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Abstract
Background The aim of this study was to measure forces
created by progressive mandibular advancement with an
oral device, during natural sleep, in a sample of adult
patients with obstructive sleep apnea syndrome (OSAS).
Methods A pressure transducer system was placed on the
acrylic arms of a two-piece oral appliance (Herbst type)
used by nine moderate to severe OSAS patients, in addition
to all captors routinely used for polysomnography. Strains
on the left and right sides were collected, during stable sleep
stages without arousal, for each step of 1 mm advancement.
Results The mean force in this sample was 1.18 N/mm and
showed an almost linear evolution. Measurements showed
intra- and inter-individual variability.
Conclusion The force values recorded in this study may
explain the occlusal and skeletal side effects associated with
long-term use of these oral appliances. They illustrate the
influence of the extent of mandibular advancement, and
indicate a possible dose-dependent effect.

Keywords Obstructive sleep apnea . Treatment . Oral
appliance . Force

Introduction

Obstructive sleep apnea syndrome (OSAS) is characterized by
the occurrence of repeated collapse of the upper airway during
sleep [1]. Its symptoms generally include snoring interrupted
with pauses, daytime drowsiness and the feeling of sleep not
being refreshing. Repeated episodes of complete obstruction
(apnea) or partial upper airway collapse (hypopnea) can cause
many phases of hypoxia, followed by hyperventilation, and
cortical micro-arousal.

The consequences of untreated OSA are potentially life-
threatening, in part due to deleterious effects on cardiovascu-
lar morbidity and mortality (stroke) and may lead to sleep
deprivation-associated driving accidents. OSAS is a public
health problem, affecting 4 % of middle-aged men and 2 %
of middle-aged women [2].

Continuous positive airway pressure (CPAP) is the refer-
ence treatment for OSAS; it creates a pneumatic splint
which prevents the collapse of the pharyngeal walls during
breathing, irrespective of the location of the obstruction [3].
Long-term observance of this treatment is good in 60–70 %
of cases [4], and in combination with other conservative
treatments, such as weight loss and sleep hygiene, the out-
come is successful for many patients. However, the use of
CPAP declines over the years, as it is perceived to be too
constraining for some patients [3–6]; although weight loss
effectively reduces the severity of OSAS it does not relieve
all respiratory events [7]. Consequently, alternative forms of
treatment are required.

Surgical treatment involves ENTexamination to confirm the
location and nature of the obstacle. Then, the airway can be
enlarged, either by reducing the pharyngeal soft tissue content
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(i.e., soft palate, palatal or lingual tonsils) [8], or widening the
skeletal frame, by maxillo-mandibular advancement surgery
[9]. These procedures are highly effective, but invasive.

Mandibular advancement devices (MADs), which me-
chanically enlarge the airway, are currently widely used
[10–13]. Similar to activators, which are functional devices
used by orthodontists to correct class II discrepancies, MADs
are anchored on teeth to force the mandible to an advanced
position, pulling forward the tongue base and stretching pha-
ryngeal soft tissues. MADs maintain patency during sleep by
increasing the size and reducing the collapsibility of the air-
way. Experimental and clinical studies have demonstrated that
the efficacy of MADs depends on the degree of mandibular
advancement, with a dose-dependent effect [14–22]. Mandib-
ular advancement correlates with the decrease in airway resis-
tance to airflow [15, 18], an increase of airway cross-sectional
area [14, 19, 21–23], and the reduction of the incidence of
abnormal respiratory events [15, 16, 18]. Kato et al. [15]
reported that mandibular advancement in paralyzed OSAS
patients, under general anesthesia, produced a dose-
dependent reduction of closing pressure in all pharyngeal
segments: each 2-mm mandibular advancement step coincid-
ed with an approximately 20 % reduction in the number and
severity of nocturnal desaturations.

