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1 Introduction 
 
Rosoka uses a novel approach to extracting 
information from text, which is not based on 
the classic mathematical model of a sender 
and receiver of information but instead of 
upon a mathematical model of a “third party 
listener” trying to interpret the information 
sent between the sender and receiver. This 
mathematical model predicts the presence of 
additional information that exists between 
the sender and receiver which is shared, i.e., 
“shared context”. This shared context model 
for interpreting possible meaning results in 
the same mathematical structure as seen in 
quantum mathematics in that possible 
messages are distinct from the message 
meaning. The shared context consists of a 
number of factors including lexical 
understanding, linguistic rules, and 
information or experience that is shared 
between the sender and receiver, either 
through world knowledge, personal 
experiences or prior agreements. 
 
2 Definition of a Parser 
 
A grammatical parser analyzes the syntactic 
and semantic structure of a sentence, 
identifying information such as the subject 
and object of the verb as well as what words 
group together as phrases or dependencies 
(see Dowty, Karttunen & Zwicky, 2005; 
Chen and Manning, 2014; MacCartney and 
Manning, 2006). In computational 
linguistics this formal representation can be 
useful to create meaning from lexical units. 
In essence, the parser provides a 
standardized reference for tokens against 
which a collection of rules can be applied. 
Although, as discussed below, this is not 
necessary for successful entity extraction 
and information understanding. 

 
3 Information Theory, Shared 
Context, and “Third Party 
Listener” 
 
Information Theory originated with Claude 
Shannon’s seminal work, "A Mathematical 
Theory of Communication" (Shannon & 
Weaver, 1949) to address the problem of 
information transmission over a noisy 
channel, such as a radio transmission, from 
an engineering perspective. Two 
fundamental tenets of the theory are the 
source coding theorem, which establishes 
that, on average, the number of bits needed 
to represent the result of an uncertain event 
is given by its entropy; and the noisy-
channel coding theorem, which states that 
reliable communication is possible over 
noisy channels provided that the rate of 
communication is below a certain threshold 
called the channel capacity. The semiotics 
and semantics of human communication are 
often modeled by looking just at the signal 
itself; however, it is possible to apply the 
main concepts of information theory to the 
problem with effective results. The tendency 
for very common words to have more 
entropy than less common words is a robust 
finding across languages and this word 
frequency distribution can be modeled by a 
Zipf distribution.  (Zipf, 1932) 	

Shared Context is information or 
knowledge that is shared between a sender 
and at least one receiver. At one extreme, 
two individuals that speak different 
languages have very little shared context. 
They could point, draw pictures, play music, 
or use other semiotic cues to establish some 
shared context to expand their 
communicative understanding. At another 
extreme, two highly trained professionals 
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have a very specialized shared context. 
Their shared context is composed of formal 
training and learned technical terminology 
with very precise meanings, along with a 
world view shaped by some amount of 
reading overlap. Even though these two 
highly trained professionals may never have 
met, they could still have a meaningful 
technical conversation about their 
specialized topic of interest. Similarly, the 
shared context between a group of close 
friends likely includes mutual experiences 
and deictic references that preclude 
understanding for those that are not part of 
the group. The group could be as small as 
two people or as large as a community. 
Criminal argots and L33t-speak represent 
shared context for particular communities, 
with in-terms like POS (parent over shoulder 
rather than part of speech), and LOL (laugh 
out loud).  

Rather than the classic model of Message 
Sender and Message Receiver, (Shannon & 
Weaver, 1949; Schiffrin, 1989; Tannen, 
1993; Schiffrin, Tannen & Hamilton, 2008) 
Rosoka’s algorithms are based on the model 
of Message Sender, Message Receiver, and 
Third Party Listener. In this model the Third 
Party Listener is constructing a model to 
interpret the information that was sent to the 
user.  In the construction of this model, the 
Third Party Listener is not privy to the 
shared context of the Message Sender and 
Message Receiver, and instead has to 
construct possible interpretations that will 
likely lead to understanding the message. 
The information available in the shared 
context is assumed by the Message Sender 
to be present already in the discourse, and 
consequently it is not transmitted in the 
singal. Without the non-transmitted 
information, there exist multiple possible 
interpretations of the signal and it may be 
misinterpreted by the Message Receiver. 
This assumption predicts that language 
communication can be modeled using non-
Kolmogorov probability theory, as argued 
by Aertz et al. (Aerts, Czachor and 
D'Hooghe n.d.). It also follows that the 
processing rules for such should also have a 

quantum structure, i.e., the distribution of 
rules that the sender and receiver use should 
follow the Zipf distribution so as not to 
require near infinite energy. The 
implementation of Rosoka's algorithms 
results in such a rule distribution, as 
discussed later in this paper.   
 
