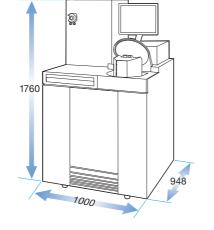

Installation Requirements

Model	TXRF 3760	TXRF 3800e
Power supply	3 phase, AC 200 V, 50/60 Hz, 100 A	3 phase, AC 200 V, 50/60 Hz, 50 A
Earth grounding	Grounding resistance 30 Ω or less (Dedicated line)	Grounding resistance 30 Ω or less (Dedicated line)
Cooling Water (Tap water) for X-ray source	25 L/min, 0.2 ~ 0.5 MPa, 18 ~ 25 °C	6 L/min, 0.2 ~ 0.5 MPa, 18 ~ 25 °C
Cooling Water(Tap water) for dry pump	According to pump specifications	According to pump specification
N2gas (high purity)	20 L/min, 0.03 ~ 0.05 MPa, <30 °C	20 L/min, 0.03 ~ 0.05 MPa, <30 °C
N2gas for dry pump	According to pump specifications	According to pump specifications
Compressed air (CDA)	20 L/min, 0.5 ~ 0.6 MPa, <30 °C	20 L/min, 0.5 ~ 0.6 MPa, <30 °C
Online analysis program (option)	SECS/GEM	SECS/GEM
Others	Compressed air exhaust, Dry pump exhaust	Compressed air exhaust, Dry pump exhaust
Environment	Room temperature 18~ 27 °C, Humidity <75 %RH	Room temperature 20~25 °C, Humidity <75 %RH

Option Heat exchanger


(Note) Pressure at gauge

Example of Installation

Compact Design with a Footprint of Less Than 1 m²

The footprint to accommodate the transfer robot chamber, $XY\theta$ stage, and personal computer is just 1000 (W) x 948 (D) [mm]. Maintenance areas are required only in the front and the rear of the tool. Clean room space is efficiently utilized.

Compliance with safety standards	CE	SEMI S2/S8	Compl comm

Compliance with communication standards

ISO 9001/ISO 14001 approved

* Figures of performance in this catalog are results from tests by Rigaku Corporation and are not guaranteed to be reproduced under other test conditions.

SECS/GEM

* Company names and product names in this catalog are trademarks of the companies and/or registered trademarks.

Specifications and appearance are subject to change without notice.

Rigaku Corporation and its Global Subsidiaries

e-mail: info@rigaku.com www.Rigaku.com

CES207D/170610E

TXRF SERIES 3760/3800e

Total Reflection X-ray Fluorescence Spectrometer

0

N

151

0.0

Rigaku

TXRF

81

High-reliability

Wafer Surface Contamination Analysis

Total Reflection X-ray Fluorescence (TXRF) is an indispensable tool for materials and device development for semiconductor manufacturing. Remarkable reliability is achieved thanks to newly developed X-ray optics, a new stage mechanism, and a new concept in compact rotating-anode X-ray sources. Also, a new, low-COO TXRF model offers reduced initial and operating costs.

High-sensitivity Model Total Reflection X-ray Fluorescence Spectrometer

- For 200 mm and smaller wafers.
- With high-power, rotating-anode X-ray source.
- Compact footprint: 1000 (W) x 948 (D) [mm].

Low-COO Model Total Reflection X-ray Fluorescence Spectrometer

TXRF **3800e**

 CO2 exhaust reduced by 50% compared with Rigaku's previous model (TXRF 3750)

Results in an Instant

Higher throughput thanks to shorter measurement time achieved by high power and a vacuum transfer robot. Interruption of a job to measure an urgent sample is easily handled.

Easy Operation

Easy operation in routine analysis mode. Automatic analysis can be set in measurement recipes. Alignment and mapping are easily done.

Reduced Footprint

Compact footprint: 1000 (W) x 948 (D) [mm]. Excellent maintainability.

High-power X-ray Source

Rigaku's patented 3-crystal exchanging mechanism enables the entire element range (from light to heavy) to be covered by one tungsten (W) target X-ray source.

Liquid Nitrogen-free Detector System

Liquid nitrogen-free SDD (Silicon Drift Detector) offers high resolution and high count rate.

