, 2021	Planned in 2024*
Freq.	2.4GHz	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
	5GHz		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
	6GHz						\checkmark	\checkmark
Bandy [MHz]		22	20	20	20/40	20/40/80/ 160/80+80	20/40/80/1 60/80+80	20/40/80/16 0/320
Maxir throu rate [l	ghput	11M	54M	54M	540M	6.9M	9.6G	30G~
Modulation scheme		DBPSK DQPSK	BPSK QPSK 16QAM 64QAM	BPSK QPSK 16QAM 64QAM	BPSK QPSK 16QAM 64QAM	BPSK QPSK 16QAM 64QAM 256QAM	BPSK QPSK 16QAM 64QAM 256QAM 1024QAM	BPSK QPSK 16QAM 64QAM 256QAM 1024QAM 4096QAM
Stream	n	-	-	-	4 Stream	8 Stream	8 Steam OFDMA	16 Stream OFDMA
Annitsu Latest Trends in IEEE802.11ax/1 18 Copyright© ANR					/11beWLAN Standards IRITSU CORPORATION			

Copyright© ANRITSU CORPORATION

Prospects for IEEE802.11be

EHT Extreme High Throughput

Targets:

> True speed of ≥ 30 Gbps

Improved worst-case latency and jitter

➤ Target bands from 1 to 7.250 GHz

> Assured backwards compatibility with 2.4-, 5-, and 6-GHz bands

100,000.00

10,000.00

1,000.00

100.00

1.00

0.10

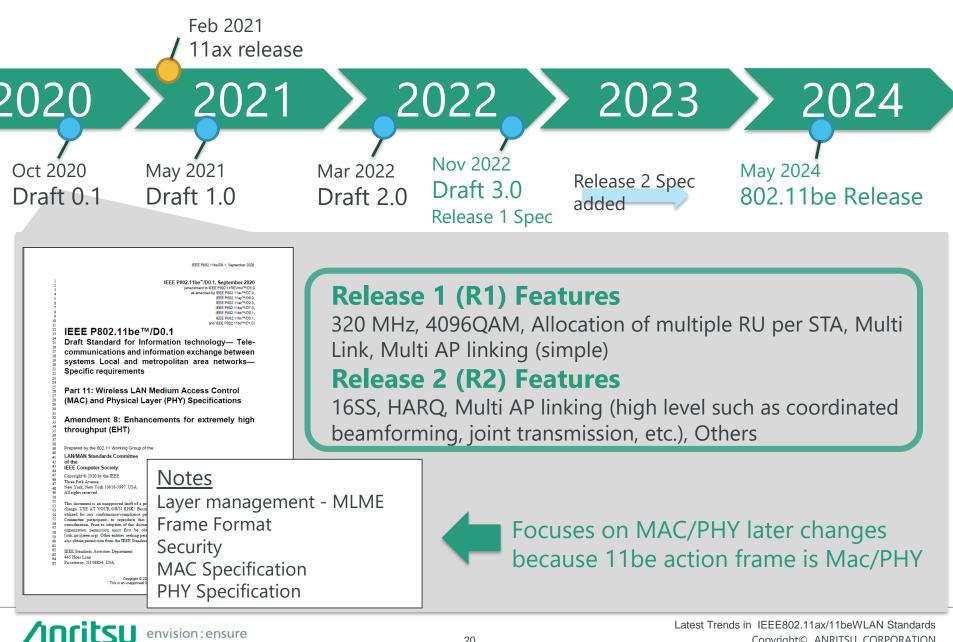
0.01

- F [Mb/s]