MADs must therefore be titrated, and the degree of effective
mandibular advancement (EMA) should be determined not
simply on subjective clinical criteria, but also on objective data
[1]. Nocturnal oximetry can help the clinician assess whether
further advancement is required [23], but a full polymonogra-
phy is necessary at the end of the process, to determine the final
apnea–hypopnea index per hour (AHI). A previous studywith a
Herbst-type MAD, involving a hydraulic system to drive ad-
vancement, has shown that the appropriate value can be
obtained during a single night polysomnography [18], as the
authors could validate the recorded advancement value by a
second night recording.

Long-term MAD treatment can lead to irreversible alter-
ations of the occlusion [24–32], with significant reduction of
incisor overbite and overjet, or an increase of posterior
open-bite. A dose-dependent effect of mandibular advance-
ment on occlusal changes has been suggested, but has not
been demonstrated. According to Marklund et al. [26], the
risk of dento-alveolar movements with a soft elastomeric
MAD is lower for protrusions of 6 mm or less. However, in
the same study, the authors could not find the same relation-
ship for hard acrylic MADs. Few studies have measured the
strain developed by MADs, whether in children as an or-
thopedic treatment, or in adults for OSAS [33–37].

The aim of this study was to measure the forces acting on
a MAD used by adult apneic patients during natural sleep,
for each step of 1 mm advancement. Our secondary objec-
tive was to evaluate, during titration, the mean force values
created when reaching the EMA.

Materials and methods

Patients

The study population was composed of nine consecutive
middle-agedOSASpatients (characteristics shown inTable 1):
seven men, two women, aged from 30 to 58 years, body mass
index (BMI) from 22 to 28 kg/m2. OSASwas confirmed by an
all-night diagnostic sleep study: AHI values were in the range
10–31 per hour. All patients were intolerant of nasal continu-
ous positive airway pressure (nCPAP).

The patients were informed of the various therapeutic
options, and then invited to participate freely in this prospec-
tive pilot study. Written informed consent was obtained from
all patients. The investigation was approved by the local ethics
committee. Patients with inadequate dental structures for an-
choring of the MAD, temporo-mandibular joint dysfunction
and/or previous uvulo-palato-pharyngoplasty were excluded.
None of the patients had used a MAD previously.

Sleep study

Measurements included sleep stage (electroencephalogram,
electro-oculogram, and submental electromyogram), thorac-
ic and abdominal movements, respiratory inductance
(plethysmography), and arterial oxygen saturation (SaO2).
Given the size of the MAD, which for some patients led to
mouth opening, a face mask covering the nose and mouth
was used to measure ventilatory flow (see Fig. 1). All
polysomnographic data were analyzed visually by a sleep
specialist. Sleep staging was performed according to stan-
dard criteria [38]. Apnea was defined as cessation of the
airflow of more than 10 s. Hypopnea was defined as a
reduction of the airflow, for at least 10 s, of 50 % from

Table 1 Characteristics of the study sample

Patient
no.

Age
(years)

HAI (per hour
sleep)

Weight
(kg)

BMI Sex

1 47 10 65 24 F

2 45 21 84 25 M

3 55 18 92 26 M

4 36 31 82 28 F

5 58 27 75 26 M

6 30 27 71 23 M

7 43 15 85 27 M

8 45 25 75 24 M

9 50 30 74 22 M

Mean 45.4 22.6 78.11 25 –

SD 8.70 7.15 8.23 1.93 –
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baseline, or a reduction of airflow that was less than 50 %
but associated with a fall of SaO2 greater than 3 % [39].

Mandibular advancement device

Alginate impressions of the upper and lower teeth were
taken, the centric occlusion was recorded, and full cov-
erage rigid acrylic splints were obtained. Maxillary and
mandibular splints were connected by two lateral acrylic
arms, fixed to the upper second molars and lower can-
ines. Connectors allowed slight rotation movements
(Fig. 2a); a metallic wire system, abutted to the upper
acrylic arms, allowed the lower splint to be advanced
relative to the upper splint. The metallic wires were
sheathed with a plastic tube, and could slide within
the lateral acrylic arms (see Fig. 2b and c).

During the experiment, the metallic wires imposed man-
dibular advancement mechanically, driven by a syringe
pump (electric anesthetic syringe, pilot C, Fresenius Vial)
connected to a computer outside the patient's room. Pressure
data was displayed on the same screen as the polysomno-
graphic readings.