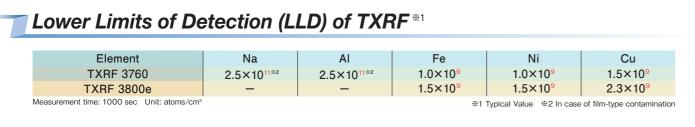
Applicable to a Variety of Wafers and Applications

The application of Total-reflection X-ray Fluorescence analysis is not limited to the analysis of metallic contamination on bare silicon wafers. TXRF analysis can be applied to gauge the cleanness of all fab processes, including cleaning, lithography, etching, ashing, films, etc.

Beyond silicon devices, this technique is also applicable to the fields of SiC power devices, compound semiconductors, MEMS, organic electroluminescent materials, etc.

Sapphire wafer

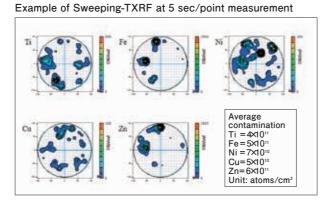
Bare wafer



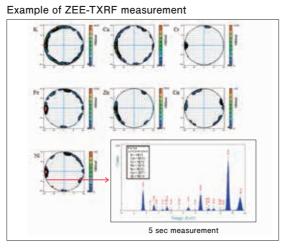
Glass wafer

Epitaxial wafer (SiC/GaN)

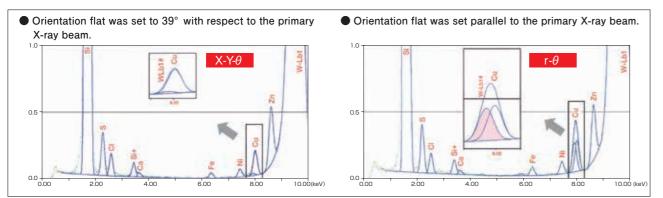
VPD-processed sample


High-precision Analysis

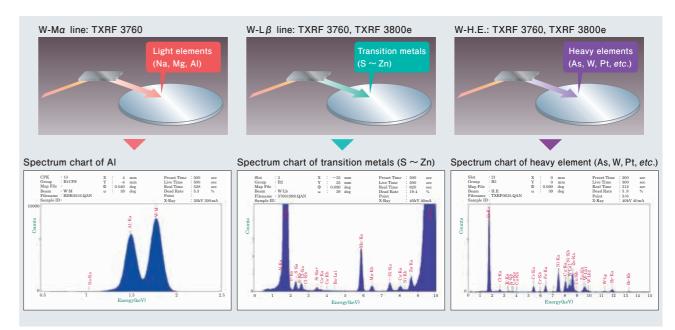
Sweeping-TXRF


- High-speed, full-wafer mapping.
- Contamination can be mapped at
- the 5 $\times 10^{10}$ atoms /cm² level in 15 min (200 mm wafer).

*Sweeping-TXRF was jointly developed by Siltronic Japan and Rigaku.

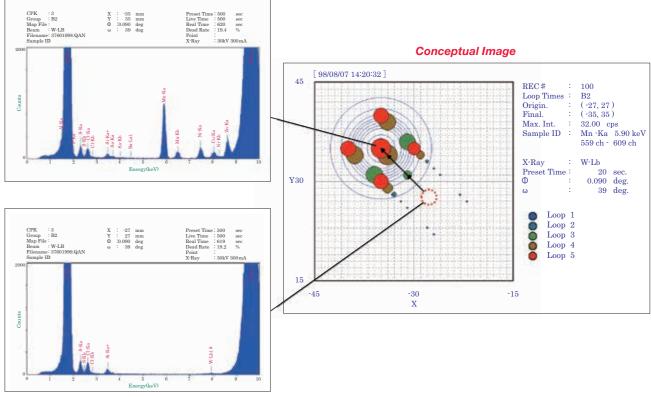

ZEE-TXRF (Zero Edge Exclusion TXRF)

- High-sensitivity, non-destructive measurements can be made at the wafer edge with zero edge exclusion.
- Detect metal contamination out to the wafer edge.


Diffraction Elimination for Improved Trace Element Analysis — New XYØ Sample Stage

The XY θ driving mechanism of the new sample stage further improves the analysis of trace contamination by eliminating escape peaks caused by diffraction peaks from a silicon substrate.

