WELCOME

RIGAKU WEBINAR SERIES X-RAY COMPUTED TOMOGRAPHY FOR MATERIALS SCIENCE – DATA ANALYSIS George and

IS STARTING NOW.

Presenter: Aya Takase

Senior Scientist Rigaku Americas Corporation

Host: Tom McNulty

Senior Vice President Rigaku Americas Corporation

You can send us questions during the presentation. They will be addressed at the end of the presentation.

A recording of this webinar will be available. You will receive an email with a link to it tomorrow.

X-RAY COMPUTED TOMOGRAPHY FOR MATERIALS SCIENCE Data Analysis

2 -2

1 1 5

Repetitive Strain Injury

WHAT EXACTLY ARE X-RAY CT IMAGES?

3D rendering

TIFF stack

WHAT DO "WE" SEE?

WHAT ABOUT COMPUTERS?

File format: TIFF File size: 512 x 512 x 512 200 239 229 195 66 147 247 218 98 95 138 93 238 176 11 20 242 157 62 18 214 93 200 117 202 144 242 119 231 24 77 32 236 227 254 124 234 183 246 121 23 213 168 133 219 142 161 162 203 183 11

HOW ARE WE GOING TO WORK TOGETHER?

Do you speak binary?

Do you speak numbers?

Yes.

I know histograms.

Histograms?

WHAT IS A HISTOGRAM?

LET'S GO THROUGH AN EXAMPLE

Segmentation

Segmentation (Pixel labeling)

Object labeling

Quantitative analysis

QUANTITATIVE ANALYSES

- Volume %
- Object size / volume
- Object surface area
- Object aspect ratio
- Fiber orientation
- Layer thickness

Rigaku

WHAT IS IMAGE QUALITY?

- Resolution
- Contrast
- Noise level

- Resolution
- Contrast
- Noise level

Low resolution Blur

High resolution Sharp

- Resolution
- Contrast
- Noise level

Low contrast

Low dynamic range

High contrast High dynamic range

- Resolution
- Contrast
- Noise level

High noise

Low noise

- Resolution
- Contrast
- Noise level

Reality

Ideal situation

WHAT IS IMAGE PROCESSING?

CONTRAST ENHANCEMENT

NOISE REDUCTION

Original

Gaussian blur

P1	P2	Ρ3	
Ρ4	P5	P6	
Ρ7	P8	P9	

 $P5 = \frac{1}{9} \sum_{j=1}^{9} P_j$

NOISE REDUCTION

Original

Gaussian blur

EDGE ENHANCEMENT

Gaussian blur

Unsharp mask

Original

Smoothing (Median 3 px)

Unsharp mask

Two phase segmentation

Original

HOW DO YOU SEGMENT IMAGES?

IMAGE SEGMENTATION

- Histogram thresholding
- Machine learning
- Deep learning
- Manual painting

IMAGE SEGMENTATION

- Histogram thresholding
- Machine learning
- Deep learning
- Manual painting

MORPHOLOGICAL OPERATIONS

- Erode
- Dilate
- Open
- Close

"Close" connects objects, cleans up holes Dilate Erode

MORPHOLOGICAL OPERATIONS

- Erode
- Dilate
- Open
- Close

Phase A pixels

Phase A objects

Histogram thresholding Morphological operation Property filtering

CAN WE TRY THOSE TECHNIQUES ON AN ACTUAL CT DATA?

Thresholding

"Close" on blue/air pixels

"Close" on blue/air pixels

"Close" on yellow/polymer pixels

"Close" on yellow/polymer pixels

Eliminate small objects

Raw image

Polymer

Air

CAN YOU SEPARATE INDIVIDUAL CELLS?

DRVISION AIVIA

Distance transform

Watershed

Watershed

Watershed

- Thresholding
- Close operation x 2
- Volume filtering
- Object separation

ISN'T THERE AN EASIER WAY?

IMAGE SEGMENTATION

- Histogram thresholding
- Machine learning
- Deep learning
- Manual painting

Can you recognize objects?

No. Not yet.

But I can learn.

WHAT IS MACHINE LEARNING?

HOW DOES THIS APPLY TO IMAGES?

Input features

Raw image

Polymer

Air

Orally disintegrating tablet

Single particle CT

Segmented volumes

Cu anode, 0.54 µm/voxel

WHAT IS DEEP LEARNING?

Logistic Regression Decision Tree Random Forest K-Nearest etc.

Biological neural network

Artificial neural network

TO LEARN MORE ABOUT DEEP LEARNING

DEEP LEARNING CHAPTER 1 INTRODUCTION

by Ian Goodfellow

INTRODUCTION TO DEEP LEARNING

by Mike Marsh

Introduction to Deep Learning Posted 2018.08.29

NEURAL NETWORKS

by 3Blue1Brown

Neural networks

4 videos • 710,862 views • Last updated on Aug 1, 2018

WHAT KIND OF SOFTWARE ARE OUT THERE?

COMMERCIAL

- Dragonfly (ORS) <u>theobjects.com</u>
- Avizo (Thermo Fisher): <u>fei.com</u>
- VG STUDIO (Volume Graphics): <u>volumegraphics.com</u>
- AIVIA (DRVISION): <u>drvtechnologies.com</u>
- I2S (DigiM): <u>digimsolution.com</u>

OPEN SOURCES

- Fiji (ImageJ NIH): <u>fiji.sc/</u>
- WEKA (via Fiji): <u>cs.waikato.ac.nz/ml/weka/</u>

Waikato Environment for Knowledge Analysis

ALL IMAGES WERE COLLECTED ON...

nano3DX CT Lab HX CT Lab GX

To learn more ...

Rigaku.com → Contact

Next on X-ray computed tomography *Food and Pharmaceutical Applications*

September 25th Wednesday 11:00 am PDT / 2:00 pm EDT

Q & A SESSION

Aya Takase

Tom McNulty

We'll follow up with your questions.

Recording will be available tomorrow.

Register for the 3nd webinar.

THANK YOU FOR JOINING US SEE YOU NEXT TIME!