Patients were able to accommodate to the appliance a
couple of hours prior to undertaking the study.

Force sensors (clinical study)

The force sensors, chosen for their small size (6 mm
diameter, 0.2 mm thickness; Fig. 3a and b), were used
to measure static and dynamic compression forces, up to
5,000 N (Model XFL225D; FGP Sensors and Instru-
mentation, France). The test body was made of stainless
steel and the sensitive element equipped with micro
silicon gauges; it had a central hole in through which
the wire of the MAD was received. Sensors, similar to
electric resistors, were isolated by shielded cables, com-
patible with intra-oral use (4 Teflon conductors, stan-
dard length 2 m; 10-Vdc voltage supply, input
impedance of 1,000–3,000 ohms, output impedance of
500–1,000 ohms). The value of the electrical resistance

decreased as the force level increased; its variation was
analyzed after signal processing by a computer (calibra-
tion by Cidelec laboratory).

Validation and system calibration (laboratory test)

The friction forces applied by the wire/plastic tube
interface and deformations associated with elasticity of
the system were measured in the laboratory. The friction
coefficient was defined as k0|F1−F2|/F1. F1 was the
force at the syringe and F2 is the force at the acrylic
arms. Various forces were tested by a system of pulleys
and weights, standardized for both forward and setback
movement of the splint. The tests were performed ini-
tially with cables held in a straight position, and subse-
quently with cables in a relaxed position.

Titration of the MAD with force sensors

Mandibular advancement, by increments of 1 mm every
15 min, was started after the first episode of rapid eye
movement (REM), such that one complete sleep cycle could
be recorded before titration. Progressive advancement was
continued during sleep until abnormal breathing events were

Fig. 1 Facial mask used to measure breathing variables and allowing
mandibular forces on the oral appliance to be recorded

Fig. 2 a Oral appliance used in this study. b Mandibular advancement
device with modified acrylic arms, metallic extensions and syringe. c
Close-up view of the mandibular advancement device (modified
acrylic arm)
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significantly less severe or frequent than at baseline, or until
the maximum position of the system was reached, pain was
caused, or the patient woken.

For each millimeter of advancement, forces on the man-
dibular left and right sides were collected for 5 min, during
phases of stable light sleep (N2) without arousal; these
readings were used to calculate rigidity values. Rigidity
was defined as the force required to obtain a displacement
of 1 mm (Newtons per millimeter). Changes on the force
sensors during micro-arousals were recorded as they oc-
curred. When possible, the whole titration process was
repeated during the night.

Results

Calibration of the system (Table 2) showed that the friction
(k) within the plastic tubes varied with the magnitude of the
force developed (see Table 3); k during mandibular advance-
ment was estimated to be 0.25 for force values of 10 N or
less, and up to 0.52 for forces up to 20 N. The influence of
wire curvature was not significant (data not shown).

EMAwas defined as the value in millimeters from which
there were no abnormal respiratory events. In our sample,
the mean EMA value was 11.4 mm (± 2.4), with a range
from 8 to 14 mm. EMA could not be determined for all
patients: one patient (patient number 3) displayed abnormal
ventilatory events after 13 mm of mandibular advancement
and was classified as “partial responder” to MAD therapy.

Fig. 3 a Positions of the force sensors on the oral appliance, metallic
wires and mobile portion of the acrylic arms of the oral appliance. 1
Upper acrylic splint, 2 lateral connector, 3 lower acrylic splint, 4
metallic wire gained into plastic, 5 pressure sensor, 6 electric wire
connected to sensor and computer, 7 segment related to the electric
syringe. b Sensor used in this study

Table 2 Calibration of MAD test (laboratory test)

P (N) Mandibular advancement Mandibular set-back

F (N) k (friction) F (N) k (friction)

10 12.50 0.25 6.18 0.38

20 30.44 0.52 12.14 0.39

30 51.37 0.71 17.37 0.42

Table 3 Oral appliance titration
with force transducers: general
data

*There was still abnormal res-
piratory events after 13mm
advancement for this patient

