
 1

Parserless Extraction; Using a Multidimensional Transient State
Vector Machine

Michael Sorah
Rosoka Software, Inc., 950 Herndon Parkway, Suite 280, Herndon, VA 20170

1 Introduction

Rosoka uses a novel approach to extracting
information from text, which is not based on
the classic mathematical model of a sender
and receiver of information but instead of
upon a mathematical model of a “third party
listener” trying to interpret the information
sent between the sender and receiver. This
mathematical model predicts the presence of
additional information that exists between
the sender and receiver which is shared, i.e.,
“shared context”. This shared context model
for interpreting possible meaning results in
the same mathematical structure as seen in
quantum mathematics in that possible
messages are distinct from the message
meaning. The shared context consists of a
number of factors including lexical
understanding, linguistic rules, and
information or experience that is shared
between the sender and receiver, either
through world knowledge, personal
experiences or prior agreements.

2 Definition of a Parser

A grammatical parser analyzes the syntactic
and semantic structure of a sentence,
identifying information such as the subject
and object of the verb as well as what words
group together as phrases or dependencies
(see Dowty, Karttunen & Zwicky, 2005;
Chen and Manning, 2014; MacCartney and
Manning, 2006). In computational
linguistics this formal representation can be
useful to create meaning from lexical units.
In essence, the parser provides a
standardized reference for tokens against
which a collection of rules can be applied.
Although, as discussed below, this is not
necessary for successful entity extraction
and information understanding.

3 Information Theory, Shared
Context, and “Third Party
Listener”

Information Theory originated with Claude
Shannon’s seminal work, "A Mathematical
Theory of Communication" (Shannon &
Weaver, 1949) to address the problem of
information transmission over a noisy
channel, such as a radio transmission, from
an engineering perspective. Two
fundamental tenets of the theory are the
source coding theorem, which establishes
that, on average, the number of bits needed
to represent the result of an uncertain event
is given by its entropy; and the noisy-
channel coding theorem, which states that
reliable communication is possible over
noisy channels provided that the rate of
communication is below a certain threshold
called the channel capacity. The semiotics
and semantics of human communication are
often modeled by looking just at the signal
itself; however, it is possible to apply the
main concepts of information theory to the
problem with effective results. The tendency
for very common words to have more
entropy than less common words is a robust
finding across languages and this word
frequency distribution can be modeled by a
Zipf distribution. (Zipf, 1932) 	

Shared Context is information or
knowledge that is shared between a sender
and at least one receiver. At one extreme,
two individuals that speak different
languages have very little shared context.
They could point, draw pictures, play music,
or use other semiotic cues to establish some
shared context to expand their
communicative understanding. At another
extreme, two highly trained professionals

 2

have a very specialized shared context.
Their shared context is composed of formal
training and learned technical terminology
with very precise meanings, along with a
world view shaped by some amount of
reading overlap. Even though these two
highly trained professionals may never have
met, they could still have a meaningful
technical conversation about their
specialized topic of interest. Similarly, the
shared context between a group of close
friends likely includes mutual experiences
and deictic references that preclude
understanding for those that are not part of
the group. The group could be as small as
two people or as large as a community.
Criminal argots and L33t-speak represent
shared context for particular communities,
with in-terms like POS (parent over shoulder
rather than part of speech), and LOL (laugh
out loud).

Rather than the classic model of Message
Sender and Message Receiver, (Shannon &
Weaver, 1949; Schiffrin, 1989; Tannen,
1993; Schiffrin, Tannen & Hamilton, 2008)
Rosoka’s algorithms are based on the model
of Message Sender, Message Receiver, and
Third Party Listener. In this model the Third
Party Listener is constructing a model to
interpret the information that was sent to the
user. In the construction of this model, the
Third Party Listener is not privy to the
shared context of the Message Sender and
Message Receiver, and instead has to
construct possible interpretations that will
likely lead to understanding the message.
The information available in the shared
context is assumed by the Message Sender
to be present already in the discourse, and
consequently it is not transmitted in the
singal. Without the non-transmitted
information, there exist multiple possible
interpretations of the signal and it may be
misinterpreted by the Message Receiver.
This assumption predicts that language
communication can be modeled using non-
Kolmogorov probability theory, as argued
by Aertz et al. (Aerts, Czachor and
D'Hooghe n.d.). It also follows that the
processing rules for such should also have a

quantum structure, i.e., the distribution of
rules that the sender and receiver use should
follow the Zipf distribution so as not to
require near infinite energy. The
implementation of Rosoka's algorithms
results in such a rule distribution, as
discussed later in this paper.

