
Specifications

Wafer size		200 mm, 300 mm		
Load port		2 FOUP load ports		
Dimensions	Main unit	1612 (W) × 3337 (D) × 2118 (H) mm		
Dimensions	Heat exchanger	$469(W) \times 914(D) \times 868(H) mm$		
	Power supply	3-phase, 208 V, 20 A, avg. 2 kVA (Main unit)		
		1-phase, 208 V, 8 A, avg. 0.5 kVA (Heat exchanger)		
Utilities	CDA	0.5~0.7 MPa 20 L/min		
	Vacuum	-80 kPa 20 L/min		

Typical floor arrangement

Compliance with safety standards SEMI S2/	/S8				
Compliance with communication standards	GEM300	SECS/GEM			
ISO 9001/ISO 14001 approved					

Specifications and appearance are subject to change without notice.

Rigaku Corporation and its Global Subsidiaries

e-mail: info@rigaku.com www.Rigaku.com

*Figures of performance in this catalog are results from tests by Rigaku Corporation and are not guaranteed to be reproduced under other test conditions.

*Company names and product names in this catalog are trademarks of the companies and/or registered trademarks.

XTRAIA MF-3000 In-line X-ray Metal Film Monitor

Setting the Standard for Semiconductor In-line Process X-ray Metrology Tools

World Leader in Analytical X-ray Metrology Tools and Solutions for the Semiconductor Industry

High-throughput Measurement of Product Wafers

From Ultrathin Films to Micron-order Films, Applicable to a Wide Range of Thickness and Film Types

High-throughput Measurement of Product Wafers

- With pattern recognition, an area 100 µm or smaller on product wafers can be measured at any position.
- No monitor wafers are required for the thickness inspection process. Thickness, roughness, and composition are measured in atmosphere with no contact and with high throughput (15-20 WPH).

Micro-XRF: Both High Precision and High Throughput are Achieved

- A lineup of monochromatic, micro-spot X-ray beam modules (COLORS[™]) enables a choice of optimized X-ray sources
- Thanks to grazing-incidence radiation realized by variable X-ray incidence angle, ultrathin films are measured with high precision and high throughput.

Micro-XRR: Wide Dynamic Range and High Throughput are Realized

Equipped with an ultrafast detector with up to 10^s dynamic range and with monochromatic, micro-spot X-ray sources. High-precision, high-throughput micro-XRR measurements are achieved.


Micro-XRD: Available for Crystallinity Analysis of Various Metal Films

Using a 100 µm or smaller monochromatic, micro-spot X-ray beam, XRD measurement of small areas is possible.

Monochromatic, Micro-spot X-ray Beam Module, COLORS™

A high-brilliance monochromatic, micro-spot X-ray beam is realized by Rigaku's unique multilayer mirror technology. Select and exchange the X-ray beam best suited for XRR, XRF, and XRD applications of interest.

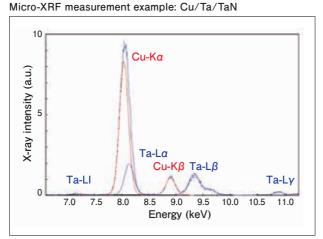
	FWHM (µm)	XRF	XRR	XRD
COLORS Cu	85	0	0	0
COLORS Au	85	0	-	-
COLORS Mo	85	0	-	-
COLORS Rh	85	0	-	_
COLORS-n Cu	50	0	-	_
COLORS-i Au	35	0	-	_
COLORS-i Mo	35	0	-	-

Applications

XTRAIA MF-3000 can handle a variety of FEOL and BEOL films ranging from single layer to multilayered stacks.

FEOL	SiGe, CoSix, NiSix, SOI, AI, S
BEOL	Cupand Cuparrian Cuplatio
BEUL	Cu seed, Cu barrier, Cu platin
Others	MgO, CoFeB, Ru, Pt, PZT

XTRAIA MF-3000 In-line X-ray Metal Film Monitor

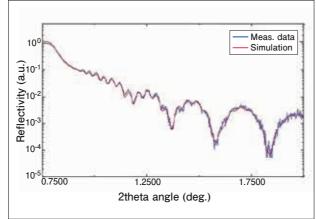


SiON, Hi-k dielectric/metal gate ... ng, Ti/TiN, Ta/TaN, W ...