Patient Effective
advancement
(mm)

Maximal
pressure at
syringe (N)

Recorded
pressure: right
side (N)

Recorded
pressure: left
side (N)

Overall
mandibular
pressure
L + R (N)

Pressure
index
(rigidity)
N/mm

1 11 50 16.9 14.2 31.1 2.82

2 8 23.7 10.4 9.7 20.1 2.51

3 13* 20 12.6 12.6 25.2 1.93

4 11 31.2 15.1 7.6 22.7 2.06

5 14 41.2 18 13.1 31.1 2.22

6 9 18 8.2 9.1 17.3 1.92

7 14 50 21.6 14.1 35.7 2.55

8 10 27.8 16.6 9.5 26.1 2.61

9 9 40.6 17.1 13.1 30.2 3.35

Mean 11.42 33.44 14.68 11.33 26.17 2.28

SD 2.37 13.70 4.63 2.84 6.68 0.34
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Maximal recorded force values at the syringe were 33.4
(±13.7) N and 26.2 (±6.7) N at the MAD. The force required
to reach the EMAwas 11.3 (±2.9) N on the left side and 14.7
(±4.6) N on the right side, giving a total value of 26.2 (±6.7) N.
The mean force value for each 1 ml advancement step (or
rigidity index) was 2.3 (±0.3) N/mm, with extremes of 1.92
and 3.35 N/mm.

The theoretical step displacement of the lower splint
in relation to the upper splint in this experiment was
1 mm, corresponding to the mechanically symmetrical
advancement driven by the syringe pump. However,
friction between the plastic tube and the metallic wire
is expected to result in the true advancement of the
appliance being slightly lower, and the forces involved
higher. Due to friction the effective forces were proba-
bly 25 % lower than those applied for values between 0
and 10 N and 52 % for those between 10 and 20 N.
Therefore, the overall forces actually developed to reach
EMA (11.4 ±2.4 mm) were close to 13.6 N (i.e.,
1,387.4 gF). As the forces applied exceeded 10 N, the
rigidity coefficients need to be corrected to a theoretical
value of 1.18 N/mm (120.6 gf/mm).

The curves of the rigidity index plotted against force
applied suggested a linear system with constant coefficient
(correlation coefficient (r)00.92; Fig. 4). Inter-individual
differences were especially marked in the first few milli-
meters of advancement.

The titration process could be repeated through the night
for four of the nine patients, allowing intra-individual vari-
ability measures (see Table 4).

The forces measured on the right and left sides
differed for all patients, for all measures of mandibular
advancement (Fig. 5): this difference was moderate in
patient numbers 1, 2 and 5 (≈1–2 N), but was about 5–
10 N in patients numbers 3 and 4. Cortical micro-
arousals were coincided with a significant but transient
increase in forces recorded on the sensors (shown in
Fig. 6). These additional forces were not taken into
account to calculate the average forces.

Discussion

Recorded force

Several studies of the forces values created by mandibular
advancement devices have been published. Graber and Neu-
mann [36] reported forces of 500 gF for 5-mm advancement,
and 1,000 gF for 10-mm advancement, very similar to our
results after correction for friction. Katsavrias and Halazonetis
[35] studied the antero-posterior intermaxillary forces devel-
oped by an activator (modified Harvold type) and reported a
median value of 100 gF measured while standing, and of 123
gF when lying down (n010 adolescents). Higher values were
reported byWitt and Komposh [34], with forces ranging from
315 to 395 gF (n030 adolescents).