4 Semantic Vectors

To construct a third party listener model,
Rosoka uses a vector space of possible
interpretations of a stream of tokens. The
vector on a token in Rosoka is called a
“semantic vector,” or SV. This allows the
tool to create a vector space of state
possibilities for each token or set of tokens
in a token stream. In this vector space, a
token can have multiple possible meanings
at any step in the process, and the
meaning(s) can change during the
processing.

The vector space in Rosoka is finite in that it
is predictable and repeatable; the vector
space itself is defined for each position on
the length of the vector at runtime. The
semantic vectors, on the other hand, are non-
finite because they represent a set of
possible states that change during processing
based on the surrounding vectors. Thus
Rosoka is a cross between a finite state
machine and a non-finite state machine.
Rules in Rosoka operate on the semantic
vectors to enable or disable particular
portions of the vector space based on an
individual token’s vectors and surrounding
vectors. The vector space for a token is
represented by the possible states “is,”
“isnot,” “true,” and “false, ” allowing the
possibility for a vector to be “is” and “true,”
or “is” and “false,” or “isnot” and “true,” or
“isnot” and “false.” This quantum structure
represents the intended meaning of the
sender (is/isnot) and interpretation of
receiver (the true/false). The vector space
can also be modified post hoc through the
process of recursion, based on changes to a
particular vector or its surrounding vectors.

 3

As a real world example, consider a reader
encountering a novel word. A dictionary
definition will indicate multiple possible
meanings of the same word. To resolve the
meaning, the reader needs to decide which
definition is most likely based on the context
of its usage. For example, the word “can”
may mean: (noun) a type of container, (verb)
indicating ability, (verb) to fire, (verb)
modal, (noun) abbreviation for Canada,
(Navy slang) a destroyer, (common typo)
other words with near spellings such as
“cane” or “scan”. Using the available
contextual information, as well as shared
context with the sender, the reader must
determine the intended meaning of the
signal.

5 Multidimensional Transient
State Vector Machines

The Rosoka process can be thought of as a
multidimensional transient state vector
machine, because the semantic vectors are
changing with the state of the processing
based on the surrounding vectors. The
initial state is established through a lexical
lookup for each token or contiguous sets of
tokens to see if there is are semantic vectors
defined in its lexicon. The token sequences
are then compared to the rule set to find the
first applicable rule. If a rule matches, it is
then applied to the token sequence. The rule
may change the vector state on the token, or
it may combine sets of tokens to make a new
token with a new vector space.

For example, consider this article’s
authorship line as a token stream of 3
tokens: “By,” “Michael,” and “Sorah.”
The lexicon would set the SV space as
follows (only true values are displayed):

<lex><word>by</word><sv><adverb/><prep
/><locative_prep/></sv></lex>
<lex><word>michael</word><sv><given_na
me/><given_name_male/><sur_name/></sv
></lex>

and “Sorah” is not know to the lexicon so it
would be assigned.

<lex><word>sorah</word><sv><unknown</
sv></lex>

In Rosoka, it is possible to write a rule that
will tell the engine that when there is a
preposition followed by a given name and
then by a unknown word, combine the given
name and unknown word to a new token, set
the vector to a person, and turn off the other
vectors states for the prepositional phrase.
After processing, the token stream would
now be represented by:

<lex><word>by</word><sv>prep/></sv>
</lex>
<lex><word>Michael
Sorah</word><sv><PERSON/></sv></lex>

In stark contrast to a parser, not only have
we modified the vector on the tokens but we
have also modified the token stream. From
this processing state, rules that would apply
to unknown words, surnames, or given
names would no longer be applicable, and
not need to be checked. In the
implementation of this parserless construct,
our dictionary not only includes typical part
of speech tags, but also includes pragmatic
tags (e.g., given_name) that allows for
processing short cuts, bypassing many
processing states and thus taking less
computational energy. For example, there is
no need to define Michael as a noun, much
less a proper noun, because it is not relevant
to the information content.

Rosoka also contrasts with a classic rules
engine because Rosoka’s semantic vector
space allows multiple conditions on the
vector to be simultaneously checked. For
instance, it is not necessary to check every
possible condition for finding a person
name; once a rule has matched, the vector
space changes and makes additional checks
unnecessary. Thus the equivalent of
thousands of classic rule conditionals can be
collapsed into a single vector space rule,
which requires less entropy to process. This

 4

provides a degree of fitness measure for
efficient rules measured against information
value. The significance is that only a small
number of rules are needed. Rosoka has
hundreds of rules; traditional pattern based
tools have tens of thousands of rules to
accomplish the same tasks.

A subtle, yet important difference between
Rosoka and classic binary rule logic is that
the algorithms check to see if a rule can
match the vector space sequence rather than
if a rule is activated or not. If the pattern
should apply, it will; otherwise, it will not.
In effect by looking at a single bit, the
process does not even need to check any
rules that cannot apply to that bit. This may
be a subtle distinction from classic binary
rule logic, but it provides a savings of orders
of magnitude in terms of computational
throughput speed.