New X-ray Metrology Tool Realizes High-precision Measurements

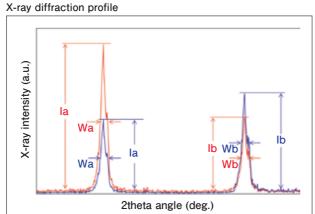
Micro-XRF Measurement of Thickness and Composition

Using a monochromatic, microspot X-ray beam module and a high-sensitivity, energy-dispersive silicon drift detector (SDD), highthroughput and high-precision thickness and composition measurements by X-ray fluorescence (XRF) are realized.



Micro-XRR Measurement of Thickness

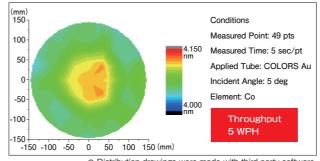
Thanks to an ultrafast X-ray detector, high-throughput X-ray reflectivity (XRR) measurements are realized. It enables simultaneous measurement of a multilayer film over an 8-order dynamic range.


		(nm)
8.60	153.83	1.51
15.85	16.43	0.00
14.02	9.81	8.70
2.20	300.00	0.00
	15.85 14.02	15.85 16.43 14.02 9.81

Micro-XRR measurement example: Cu/Ta/TaN

Evaluation of Crystallinity and Orientation by Micro-XRD

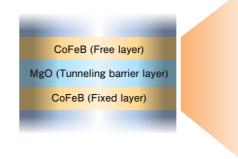
By X-ray diffraction (XRD), X-ray diffraction profile crystalline phase identification and crystal orientation can be evaluated from peak locations and intensities in the diffraction pattern.


Applications

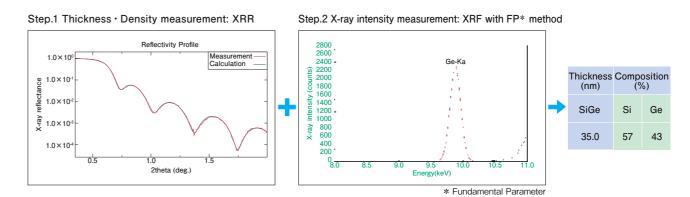
XRF Measurement of Thickness Variation in MRAM Process

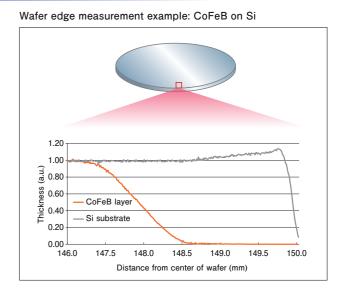
Low-incidence angle measurements enable highspeed analysis of very thin films like those found in MRAM devices.

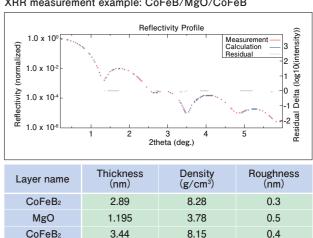
Flexible recipe settings cover a variety of film stacks and applications.


WIW thickness variation of CoFeB

* Distribution drawings were made with third party software


XRR Measurement of Physical Characteristics in MTJ Stack


XRR is applicable for multiple alternating stack structures for which XRF is unable to distinguish each layer of the same composition.



XRR/XRF Combo Measurement of SiGe Composition in Fin Gate

Combined XRR/XRF measurements enable simultaneous analysis of composition and thickness. The density and thickness of a SiGe layer on a Si wafer are obtained by XRR, then the amount of Ge is determined by XRF, and the SiGe composition is derived. This XRR/XRF measurement scheme is especially effective on thin films (<100 nm) that do not typically show significant peak shifts in HRXRD measurements.