Noro et al. [33] studied 30 teenagers and sought to evaluate
the nature of the forces applied by activators of various heights
(from 2 to 8 mm) adapted to the initial skeletal discrepancy.
Subjects were evaluated by electromyography, electroenceph-
alography and pressure transducers, during 2 h of sleep. The
magnitude of forces generated by the passive tension of soft
tissues was significantly increased, to values of between 80
and 160 gF in the Class II group and between 200 and 230 gF
in the Class III group. Changing the height of the activators
significantly changed the direction of the forces. Qualitatively,

Fig. 4 Evolution of forces recorded during progressive mandibular
advancement

Table 4 Intra- and inter-subjects variability of force measurements

Case
(patient
initials)

Rigidity
right side

Rigidity
left side

Overall
rigidity

Standard
deviation

BP 1.45 1.25 2.70 ±0.70

SY 0.80 0.90 1.70 ±0.85

HS 1.40 1.50 2.90 ±0.30

MR 0.80 1.10 1.90 ±0.90

Fig. 5 Left–right asymmetry of forces recorded during progressive
mandibular advancement
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the forces generated by passive tension were significantly
greater and lasted longer than the active contraction of the
elevator muscles, regardless of the construction height. The
authors concluded that the forces generated by passive tension
were a consequence of the viscoelasticity of soft tissues play-
ing a larger role than the reflex phasic contraction of the
elevator muscles.

The force values found in our study were slightly higher
than those reported in some previous studies. There are
several possible explanations. Our sample was composed
of adult patients, whereas all other studies have been con-
ducted on adolescents. Also, the mandibular advancement in
our patients was substantial, up to 14 mm, whereas the
activators used in previous studies were mostly limited to
an edge to edge position.

Clinical implications: occlusal side effects

In this study, measures were made perpendicular to the axis
of the acrylic arms, describing a force vector in the antero-
posterior direction (compressive forces on the distal part of
the maxilla) and a vertical component vector (compressive
forces of intrusion on the distal part of the maxilla), which
was limited due to the reduced thickness of the acrylic
splints. Newton's third law, or law of mechanical equilibri-
um, states that there must be reaction forces, of equal inten-
sity and opposite direction. The lower arch is therefore
subject to compression forces in the mesial direction, and
intrusion forces in the anterior portion of the arch. The
whole system is thus subjected to a moment of rotation.

Dental movement can be induced by light forces, and
several experimental studies in humans report optimal force

magnitudes of 0.9–2.5 N [40–44]. Even applied only inter-
mittently, during night wear, forces of these magnitudes lead
to dento-alveolar movements [45].

Various occlusal changes associated with MADs have
been described: Fransson et al. [46] noted a reduction of
the overjet and overbite, and Robertson et al. [29] described
skeletal variations on cephalograms, in both studies after
wearing a MAD for 6 months. Almeida et al. [31, 32]
studied the long-term consequences of wearing a MAD:
they used cast models and cephalograms to describe pre-
cisely dento-alveolar movements after 7.4±2.2 years [31,
32], and there was occlusal stability in only 14.3 % of the
patients. Many studies report a small but statistically signif-
icant increase in anterior facial height, lowering of the
mandible in relation to the skull base, and extrusion of
mandibular molars [27–29, 33]. Progressive reduction of
overjet and overbite, after long-term use of a MAD, has
been attributed to palatal tipping of the maxillary incisors
and labial inclination of lower incisors [26–33]. These
MAD-induced dental movements are unsurprising given
the orientation of force vectors; some might be beneficial
for some patients (41.4 % according to Almeida et al. [31,
32]) and be deleterious for others (44.3 %) according to the
patient’s characteristics before the start of treatment.

The relationship between recorded force and mandibular
advancement is almost linear; the force gradually increased
with mandibular advancement. As the forces applied to
attain the large EMA values required were substantial, they
may cause potentially irreversible changes of occlusion.
Other factors, such as appliance design, composition, extent
of bite opening and patient compliance also contribute to
any such effects [26, 30, 33, 47]. Smaller EMA may lessen

Fig. 6 Effects of micro-arousal
on the forces recorded in one
patient
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the risk of dento-alveolar movements, as suggested by Mar-
klund for protrusion of 6 mm or less with soft elastomeric
devices [26].

An adapted follow-up schedule could be planned for
patients with known risk factors, such as reduced periodon-
tal support, when high EMA are needed to treat OSAS. If
there are severe dental side effects, combined CPAP/MAD,
used alternately, may be an option for treating potentially
life-threatening OSAS [48].

Force variability

Inter-individual variability

The forces recorded showed some variability between
subjects.