伝送し

Use Cases

11ax


11ac

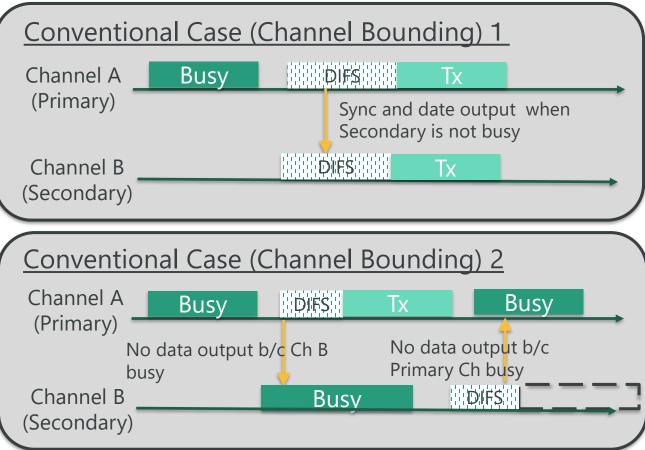
Prioritize speed

11a 11g

11b

Trends in IEEE802.11be Standard

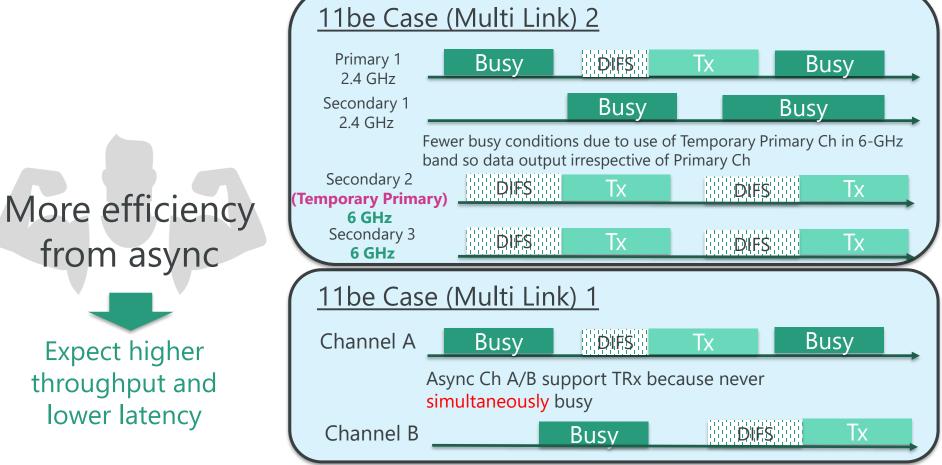
New IEEE802.11be Functions


Faster speeds from expanded functions

Featured IEEE802.11be Functions (1/3)

Multi Link Transmission Technology

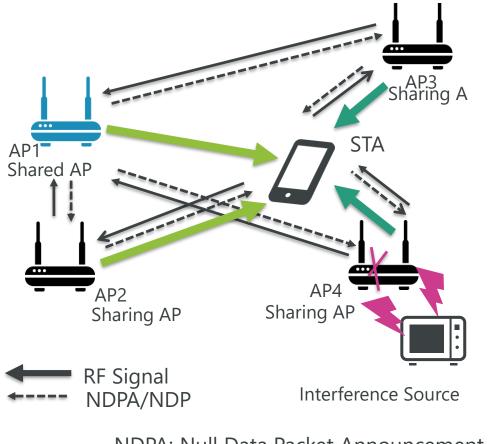
- Multi Link Channel Access
- Multi Link Transmission



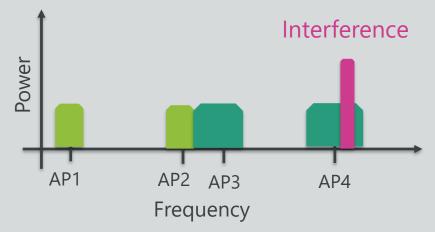
Secondary cannot output data when Primary busy

Featured IEEE802.11be Functions (2/3)

Multi Link Transmission Technology


- Multi Link Channel Access
- Multi Link Transmission

Featured IEEE802.11be Functions (3/3)


Multi AP (MAP) using Multiple AP Linking

- Multi AP Channel Sounding
- Multi AP Transmission Procedures

Data transmission using multiple linked AP

> Optimized lowlatency wireless environment

NDPA: Null Data Packet Announcement

Anritsu WLAN Measuring Instruments

MT8862A Product Summary MT8862A is the powerful tool for <u>RF performance tests of commercial products</u> by simple setup with Network Mode (NW Mode) and Direct Mode on 2.4G/5G/6GHz-band up to 7.125GHz.