Some systems use a rule precedence fall-
through methodology; in these systems, rule
order is paramount to processing success.
Under such systems, adding additional rules
means that the entire rule order chain needs
to be re-evaluated to prevent entire logic
branches from unintentionally being
ignored. These systems add a linear-to-
exponential amount of processing
computation for each new rule added. This
is avoided entirely with Rosoka’s
methodology.

6 Types of Knowledge and
Machine Learning

Human language learners typically
demonstrate three types of knowledge: rote
knowledge, compositional knowledge, and
dynamic knowledge. Since the Rosoka
extraction engine can change state and alter
the token stream, it is able to leverage these
three types of knowledge.

Rote knowledge is the knowledge that is
inscribed in the lexical lookup tables. This is
represented by the values associated with

each token or set of tokens captured in the
Rosoka lexicons.

Compositional knowledge is the knowledge
encoded in localized canonical rules used to
interpret the meaning of a token or
collection of tokens. An entity like John
Smith can be recognized as an person
because of the component pattern of given
name plus surname; John is a known given
name and Smith is a known surname. The
two tokens together comprise a valid name
regardless of whether both names have been
encountered together before. Any
combination of known given names and
known surnames could make a valid match.

Dynamic knowledge is represented by rules
that need the larger linguistic context to
determine the appropriate interpretation. In a
sentence like “Chinua Achebe is a Nigerian
author,” the name Chinua Achebe is easily
recognized as a person because of the
linguistic context—authors tend to be
people. Even if the tokens Chinua and
Achebe are unknown in the lexicon, Rosoka
is able to extract the entity using the context.
Once Chinua Achebe is recognized as a
novel name, it can be extracted in other less
semantically rich contexts.

Again we see the entropy effect; rote
information takes less computational energy,
while dynamic information takes more.
Converting dynamic discovery to rote
information is based on the balance between
the degree of fitness for computational
efficiency and more complex rules used to
recognize the relatively rare occurrence of
high value information. The entropy in this
case is based on the amount of
computational effort to deal with false
positives and the consequences of missed
information. In Rosoka, once Chinua
Achebe is identified as a person name, it can
be recognized using a very inexpensive rote
rule, and more complex, costly rules need
not match. Because the name is now
lexicalized, Rosoka can skip using a rule to
find the name based on its components as

 5

well as a far more expensive rule that uses
the sentential context.

The Rosoka engine allows users to vet
values that are discovered dynamically to be
either incorporated into the lexicon or
“unlearned” as a not statement, e.g., “not
surname.” This vetting feature is important
because for very large sets of documents
(i.e., millions) we see the phenomena of
false positive creep, or reduction in
precision, that occurs when statistical
learning systems process large data sets.
Additionally, Rosoka eliminates the need to
hand tag large sets of training data, because
Rosoka is effectively self-tagging.

7 Pattern Resemblance to
Classic Linguistic Rules

Rosoka rules in many ways resemble classic
linguistic rules, in part because they parallel
the way humans understand and interpret
language. However, there are some

important distinctions. Rosoka rules include
instructions regarding how many tokens to
combine and which semantic vectors to set
or unset when a rule matches. Additionally,
the rule specifies attributes to track with the
tokens and the is and isnot conditions for the
token stream. An individual token's position
in the token stream is expressed as a relative
offset. Figure 1 shows a rule for identifying
three part names as a person entity. While
the rules may appear to be Boolean in
nature, they are actually expressed as a quad
state of is/isnot and true/false, with true
indicating that the vector positional name is
present in the <sv> tag and false indicating
that it is not. Rosoka's rule syntax allows a
rule writer to think in terms of the Boolean
equivalent, similar to a Newton
approximation for general relativity, with
logical AND and OR. The AND condition is
akin to having multiple conditions for a
token, and the OR condition is akin to
having multiple items in the <sv> list.

 6

Figure 1: Example Rosoka rule for extracting three part person names.

8 Multilingual Processing

Since Rosoka is not tied to a parser but
instead to a vector space, Rosoka rules
transcend the language that the token is
written in. To process in a different
language, Rosoka requires only the lexical
mapping to the semantic vector space. So, if
a Korean document contains “블라디미르
푸틴,” it will have the same semantic vector
as Vladimir Putin. Or "國務院 " has the
same vector as Department of State and well
as the transliteration of guo wu yuan. This

means that the engine itself doesn’t care
what language the tokens stream is in, only
the word sense order. Complementary
distribution results in rules for one word
sense order not matching rules when they
are not in that word order (i.e the rules won’t
get applied). Thus the engine can process in
any language, without requiring an
intermediate translation, and the accuracy,
or precision and recall, are only dependent
on the breadth of the lexical entries for that
language.