This may reflect anatomical differences between sub-
jects: these forces are essentially viscoelastic (i.e., pas-
sive stretching of the muscles and ligaments attached to
maxilla, mandible and hyoid bones), and may be influ-
enced by several factors, including patient sex, age or
facial pattern.

The intra-individual variability of the forces tended to
be lower after than before the seventh millimeter of
advancement (not statistically significant). Seven milli-
meter of advancement corresponds approximately to the
range of functional movements, and could reflect a
particular behavior of soft tissues, involving increased
resistance beyond a given stretching value. The small
sample of our study does not allow further analysis of
this issue.

The longitudinal study by Katsavrias and Halazonetis [35]
about activator treatment similarly reported substantial vari-
ability of the forces observed, both between patients and for
the same patient at different times, while awake. The authors
explained this intra-individual variability as a consequence of
transient increases in muscular force during swallowing, dur-
ing involuntary muscle contractions, or more generally an
increase in muscle tone in relation to the psychological mood
of the subject. The authors did not use specific sensors to
monitor muscle activity in parallel [35].

A larger study would be required to isolate and
compare different subpopulations. In particular, the pos-
sible influence of the facial type should be studied,
given the functional differences described by some
authors. For instance, subjects with short faces (brachy-
facial type) show higher occlusal forces [49] and higher
muscular activity values [50] compared with dolichofa-
cial subjects, and may display more resistance to man-
dibular advancement. With a larger sample, the effects
of differences in scale (or size) between subjects could
also be investigated (allometry).

Influence of micro-arousal

We observed a symmetrical increase in recorded force dur-
ing cortical arousals. A physiological rhythmic contraction
of the elevator muscles has been described during sleep
[51], and is exacerbated in sleep bruxism in association with
micro-arousal [52]. These strains are presumably superim-
posed on the strains generated by the MAD and explain the
occurrence of pain and increased tooth movements in some
patients. Amoric [37] used an electro-dynamometer on
Herbst appliances, and described a large difference in the
recorded forces between when the mandible was kept loose
(200 gF), and when the patient actively kept his teeth in
contact (600 gF). It has also been shown that maximal bite
force is significantly higher in subjects with bruxism than
controls [53]. Future studies should screen for bruxism and
study it consequences in detail, as it is a potentially impor-
tant and relevant variable.

Asymmetry

A difference was found between forces recorded on the right
and left sides. This may reveal asymmetry in the elasticity of
structures stretched by the MAD (viscoelasticity) or asym-
metry of muscle contraction during sleep.

Asymmetrical tooth movements after long-term wear of a
MAD have been reported by Almeida et al. in 2006 [32].
They described a possible asymmetrical "vector" of forces,
directed mesially and to the right on the mandibular arch.
This putative asymmetry of forces had been attributed to the
existence of a preferential side during function (e.g., swal-
lowing, speech, or bruxism), or to a kinetic asymmetry. The
authors were careful to check the symmetry of movement in
the mandibular condyle when the MAD was worn. In our
sample, we did not detect significant functional or occlusal
asymmetry.

Other studies describe asymmetry in the interdental
forces [54] or occlusal forces [55], with a predominance of
functional forces on the right side. These findings are in
agreement with the suggestion by Almeida et al. [32], of
right-side dominance, that could be associated with hemi-
spheric lateralization.

Conclusion

The settings of MADs have implications for the efficacy of
OSAS treatment, and also for the severity of side effects. We
report a regular dose-dependent increase of force values
with increasing mandibular advancement, reaching 1.18 N
per millimeter of advancement (i.e., 120, 6 gF/mm). The
EMA to treat OSAS was 11.4 (±2.4) mm in this sample,
corresponding to forces of 13.6 N (i.e., 1,387.36 gF).
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Prospective studies are required to evaluate the link be-
tween these forces, MAD design, and both patient compli-
ance and resistance to dental movement (baseline occlusal
features and periodontal anchorage, dental implants). Given
the magnitude of the forces involved, a customized follow-
up protocol may be appropriate for patients needing high
EMA values.
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