WELCOME

RIGAKU WEBINAR SERIES X-RAY COMPUTED TOMOGRAPHY FOR MATERIALS & LIFE SCIENCE *METROLOGY APPLICATIONS* IS STARTING NOW.

80

59

3

\$70.0

1.87

Presenter: Aya Takase

Director of X-ray Imaging Rigaku Americas Corporation

Host: Tom Concolino

Southeast Regional Account Manager Rigaku Americas Corporation

You can send us questions during the presentation. They will be addressed at the end of the presentation.

available tomorrow.

Recording will be Tell us what you want to learn next.

X-RAY COMPUTED TOMOGRAPHY FOR MATERIALS & LIFE SCIENCE

Metrology Applications

4-1

You will learn: -Keys to metrology using CT -Analysis techniques - Metrology applications

TIME !!

1.17

THE

HUIL

H-Int

T

WHAT IS METROLOGY?

metrology the science of measurement

industion *the application of measurement to manufacturing and other processes*

Normal measurement

Geometrical dimensioning & tolerancing (GD&T)

Arbitrary coordinates

X

Normal measurement

GD&T

Normal measurement

Geometrical dimensioning & tolerancing (GD&T)

HOW IS CT DIFFERENT FROM CMM?

CMM

(Coordinate Measuring Machine)

Optical scanner

Image source: Wikipedia Commons

CMM

(Coordinate Measuring Machine)

Tactile

Optical

X-ray absorption

CMM

Well established Accurate Large objects

Cons/limitations

Optical scanner

Entire surface Large objects

Pros

Cons/limitations

CT

Entire volume Internal structures Voids & cracks

Cons/limitations

Pros

HOW DO WE DEFINE THE SURFACE?

Radius = 4.415 mmMin = 4.333 mm Max = 4.454 mmTotal dev. = 0.121 mm

ANY SPECIAL CONSIDERATIONS FOR SCAN CONDITIONS?

Use high energy for large & dense samples

Tilt the sample

Use high energy for large & dense samples

Tilt the sample

HOW PRECISE IS IT?

Resolution

Accuracy

Resolution ~ voxel size x /10

Accuracy ~ $\pm 10 + L/100 \mu m$ Measured length [mm]

Resolution ~ voxel size x /10

Accuracy ~ $\pm 10 + L/100 \mu m$

HOW CAN WE GET RESOLUTION BETTER THAN THE VOXEL SIZE?

(43)

Voxel value thresholding at 50%

(44)

ISO50 surface determination

Voxel = $69.5 \ \mu m$

Resolution ~ 7 μ m

WHAT SOFTWARE CAN DO THIS?

https://www.volumegraphics.com

Resolution ~ voxel size x /10

Accuracy ~ \pm 10 + L/100 μ m

HOW DO WE DEFINE THE ACCURACY?

ASTM E1441-19 etc. VDI/VDE 2630 ASME B89.4.23 ISO 10360-11

Calibrated CT standard measurement

Correct systematic shifts

Precision ceramic sphere

CMM calibrated fixture

CT Lab HX

Goodfellow AL606895 Alumina sphere Certified diameter = 20 ± 0.00125 mm

Fitted radius = 10.0027 mm (Certified radius: 10.00 mm)

Resolution ~ voxel size x /10

Accuracy ~ \pm 10 + L/100 μ m

CT metrology can see

Entire volume Internal structures Voids & cracks with < 10 µm accuracy

Make sure to

Run calibration Be aware of artifacts Optimize scan conditions

WHEN IS CT METROLOGY USEFUL?

METROLOGY APPLICATIONS

- Dimension measurements
- Internal dimensions
- Air gaps
- Voids and cracks
- GD&T analysis
- Nominal vs. actual comparison
- Reverse engineering
- Mechanical simulations

CAN WE MEASURE INTERNAL DIMENSIONS?

Matryoshka doll

Matryoshka doll

81.626 mm 54.813 mm 35.124 mm 22.976 mm 10.593 mm

141.06 mm

CAN WE MEASURE AIR (GAPS, VOIDS)?

Bottle cap

CAN WE DO GD&T ANALYSIS?

Machined aluminum part

Radius = 4.414 mm (x = 15.471, y = -17.167)

Actual 0.079 mm

CAN WE COMPARE CAD AND CT?

3D printed part

*1

3D printed part

CT scan (actual)

CAN WE COMPARE TWO OBJECTS?

Bottle cap

Open

Closed

CAN WE USE THIS FOR QC?

Maximum deviation for 90% surface ≤ 0.1

CAN WE DO REVERSE ENGINEERING?

Reproduction

CT scan

Polygon mesh

3D print

Modification

CT scan

CAD conversion

CAD software

CAN WE DO A MECHANICAL SIMULATION?

Von Mises stress [MPa]

METROLOGY APPLICATIONS

- Dimension measurements
- Internal dimensions
- Air gaps

Rigaku

- Voids and cracks
- GD&T analysis
- Nominal vs. actual comparison
- Reverse engineering
- Mechanical simulation

USEFUL RESOURCES

Volume Graphics webinars
<u>https://www.volumegraphics.com/</u>
<u>en/service/webinars.html</u>

• GD&T

https://www.youtube.com/ Infinity MFG: GD&T Part 1 & 2

You just learned: -Keys to metrology using CT -Analysis techniques - Metrology applications

1 1000

Tone !!

Land Land A

TELE

A LUTT

HE ITT

T
ALL IMAGES WERE COLLECTED ON...

To learn more ...

Rigaku.com → Contact

PREVIOUS WEBINARS

www.rigaku.com/en/webinars/ x-ray_ct_introduction

Q & A SESSION

Tom Concolino

We'll follow up with your questions.

Recording will be available tomorrow.

Tell us what you want to learn next.

THANK YOU FOR JOINING US SEE YOU IN 2021!