4 Semantic Vectors 
 
To construct a third party listener model, 
Rosoka uses a vector space of possible 
interpretations of a stream of tokens. The 
vector on a token in Rosoka is called a 
“semantic vector,” or SV. This allows the 
tool to create a vector space of state 
possibilities for each token or set of tokens 
in a token stream. In this vector space, a 
token can have multiple possible meanings 
at any step in the process, and the 
meaning(s) can change during the 
processing. 
 
The vector space in Rosoka is finite in that it 
is predictable and repeatable; the vector 
space itself is defined for each position on 
the length of the vector at runtime. The 
semantic vectors, on the other hand, are non-
finite because they represent a set of 
possible states that change during processing 
based on the surrounding vectors. Thus 
Rosoka is a cross between a finite state 
machine and a non-finite state machine.  
Rules in Rosoka operate on the semantic 
vectors to enable or disable particular 
portions of the vector space based on an 
individual token’s vectors and surrounding 
vectors. The vector space for a token is 
represented by the possible states “is,” 
“isnot,” “true,” and “false, ” allowing the 
possibility for a vector to be “is” and “true,” 
or “is” and “false,” or “isnot” and “true,” or 
“isnot” and “false.” This quantum structure 
represents the intended meaning of the 
sender (is/isnot) and interpretation of 
receiver (the true/false). The vector space 
can also be modified post hoc through the 
process of recursion, based on changes to a 
particular vector or its surrounding vectors. 
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As a real world example, consider a reader 
encountering a novel word. A dictionary 
definition will indicate multiple possible 
meanings of the same word. To resolve the 
meaning, the reader needs to decide which 
definition is most likely based on the context 
of its usage. For example, the word “can” 
may mean: (noun) a type of container, (verb) 
indicating ability, (verb) to fire, (verb) 
modal, (noun) abbreviation for Canada, 
(Navy slang) a destroyer, (common typo) 
other words with near spellings such as 
“cane” or “scan”.  Using the available 
contextual information, as well as shared 
context with the sender, the reader must 
determine the intended meaning of the 
signal. 
 
5 Multidimensional Transient 
State Vector Machines  
 
The Rosoka process can be thought of as a 
multidimensional transient state vector 
machine, because the semantic vectors are 
changing with the state of the processing 
based on the surrounding vectors.  The 
initial state is established through a lexical 
lookup for each token or contiguous sets of 
tokens to see if there is are semantic vectors 
defined in its lexicon. The token sequences 
are then compared to the rule set to find the 
first applicable rule. If a rule matches, it is 
then applied to the token sequence. The rule 
may change the vector state on the token, or 
it may combine sets of tokens to make a new 
token with a new vector space.  
 
For example, consider this article’s 
authorship line as a token stream of 3 
tokens: “By,” “Michael,” and “Sorah.” 
The lexicon would set the SV space as 
follows (only true values are displayed): 
 
<lex><word>by</word><sv><adverb/><prep
/><locative_prep/></sv></lex> 
<lex><word>michael</word><sv><given_na
me/><given_name_male/><sur_name/></sv
></lex> 
 

and “Sorah” is not know to the lexicon so it 
would be assigned. 
 
<lex><word>sorah</word><sv><unknown</
sv></lex>  
 
In Rosoka, it is possible to write a rule that 
will tell the engine that when there is a 
preposition followed by a given name and 
then by a unknown word, combine the given 
name and unknown word to a new token, set 
the vector to a person, and turn off the other 
vectors states for the prepositional phrase. 
After processing, the token stream would 
now be represented by: 
 
<lex><word>by</word><sv>prep/></sv> 
</lex> 
<lex><word>Michael 
Sorah</word><sv><PERSON/></sv></lex> 
 
In stark contrast to a parser, not only have 
we modified the vector on the tokens but we 
have also modified the token stream. From 
this processing state, rules that would apply 
to unknown words, surnames, or given 
names would no longer be applicable, and 
not need to be checked.  In the 
implementation of this parserless construct, 
our dictionary not only includes typical part 
of speech tags, but also includes pragmatic 
tags (e.g., given_name) that allows for 
processing short cuts, bypassing many 
processing states and thus taking less 
computational energy.  For example, there is 
no need to define Michael as a noun, much 
less a proper noun, because it is not relevant 
to the information content.   
 