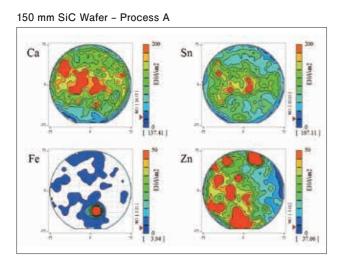
Wide Analyzable Element Range from Na to U with a 1-target, 3-beam Method

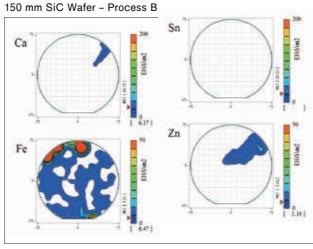

With a single X-ray source, 11Na \sim 92U are analyzed thanks to Rigaku's unique 1-target, 3-crystal exchanging mechanism. The crystals are switched automatically through software, quickly and with high precision.

Feasibility of Off-line VPD — Droplet Search Function

The repeatability of VPD and droplet analysis is improved by the droplet search function. This function can also run under PI Link function.

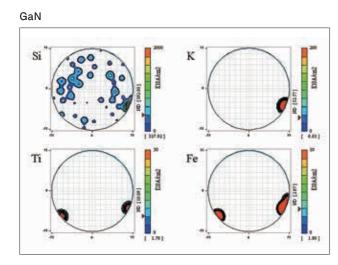
Actual Position of Droplet (-35.35)

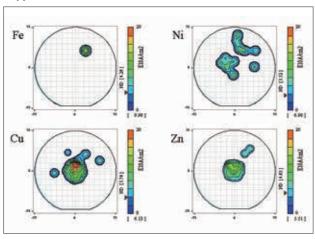



Original Target position (-27.27)

Examples of Measurement in Applications

SiC Wafers


TXRF is a very powerful contamination monitoring tool for SiC wafers, for which chemical analysis is not effective. Process A and Process B were run with different cleaning protocols by SiC wafer suppliers. TXRF provides entire wafer contamination mapping information.



Other Compound Semiconductors GaN. Sapphire

TXRF has also been widely applied in the compound semiconductor field, such as in GaAs, GaN and Sapphire wafer processes.

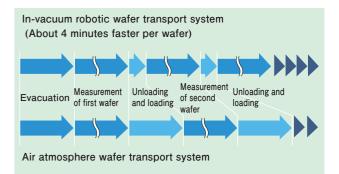
Sapphire

Speed and Flexibility Guarantees Quality and Efficiency of Operation

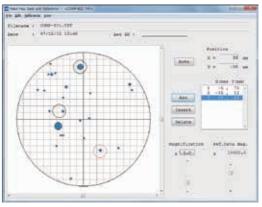
Higher Throughput — In-vacuum Robotic Wafer Transport System

Higher throughput is achieved thanks to a vacuum chamber that accommodates a wafer cassette, eliminating lost time of evacuation for every wafer. Thanks to the combination of an independent cassette chamber and a vacuum transfer robot, interruption of a measurement to run an urgent wafer is quickly done. The wafer search function that moves the robot arm only to slots where wafers are detected also contributes to higher throughput.

Data Import from a Surface Defect Inspection Tool PI-Link


PI-Link enables data import from various suppliers' surface defect inspection tools to perform elemental analysis at defect points. Element information is obtained for particles and scratches that is unavailable from surface defect inspection.

Operation Status Display


Graphical display of the system configuration enables the operator to see at a glance the tool status and condition, including sample movement, kV-mA of the X-ray source, sample being measured, etc.

Measurement Condition Setting

Up to 50 measurement conditions can be preset by simple operation. New recipes can be created while measurements are running, enhancing productivity. Measurement conditions for priority wafers can be set up with a single line of input.

Element information of particles

Tantin Name	100 C	Gamp	analise .
Sample Ito 1		1.82	1.78.8
Sample 30.2	and the second	80	10.0
Sample No.3	Fields .	#1	10.0
Sample 10.4	Varia	80	205-548
Barge 123		80	18.91
Bangle No.8	521-0	利利利利利利利利利利利利利利利利利利利利利利利利利利利利利利利利利利利利利利利	10.0
Barsik ht.7	- Denne Serang	81	288-04
Jampie 108		B1	288-016
Serge NLA	Elegang .	84	Reference.
Sample No. 12	Fairs	1.81	Reference
		11	
The second in the second states	Date of the second second	ALC: N	and here
Contraction of Contraction (Section	Manual		
and in the			1.84.1
11-11-11-11			