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ABSTRACT: A crystal structure prediction algorithm for use
in periodic boundary conditions with empirical rigid models is
presented, which employs (i) unrestricted cutoff radii for the
real-space interactions, thus allowing the treatment of even
very small unit cells, and (ii) a global-optimization algorithm
based on the basin-hopping method of Wales et al. (D. J.
Wales and J. P. K. Doye, J. Phys. Chem. A 1997, 101, 5111).
The algorithm is then applied to the TIP4P model of water
(W. L. Jorgensen et al., J. Chem. Phys. 1983, 79, 926.) in order
to find the lowest enthalpy water−ice crystalline structures in
the pressure region 0−8000 bar, in unit cells holding in the
range of 1−16 molecules, and a database of the 10 lowest enthalpy structures found at pressures 0, 4000, and 8000 bar is
presented. The algorithm finds many of the ice polymorphs and, in particular, finds that the lowest energy structure at zero
pressure is almost exactly tied between an ice Ic (cubic ice) and ice Ih (hexagonal ice) structure, having near-identical energies.

■ INTRODUCTION

Algorithmic crystal structure prediction is one of the most
important problems in physical chemistry. In a nutshell, given a
potential energy surface, we would like to be able to predict
which crystalline structures are favored under different
thermodynamic conditions.
Crystal structure prediction can be thought of as an

optimization problem, where the free-energy is the quantity to
be optimized, the most probable crystalline structure being that
with the minimum free-energy. A commonly used approx-
imation is to neglect temperature and attempt to optimize the
enthalpy of the system, essentially searching for the most stable
structures at 0 K. This essentially turns the crystal structure
prediction problem into that of global optimization, for which,
over the past few decades, many good algorithms have been
developed.
A real crystal comprises too many molecules to realistically

simulate. Fortunately, however, we can employ the well-
established simulation method of periodic boundary conditions,
so that we only need search for the enthalpy minimum with
respect to the coordinates in one simulation cell, which it is
assumed are then replicated to describe an infinite crystal. Thus,
the general approach is to use optimization algorithms which
search the configurational space of nuclear coordinates inside
one simulation cell, trying to locate structures with the lowest
enthalpy.
Recent insightful discussion/review papers by Price1−3

provide a good overview of the problems and encouraging
state-of-the-art progress in crystal structure prediction. In
particular, these papers focus on polymorphism and kinetics,
i.e., when a variety of different crystal structures are

thermodynamically possible, which can often to be a common
occurrence for organic molecules. This presents challenges for
crystal structure prediction, because it is not as simple as just
finding one lowest-energy structure; rather a search is required
for all thermodynamically feasible structures. Furthermore, not
all the low-lying energy minima will correspond to distinct
polymorphs, as they may be unstable with respect to the free-
energy surface. The other problem, discussed in detail by
Price,1−3 is that polymorphism requires a potential-energy
surface which is accurate enough not only to correctly rank the
global minimum but to do a reasonable job of describing the
relative energies between minima.
Thus, there is, naturally, a great deal more to crystal structure

prediction than just the search algorithm. There also needs to be
some way of generating suitable potential-energy surfaces to
describe the interaction of the molecules, which are accurate
enough to rank the various polymorphs. As Price explains,1−3

there are three common approaches in the literature:

(i) The use of empirical (generally pairwise additive)
literature force fields. These have the advantage that the
energy/force evaluations are usually very quick compared
to electronic-structure methods, but they are also likely to
be considerably less accurate and less transferable.

(ii) The use of density functional theory (DFT)-based
methods. These have the advantage that they are
potentially considerably more accurate than empirical
models, but at the price of being spectacularly slower to
run. It is also worth mentioning that there are many levels
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of electronic structure theory available, of different
accuracies and speeds (and not merely DFT), so as
usual, there is generally a trade-off between empirical-
potential and ab initio methods.

(iii) The use of multipole-based models, such as those used by
Price and co-workers,4 which are based on the work of
Stone.5 These are expected to be considerably more
accurate than relatively simple pairwise additive force
fields but are much more difficult to implement.