Rosoka also contrasts with a classic rules 
engine because Rosoka’s semantic vector 
space allows multiple conditions on the 
vector to be simultaneously checked. For 
instance, it is not necessary to check every 
possible condition for finding a person 
name; once a rule has matched, the vector 
space changes and makes additional checks 
unnecessary. Thus the equivalent of 
thousands of classic rule conditionals can be 
collapsed into a single vector space rule, 
which requires less entropy to process. This 
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provides a degree of fitness measure for 
efficient rules measured against information 
value. The significance is that only a small 
number of rules are needed. Rosoka has 
hundreds of rules; traditional pattern based 
tools have tens of thousands of rules to 
accomplish the same tasks. 
 
A subtle, yet important difference between 
Rosoka and classic binary rule logic is that 
the algorithms check to see if a rule can 
match the vector space sequence rather than 
if a rule is activated or not.   If the pattern 
should apply, it will; otherwise, it will not. 
In effect by looking at a single bit, the 
process does not even need to check any 
rules that cannot apply to that bit. This may 
be a subtle distinction from classic binary 
rule logic, but it provides a savings of orders 
of magnitude in terms of computational 
throughput speed. 
 
Some systems use a rule precedence fall-
through methodology; in these systems, rule 
order is paramount to processing success. 
Under such systems, adding additional rules 
means that the entire rule order chain needs 
to be re-evaluated to prevent entire logic 
branches from unintentionally being 
ignored. These systems add a linear-to-
exponential amount of processing 
computation for each new rule added. This 
is avoided entirely with Rosoka’s 
methodology. 
 
6 Types of Knowledge and 
Machine Learning 
 
Human language learners typically 
demonstrate three types of knowledge: rote 
knowledge, compositional knowledge, and 
dynamic knowledge. Since the Rosoka 
extraction engine can change state and alter 
the token stream, it is able to leverage these 
three types of knowledge. 
 
Rote knowledge is the knowledge that is 
inscribed in the lexical lookup tables. This is 
represented by the values associated with 

each token or set of tokens captured in the 
Rosoka lexicons. 
 
Compositional knowledge is the knowledge 
encoded in localized canonical rules used to 
interpret the meaning of a token or 
collection of tokens. An entity like John 
Smith can be recognized as an person 
because of the component pattern of given 
name plus surname; John is a known given 
name and Smith is a known surname. The 
two tokens together comprise a valid name 
regardless of whether both names have been 
encountered together before. Any 
combination of known given names and 
known surnames could make a valid match.  
 
Dynamic knowledge is represented by rules 
that need the larger linguistic context to 
determine the appropriate interpretation. In a 
sentence like “Chinua Achebe is a Nigerian 
author,” the name Chinua Achebe is easily 
recognized as a person because of the 
linguistic context—authors tend to be 
people. Even if the tokens Chinua and 
Achebe are unknown in the lexicon, Rosoka 
is able to extract the entity using the context. 
Once Chinua Achebe is recognized as a 
novel name, it can be extracted in other less 
semantically rich contexts.  
 
Again we see the entropy effect; rote 
information takes less computational energy, 
while dynamic information takes more. 
Converting dynamic discovery to rote 
information is based on the balance between 
the degree of fitness for computational 
efficiency and more complex rules used to 
recognize the relatively rare occurrence of 
high value information. The entropy in this 
case is based on the amount of 
computational effort to deal with false 
positives and the consequences of missed 
information. In Rosoka, once Chinua 
Achebe is identified as a person name, it can 
be recognized using a very inexpensive rote 
rule, and more complex, costly rules need 
not match. Because the name is now 
lexicalized, Rosoka can skip using a rule to 
find the name based on its components as 
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well as a far more expensive rule that uses 
the sentential context. 
 
The Rosoka engine allows users to vet 
values that are discovered dynamically to be 
either incorporated into the lexicon or 
“unlearned” as a not statement, e.g., “not 
surname.” This vetting feature is important 
because for very large sets of documents 
(i.e., millions) we see the phenomena of 
false positive creep, or reduction in 
precision, that occurs when statistical 
learning systems process large data sets. 
Additionally, Rosoka eliminates the need to 
hand tag large sets of training data, because 
Rosoka is effectively self-tagging.  
 
7 Pattern Resemblance to 
Classic Linguistic Rules 
 
Rosoka rules in many ways resemble classic 
linguistic rules, in part because they parallel 
the way humans understand and interpret 
language. However, there are some 

important distinctions. Rosoka rules include 
instructions regarding how many tokens to 
combine and which semantic vectors to set 
or unset when a rule matches. Additionally, 
the rule specifies attributes to track with the 
tokens and the is and isnot conditions for the 
token stream. An individual token's position 
in the token stream is expressed as a relative 
offset. Figure 1 shows a rule for identifying 
three part names as a person entity. While 
the rules may appear to be Boolean in 
nature, they are actually expressed as a quad 
state of is/isnot and true/false, with true 
indicating that the vector positional name is 
present in the <sv> tag and false indicating 
that it is not. Rosoka's rule syntax allows a 
rule writer to think in terms of the Boolean 
equivalent, similar to a Newton 
approximation for general relativity, with 
logical AND and OR. The AND condition is 
akin to having multiple conditions for a 
token, and the OR condition is akin to 
having multiple items in the <sv> list. 
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Figure 1: Example Rosoka rule for extracting three part person names. 
 
