WELCOME

RIGAKU WEBINAR SERIES X-RAY COMPUTED TOMOGRAPHY FOR MATERIALS & LIFE SCIENCE *PLANT SCIENCE APPLICATIONS* IS STARTING NOW.

Presenter: Angela Criswell

Senior Scientist Rigaku Americas Corporation

Host: Tom McNulty

Senior Vice President Rigaku Americas Corporation

You can send us questions during the presentation. They will be addressed at the end of the presentation.

A recording of this webinar will be available. You will receive an email with a link to it tomorrow.

X-RAY COMPUTED TOMOGRAPHY FOR MATERIALS AND LIFE SCIENCE Plant Science Applications

Q Rigaku

2-2

You will learn: Sample movement and size Instrument optimization Plant applications

10000

SAMPLE MOVEMENT

- Shorten data collection time
- Secure the sample
- Hydrate the sample

SHORTEN DATA COLLECTION TIME

57 min

SHORTEN DATA COLLECTION TIME

57 min

4 min

TEST FOR SAMPLE MOVEMENT

- Collect single procession images at one minute increments.
- Subtract image 2, 3, etc from the first image.
 - Movement you should see artifacts
 - No movement blank images

SECURE THE SAMPLE

parafilm

UV resin

SECURE THE SAMPLE

HYDRATE THE SAMPLE

Eppendorf tube

Whole plant imaging

SAMPLE SIZE

- Instrument optimization
 - Which instrument?
 - What data collection settings?
- Image stitching

• Trees

- Trees
- Full-sized plants
- Root systems

- Trees
- Full-sized plants
- Root systems
- Fruit

- Trees
- Full-sized plants
- Root systems
- Fruit
- Seeds

INSTRUMENT OPTIMIZATION

• Which instrument is most suitable for my experiment?

Cone beam geometry

Parallel beam geometry

INSTRUMENT OPTIMIZATION

- Which instrument is most suitable for my experiment?
 - Will the sample fit or do I need a cutting?
 - How will I mount the sample?

INSTRUMENT OPTIMIZATION

- Which instrument is most suitable for my experiment?
 - Will the sample fit or do I need a cutting?
 - How will I mount the sample?
- What features do I want to see?
 - Voxel size?

IMAGE STITCHING

- Large samples may require multiple data collection scans.
- Collect 'overlapping' sections of the sample for ease in image stitching later

IMAGE STITCHING

- Large samples may require multiple data collection scans.
- Collect 'overlapping' sections of the sample for ease in image stitching later

LET'S LOOK AT SOME EXAMPLES

IMAGING FULL SIZED PLANTS

• Tomato plant imaging

ROOT SYSTEMS

• Tomato plant imaging

Choice of growth media can make the difference in your ability to segment for analysis later

- Imaging corn
 - Scan several sections
 - Allow for some overlap

- Imaging corn
 - Scan several sections
 - Allow for some overlap

• Quantifying Z position of kernels

• Quantifying kernel volume

HOW ABOUT SEEDS?

Mung and millet seeds

Sea bean

Millet seeds

MILLET SEED

Seed hull volume - 1.5%

https://commons.wikimedia.org/wiki/File:Entada_rheedii04.jpg

https://en.wikipedia.org/wiki/Entada_rheedii

CRANBERRY SEED

CRANBERRY SEED

- Seed hull
 - 3.3%
- Void volume
 - 9.9%

LEAF

LEAF

LEAF

ALL IMAGES WERE COLLECTED ON...

nano3DX CT Lab HX CT Lab GX

To learn more ...

Rigaku.com → Contact

PREVIOUS WEBINARS

www.rigaku.com/en/webinars/ x-ray_ct_introduction

Next on X-ray computed tomography Geology Applications

July 15th Wednesday 11:00 am PDT / 2:00 pm EDT

Q & A SESSION

Angela Criswell

Tom McNulty

We'll follow up with your questions.

Recording will be available tomorrow.

Register for the 6th webinar.

THANK YOU FOR JOINING US SEE YOU NEXT TIME!