 <Rule ID="person_cf-1115a">
 <description>three part names e.g. John Foster Wallace</description>
 <order>0</order>
 <result>
 <combine>2</combine>
 <sv><PERSON/></sv>
 <nolonger>
 <CONVEYANCE/><vehicle/><placename/><given_name/>
 <month_name/><CONVEYANCE/><vehicle/><sur_name/>
 <generic_person/><generic_org/><sur_name_arab/>
 <given_name_female/>
 </nolonger>
 <attributes>
 <given_name><T offset="0"/></given_name><sur_name><T offset="2"/></sur_name>
 </attributes>
 </result>
 <when>
 <T offset="0">
 <IS><sv><given_name/></sv></IS>
 <ISNOT><sv><title_pre/><noun/><verb/></sv></ISNOT>
 </T>
 <T offset="0">
 <IS><sv><cap_word/></sv></IS>
 </T>
 <T offset="1">
 <IS><sv><given_name/><sur_name/></sv></IS>
 </T>
 <T offset="1">
 <IS><sv><cap_word/></sv></IS>
 </T>
 <T offset="2">
 <IS><sv><sur_name/></sv></IS>
 <ISNOT><sv><modal/><verb/><noun/><month_name/></sv></ISNOT>
 </T>
 <T offset="2">
 <IS><sv><cap_word/></sv></IS>
 </T>
 </when>
 </Rule>

 7

9 Rosoka Rules and the Zipf
Distribution

Similar to the way that lexical item
frequency follows a Zipf-like power law
distribution, the mathematical model of the
semantic vector space predicts that rules
based on such a vector space will also

follow a Zipf distribution. In practice, the
rule distribution of matching rule patterns in
Rosoka follows the predicted Zipf
distribution. Figure 2 shows the rule set
matching against a generic corpus of
documents, clearly illustrating the classic
Zipf distribution.

Figure 2: Frequency distribution of rule matches

Because of the tendency for vector-based
rules to follow the Zipf distribution, a small
number of rules can provide a very high
level of comprehension. Unlike other NLP
tools that use parser-based rule systems,
Rosoka can successfully extract entities
using just a few hundred rules. Rules beyond
the basic out of the box capability become
either exception handling or domain-specific
pattern recognition, and these can be
implemented and tested very quickly. As
Figure 2 shows, additional rule writing
rapidly approaches a point of diminishing
marginal returns.

By contrast, training a statistically-based
learning machine on these high value but

infrequent patterns requires providing a
statistically significant number of examples,
which, given the inherent infrequency of
such information, represents a significant
level of effort.

Rosoka's extraction engine leverages
important aspects of communication theory,
quantum vector space of state possibilities,
and the Zipf distribution of lexical and
linguistic pattern frequency to provide a
uniquely efficient and effective method of
entity extraction. Rosoka's algorithms allow
for multiple possible meanings throughout
processing, recursive pattern matching, and
the addition of domain-specific rules with
negligible additional processing cost.

 8

References

Aerts, D., Czachor, M., & D'Hooghe, B.

(2006). Towards a quantum
evolutionary sheme: Violating Bell's
inequalities in language. In W.
Abraham, & M. Noonan (Eds.),
Evolutionary Epistemology,
Language and Culture. .
Amsterdam: Springer Netherlands.

Chen, D., & Manning, C. D. (2014). A Fast
and Accurate Dependency Parser
using Neural Networks.
Proceedings of EMNLP.

Dowty, D. R., Karttunen, L., & Zwicky, A.
M. (2005). Natural language
parsing: Psychological,
computational, and theoretical
perspectives. Cambridge University
Press.

Mandelbrot, B. (1965). Information Theory
and Psycholinguistics. (B. W.
E.Nagel, Ed.) Scientific Psychology.

Marneffe, M.-C. d., MacCarney, B., &
Manning, C. A. (2006). Generating
Typed Depndency Parses from
Phrase Structure Parses. In LREC.

Powers, D. M. (1998). Applications and
explanations of Zipf's law.
Association for Computational
Linguistics: 151-160.

Schiffrin, D. (1989). Conversation analysis.
In Linguistics: The Cambridge
Survey: Volume 4, Language: The
Socio-Cultural Context (Vol. 4).

Schiffrin, D., Tannen, D., & Hamilton, H. E.
(Eds.). (2008). The handbook of
discourse analysis. John Wiley &
Sons.

Shannon, C. E., & Weaver, W. (1949). The
Mathematical Theory of
Communication. University of
Illnois Press.

Tannen, D. (1993). Framing in discourse.
Oxford University Press.

Zipf, G. K. (1932). Selected Studies of the
Principle of Relative Frequency in
Language. Cambridge, MA:
Harvard University Press.