8 Multilingual Processing 
 
Since Rosoka is not tied to a parser but 
instead to a vector space, Rosoka rules 
transcend the language that the token is 
written in. To process in a different 
language, Rosoka requires only the lexical 
mapping to the semantic vector space. So, if 
a Korean document contains “블라디미르 
푸틴,” it will have the same semantic vector 
as Vladimir Putin. Or "國務院 " has the 
same vector as Department of State and well 
as the transliteration of guo wu yuan. This 

means that the engine itself doesn’t care 
what language the tokens stream is in, only 
the word sense order. Complementary 
distribution results in rules for one word 
sense order not matching rules when they 
are not in that word order (i.e the rules won’t 
get applied). Thus the engine can process in 
any language, without requiring an 
intermediate translation, and the accuracy, 
or precision and recall, are only dependent 
on the breadth of the lexical entries for that 
language. 
 

    <Rule ID="person_cf-1115a"> 
        <description>three part names e.g. John Foster Wallace</description> 
        <order>0</order> 
        <result> 
            <combine>2</combine> 
            <sv><PERSON/></sv> 
            <nolonger> 
                <CONVEYANCE/><vehicle/><placename/><given_name/> 
                <month_name/><CONVEYANCE/><vehicle/><sur_name/> 
                <generic_person/><generic_org/><sur_name_arab/> 
                <given_name_female/> 
            </nolonger> 
            <attributes> 
                 <given_name><T offset="0"/></given_name><sur_name><T offset="2"/></sur_name> 
           </attributes> 
        </result> 
        <when> 
            <T offset="0"> 
                <IS><sv><given_name/></sv></IS> 
                <ISNOT><sv><title_pre/><noun/><verb/></sv></ISNOT> 
            </T> 
            <T offset="0"> 
                <IS><sv><cap_word/></sv></IS> 
            </T> 
            <T offset="1"> 
                <IS><sv><given_name/><sur_name/></sv></IS> 
            </T> 
            <T offset="1"> 
                <IS><sv><cap_word/></sv></IS> 
            </T> 
            <T offset="2"> 
                <IS><sv><sur_name/></sv></IS> 
                <ISNOT><sv><modal/><verb/><noun/><month_name/></sv></ISNOT> 
            </T> 
            <T offset="2"> 
                <IS><sv><cap_word/></sv></IS> 
            </T> 
        </when> 
    </Rule> 



  7 

9 Rosoka Rules and the Zipf 
Distribution 
 
Similar to the way that lexical item 
frequency follows a Zipf-like power law 
distribution, the mathematical model of the 
semantic vector space predicts that rules 
based on such a vector space will also 

follow a Zipf distribution. In practice, the 
rule distribution of matching rule patterns in 
Rosoka follows the predicted Zipf 
distribution. Figure 2 shows the rule set 
matching against a generic corpus of 
documents, clearly illustrating the classic 
Zipf distribution.  

 

 
Figure 2: Frequency distribution of rule matches 
 
Because of the tendency for vector-based 
rules to follow the Zipf distribution, a small 
number of rules can provide a very high 
level of comprehension. Unlike other NLP 
tools that use parser-based rule systems, 
Rosoka can successfully extract entities 
using just a few hundred rules. Rules beyond 
the basic out of the box capability become 
either exception handling or domain-specific 
pattern recognition, and these can be 
implemented and tested very quickly. As 
Figure 2 shows, additional rule writing 
rapidly approaches a point of diminishing 
marginal returns.   
 
By contrast, training a statistically-based 
learning machine on these high value but 

infrequent patterns requires providing a 
statistically significant number of examples, 
which, given the inherent infrequency of 
such information, represents a significant 
level of effort. 
 
Rosoka's extraction engine leverages 
important aspects of communication theory, 
quantum vector space of state possibilities, 
and the Zipf distribution of lexical and 
linguistic pattern frequency to provide a 
uniquely efficient and effective method of 
entity extraction. Rosoka's algorithms allow 
for multiple possible meanings throughout 
processing, recursive pattern matching, and 
the addition of domain-specific rules with 
negligible additional processing cost. 
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