XRR measurement example: CoFeB/MgO/CoFeB

Applications

700,040

Thickness Measurement of Ultrathin Films Down to 1 nm

The XRR detector of the XTRAIA Micro-XRR measurement example: 1.4 nm thick high- r film (HfSiOx)

10⁰

10-1

10-2

10-3

Heflecti 10-4 10-5

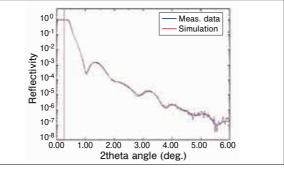
0.00

MF-3000 can measure even the direct beam from the X-ray source. It realizes low background that is essential to characterizing ultrathin films.

	Density (g/cm ³)	Thickness (nm)	Roughness (nm)
HfSiO	8.80	1.40	0.36
SiO ₂	3.09	2.51	0.60

10-6 10-7 2.00

- Meas, data Simulation

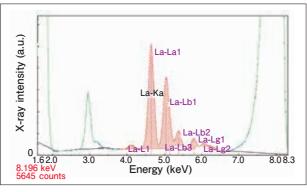

6.00

Multilayer Dielectric Film Measurement

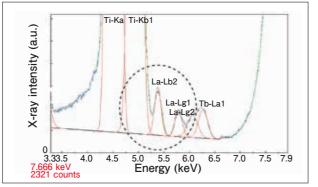
The low background noise of the XTRAIA MF-3000 enables accurate measurement of spectra from under thin layers. It is a very powerful tool for multilayer measurement.

	Density (g/cm ³)	Thickness (nm)	Roughness (nm)
SiO ₂	2.29	5.47	0.44
Si ₃ N ₄	3.02	4.09	0.65
SiO ₂	2.23	4.10	0.50

Micro-XRR measurement example: Multilayer dielectric film (ONO)


4.00

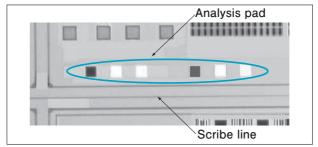
2theta angle (deg.)


Ultrathin Lanthanum Film Measurement

Using a low incidence angle, monochromatic, micro-spot X-ray beam, fast XRF measurement of a monolayer film is enabled with low background. A multilayer of LaOx and TiN metal gate electrode films is also measured.

Very low incidence angle XRF measurement example: LaOx

Very low incidence angle XRF measurement example: LaOx/TiN

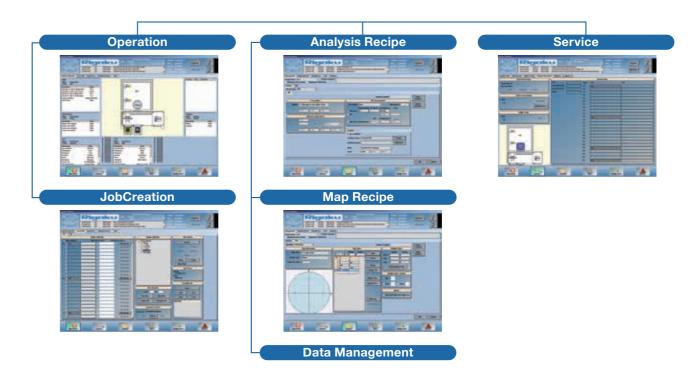


Equipped with the Latest Core Technology and **Functions**

Applicable to Microscopic Measurement Pads Ultrafast X-ray Detector D/teX-HS

Micro-XRF measurement enables evaluation of Cu thickness on small pads.

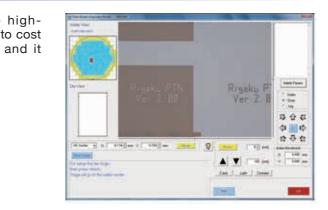
Example of a film thickness analysis pad on an LSI chip



Pattern Navigation

Product wafer measurement is possible with the highperformance pattern recognition function. It contributes to cost reduction by reducing monitor wafer requirements, and it contributes to higher yield.

User-friendly Interface


A new user interface enables faster setup of operational, engineering, and maintenance tasks.

High-precision, fast XRR measurements are realized thanks to an 8-order dynamic range.