This present study is focused on the “search-algorithm” part of
the crystal structure prediction problem, and as such, we are here
content to simply make use of literature empirical force fields in
order to test the search algorithm. However, in future work, we
plan to address the issue of parametrizing force fields from
electronic-structure data and their use in crystal structure
prediction.
Here, it is also worth mentioning the “Blind Tests” organized

by the Cambridge Crystallographic Data Centre, in which
different groups from academia and industry compete to see if
their crystal structure prediction approaches can predict the
experimentally observed crystallographic structure for a given
molecule, where the structure is unknown at the time of
prediction. A report on the sixth, and most recent, Blind Test6

describes the considerable advances in recent years, particularly
in the use of more advanced molecular-modeling approaches,
going beyond the use of simple point charges, and this work also
discusses advancements in going beyond the 0 K approximation.
Particularly striking and encouraging is the impressive perform-
ance recently of industry participants, such as Avant-Garde
Materials Simulation, which emphasizes the key industrial
relevance of crystal structure prediction across a range of
commercial activity, particularly in the pharmaceuticals sector.
Elking et al.7 have performed local optimizations of molecules

interacting under empirical potentials under different space-
group symmetries, where the system is constrained to the
desired symmetry throughout the optimization. The initial
coordinates are randomized, but the symmetry constraints are
enough to locate interesting minima, and they have managed to
reproduce the experimental structures for a variety of molecular
crystals. These optimizations are performed with their own
empirical models, which include site−site multipolar inter-
actions (but not polarizability).
Local optimization methods can sometimes produce good

results, but because the number of minima increases
dramatically with the system size, for even moderately sized
systems, there may be too many minima to have a realistic
chance of locating the lowest ones, which are the ones we are
really interested in. Thus, there has been much study of more
“global” optimization approaches, which attempt to use
strategies to not just locate local minima but to more
intelligently search the space for the lowest lying minima, and
in the best case, to locate the global minimum.
Wang et al.8 have used a particle swarm global optimization

algorithm to find crystal structures under an ab initio potential
energy surface. The particle swarm algorithm, invented by
Kennedy and Eberhart,9 works on a population of systems,
which together form an interacting “swarm” in configurational
space, where there is communication between the swarm
members, such that the trajectories eventually converge on the
best solution.
Oganov and co-workers have employed an evolutionary

algorithm to search for low-lying and global minimum

structures.10−13 Their method works by representing the state
of the system in terms of real numbers representing fractional
coordinates of the atomic nuclei and six real numbers for the cell
vectors, all of which can then be “mutated” (altered), before
rerelaxing to a possibly new local minimum. This is done for a
population of trial solutions, over successive generations,
providing a diversity of solution candidates. Crucially, the
genetic algorithm also includes a “heredity” stage, in which
information from (two or more) parent structures combine to
produce offspring structures for the next generation. In this
stage, slices are taken from the unit cells of the parent structures
and then combined in the child structures to produce offspring
combining features of the parents. And along with heredity,
there is also “death” in which only the best performing structures
are allowed to survive to the next generation.
Oganov and co-workers have interfaced their algorithm with

DFT code to achieve impressive results, notably finding novel
structures for crystals of high-pressure phases of boron,14

sodium,15 superconducting oxygen,16 carbon,17 hydrogen-rich
hydrides,18,19 and polymorphs of calcium carbonate.20

Using their evolutionary algorithm, Oganov and Glass10 have
also managed to locate both the ice Ih and the ice Ic crystal
structures for water, using a 12 molecule unit cell on a DFT
potential energy surface.
In this work, we shall describe a crystal structure prediction

algorithm which uses a (modified) basin-hopping algorithm.
The basin-hopping algorithm of Wales and Doye21 is a global

optimization approach which works by performing a walk on a
transformed potential-energy surface, where the transformed, or
“plateaued”, potential energy surface is defined by the energy of
the local minimum at each point, which is obtained by
performing a numerical optimization starting from the
coordinates on that step. The transformed surface eliminates
the downhill barriers and reduces the uphill barriers between
minima, and it has been shown21−24 that walks on this surface
have a much greater chance of sampling low-lying minima,
including the global minimum.
Middleton and Wales et al.25−27 have used this algorithm to