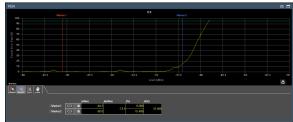
Connection

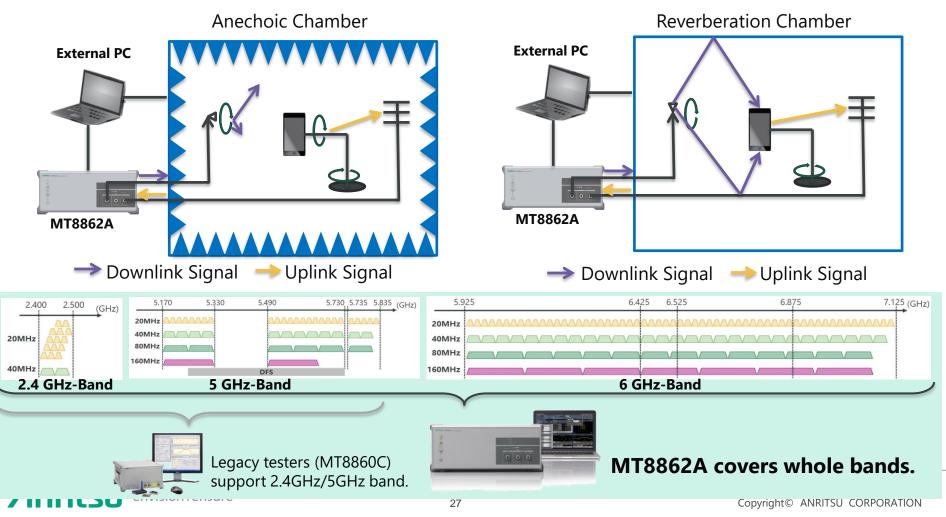
- Standards
 - IEEE 802.11a/b/g (20MHz BW)
 - IEEE 802.11n (20/40MHz BW)
 - IEEE 802.11ac (20/40/80/160MHz BW)
 - IEEE 802.11ax (20/40/80/160MHz BW), HESU/HETB
 - IEEE 802.11n/ac 2x2 MIMO (up to 80MHz BW)
- AP or Station mode
- Network mode/Direct mode
- WEP, WPA/WPA2-Persona/WPA3-Personal [AP/STA]

RF

- Frequency 2.4G/5G/6GHz-band (up to 7.125GHz)
- Bandwidth 20MHz/40MHz/80MHz/160MHz
- Power Output:
 - Aux: -120 to 0dBm
 - Main 1,2 : -120 to 0dBm for 2.4/5GHz
 - -120 to -5dBm for 6GHz-band
- Power Input: -65dBm to +25dBm

Tools


- Simple GUI control with web browser
- Frame capture (signaling messages logging)
- Internet connection of DUT from IP data interface


Main Window – Tx Measurement

Rx Measurement

- WLAN Antenna OTA Testing TRP/TIS
 As WLAN applications diversify, WLAN devices and their usage environment are becoming more complex, resulting in a growing need to quantify and verify that antenna characteristics by testing characteristics, such as TX power range, receiver sensitivity, etc.
- Anritsu supports an OTA measurement test environment with OTA chamber vendors for measuring the reception power range and receiver sensitivity, such as TRP/TIS, to validate RF performance in WLAN final-use environments.

New Feature – HE TB RU Allocation in 160MHz BW

With OFDMA capability in 802.11ax HE TB, the MT8862A can configure the DUT to transmit specific RU allocations in the channel.

MT8862A × +	• - • ×	
 そ み C ▲ 保護されていない通信 192.168.20.100/wlan.h 		
MI AN Measurement Software SISO No. 1000 Ru Allocation Setting 26-tone RU 28 24 24 24 24 <th>160 MHz HE PPDU 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</th> <th></th>	160 MHz HE PPDU 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
Primary Channel 5 (5975 MHz) Output Level 50.0 dBm Input Level 10.0 dBm When connecting Use current setting Path Loss Settings Main Out 0.00 dB	Skie Lower 160MHz 68 ÷ Ok Cancel Ok Cancel Ok Cancel Power Profile Ls Power Profile Spectrum Mask E	
Maint In 0.00 as Packet Structure Data Length 1024 Seyte(s) Payload 0101 Transmitter Test Parameter Measurement Execution Setting Measurement Execution Test Packet Test	Junitsu Image: Alms) Image: Alms) Image: Alms) Image: Alms) Image: Alms) Image: Alms)	
	HE TB(OFDMA) *RX test is not defined with I	EEE

Any Questions?

Market Development Manager brian.davis@anritsu.com

