WELCOME

RIGAKU WEBINAR SERIES X-RAY COMPUTED TOMOGRAPHY FOR MATERIALS & LIFE SCIENCE *PREPARING LIFE SCIENCE SAMPLES* IS STARTING NOW.

Presenter: Angela Criswell

Senior Scientist Rigaku Americas Corporation

Host: Tom Concolino

Southeast Regional Account Manager Rigaku Americas Corporation

You can send us questions during the presentation. They will be addressed at the end of the presentation.

A recording of this webinar will be available. You will receive an email with a link to it tomorrow.

X-RAY COMPUTED TOMOGRAPHY FOR MATERIALS AND LIFE SCIENCE Preparing Life Science Samples

NOT ALL SAMPLES ARE THE SAME

Some samples require little to no sample preparation

While others require more sample preparation

100000

SAMPLE PRESERVATION

- Use fixatives 'to fix' sample at a point in time and prevent subsequent breakdown of tissue.
 - Stop autolysis
 - Stop microorganism activity
- Types of fixatives
 - Physical fixatives
 - Chemical fixatives

CHEMICAL FIXATION

- Achieved by immersing the sample in a fixative solution
- Fixatives act to minimize the loss of cellular components
- Penetration time \neq fixation time

Rigaku

- Fixation may cause tissue discoloration
- Fixation may cause tissue swelling or shrinkage
- Fixation may affect downstream processes, like sample staining

TYPES OF FIXATIVES

- Coagulants

 Dehydrating solutions
- Non-coagulants
 Cross-linking solutions

COAGULANT FIXATIVES

- Remove water from tissues leading to coagulation and denaturalization of proteins, mostly in the extracellular matrix
- Examples:
 - Ethanol solutions
 - Picric acid solutions
 - Carnoy-Lebrun Solution

NON-COAGULANT FIXATIVES

- Form chemical bonds, or crosslinks, within and between cellular molecules
- Examples:

Rigaku

- Formaldehyde
- o Glutaraldehyde
- Osmium Tetroxide (OsO₄)

COMBINATION FIXATIVES

- Solutions that contain both coagulant and non-coagulant reagents
 - Bouin's Solution
 - Alcoholic Formalin
 - Alcohol-Formalin-Acetic Acid

IDEAL FIXATIVE

- Can be used with a wide variety of tissue
- Should penetrate both small and large specimens rapidly and preserve fixed tissue
- Should promote excellent staining
- Should have a long shelf life (> 1 yr) and be readily disposable or recyclable

Eltoum, I.; Fredenburgh, J.; Myers, R. B.; Grizzle, W. E. J. of Histotechnology 2001, 24 (3), 173–190.

FIXATION DURATION

- $d = k\sqrt{t}$
- *d* Depth of penetration*k* Coefficient of penetration (diffusion)

t - Time

Medawar, P. B. *J. Royal Microscopical Society* 1941, *61* (1–2), 46–57. Dempster, W. T. *Am. J. Anat.* 1960, *107* (1), 59–72. Eltoum, I.; Fredenburgh, J.; Myers, R. B.; Grizzle, W. E. *J. of Histotechnology* 2001, *24* (3), 173–190.

FIXATION DURATION

$$t = \frac{1 \, mm}{k^2}$$

Fixative	k
10% acetic acid	0.25
10% formaldehyde	0.79
100% ethanol	1.0
10% formalin	1.14
1.2% picric acid	3.9
0.4% OsO ₄	23.9

Medawar, P. B. *J. Royal Microscopical Society* 1941, *61* (1–2), 46–57. Dempster, W. T. *Am. J. Anat.* 1960, *107* (1), 59–72. Eltoum, I.; Fredenburgh, J.; Myers, R. B.; Grizzle, W. E. *J. of Histotechnology* 2001, *24* (3), 173–190.

SAMPLE STAINING

- Staining improves contrast by increasing X-ray absorption within the sample
- Types of contrast agents

Rigaku

- Perfusion used for *in vivo* imaging
- Diffusion used for *ex vivo* imaging

Metscher, B. D. Developmental Dynamics 2009, 238 (3), 632–640

Histogram of pixel values (black) 0 – 255 (white)	Ethanol mean	Tissue mean	Tissue/ ethanol	Tissue st. dev.	Overlap percentile
Unstained	41	53	1.3	7	17
Gallocyanin- chromalum	41	66	1.6	10	6
1% iodine in ethanol	41	100	2.4	18	1
10% IKI	41	111	2.7	28	2.3
РТА	41	125	3.1	28	0.4
Osmium tetroxide	41	107	2.6	30	4

IKI – Lugol's solution (1% I2 + 2% KI) PTA – phosphotungstic acid

Abbreviation	Staining agent components
PTA	1% (w/v) phosphotungstic acid in water
ePTA	1% PTA (w/v) in 90% ethanol in water (v/v)
IKI (Lugol's solution)	1% iodine metal (I ₂) + 2% potassium iodide (KI) in water
12E, 12M	1% iodine metal (I ₂) dissolved in 100% ethanol (I2E) or methanol (I2M)
OsO ₄	1-2% osmium tetroxide

• To dry or not to dry?

Wet pig heart

 Dried pig heart

Pallares-Lupon, N. et al. 2021. https://doi.org/10.1101/2021.07.29.454121.

NEXT STEPS

- Sample mounts should prevent sample movement during CT data collection
 - Add material to wet mixtures to limit movement

NEXT STEPS

- Sample mounts should prevent sample movement during CT data collection
 - Add material to wet mixtures to limit movement
 - Embed in paraffin, agarose, resin

Scott, A. E. et al. PLoS One 2015, 10 (6), e0126230.

NEXT STEPS

- Sample mounts should prevent sample movement during CT data collection
 - Add material to wet mixtures to limit movement
 - Embed in paraffin, agarose, resin

Metscher, B. D. Cold Spring Harb Protoc 2011, 2011 (12), pdb.prot067033.

LET'S LOOK AT SOME EXAMPLES

unstained

iodine stained

iodine stained

INSECT - CICADA

3D volume

2D cross-section

Tymbal

Rigaku

10.64

 \mathcal{D}

IMAGES WERE COLLECTED ON...

To learn more ...

Imaging.Rigaku.com

PREVIOUS WEBINARS

https://imaging.rigaku.com/learning /x-ray-ct-webinars-and-workshops

Q & A SESSION

Angela Criswell

Tom Concolino

We'll follow up with your questions.

Recording will be available tomorrow.

Register for seminar.

X-RAY MICROSCOPY SEMINAR & WORKSHOP UNIVERSITY OF DELAWARE WEDNESDAY, MARCH 30, 2022

Year End Survey

will be sent to you tomorrow

THANK YOU FOR JOINING US SEE YOU NEXT YEAR!

P) Rigaku

igaku