investigate glassy solids, in particular, the crystal structures of
binary Lennard-Jones particles, and silicon, with the latter using
the three-body empirical model of Stillinger and Weber.28 The
main aim of their studies was not crystal structure prediction as
such, but to map the potential energy landscape by examining
the connectivity of minima and the barriers between them.
However, their work did necessitate a search for low-lying
minima, which were obtained via the basin-hopping approach.
These authors’ work on constant pressure calculations has

particular relevance to this current study. In ref 27, Middleton
and Wales investigate glassy solids at constant pressure, which
necessitates adding a PV term to the energy term, to give the
enthalpy, and finding the derivatives with respect to cell vectors,
and a similar approach will be used in this work.
Also worth noting is that Wales et al. have also recently

proposed29 a modification to their basin-hopping approach for
crystal structure prediction at nonzero temperatures, in which
they incorporate vibrational contributions to the free energy
obtained through a harmonic analysis. Wales et al. have also
explored combining the basin-hopping algorithm with a parallel-
tempering-type approach, in order to greatly speed up
calculations.30

Goedecker’s “minima-hopping” algorithm31 is an ingenious
molecular-dynamics based variant on the basin-hopping type
method, in which newminima are found through following short

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00073
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/acs.jctc.9b00073


molecular dynamics “escape trajectories” in an attempt to cross
the barriers separating the minima. When a new candidate
structure has been found, it is then relaxed using standard local
minimum optimization algorithms, and the minimum is
accepted depending on its relative energy with respect to the
last accepted minimum. This algorithm dynamically adjusts the
temperature of the escape trajectories, such that it favors low-
energy barriers, which, according to the Bell-Evans Polyani
principle, is associated with a greater likelihood of connecting
with lower energy minima on the other side of the barrier.
Amsler and Goedecker32 used the minima hopping algorithm

for crystal structure prediction of silicon clathrates and a binary
Lennard-Jones solid, both using empirical models, and were able
to locate (record low-energy) putative global minimum
structures of the binary Lennard-Jones solid, and a clathrate
silicon structure, an impressive feat, given that this structure
requires a 46 particle unit cell.
Advantages of the basin-hopping type approaches include that

the algorithms involve few parameters, are reasonably easy to
implement, and provide competitive performance with respect
to other approaches for locating low-lying and global minima.
However, there are also drawbacks to this type of approach. A
particular problem is that if multiple walks are performed, then
there can be no communication between members of the search
population, so that if one member finds a route to low-lying
minima, it has no way of communicating that information to the
others. This can be contrasted with evolutionary type
approaches, which allow successful solutions to spread
throughout the population. Thus, it might seem that evolu-
tionary approaches have the advantage, but a comparison for
cluster global optimization showed that,33 in fact, the minima-
hopping algorithm outperforms an evolutionary approach, at
least for the systems studied.
The TIP4P model is a common choice for benchmarking

global optimization algorithms. It was chosen as a benchmark by
Wales and Hodges in their study22 of water-cluster global
minima, n = 2..21, using Wales’ basin-hopping algorithm. And
the TIP4P phase diagram for various ices has, in a tour de force
calculation, been mapped out by Abascal et al.,34 through
integration of the Clapeyron equation over coexisting ice phases.
It is in particular worth mentioning the work of Buch et al.35

who used a molecular dynamics based method based on the
inherent structures analysis of Stillinger and Weber36 for
searching for the crystal structures of TIP4P ice. The idea is to
run molecular dynamics trajectories to sample the potential
energy surface, from which local conjugate gradient optimiza-
tions are spawned (at regular time intervals), with the goal of
finding low energy minima.
Buch et al. begin their study by fixing the simulation cell

dimensions to the experimental values appropriate for different
ice structures and then ran molecular dynamics trajectories at
fixed volume, from which local optimizations were spawned
(relaxing the coordinates and the cell vectors). Using this
approach they were able to locate several different polymorphs
of ice, although it should be emphasized that the approach did
require some information from experiment, in the form of
experimentally derived unit-cell sizes. They then tried extending
the above approach by performing a more unconstrained search
in which the density is fixed to a reasonable value for ice, and the
cell vector ratios are stepped over, in the hope that they could
find reasonable structures without the aid of experimentally
derived lattice vectors (although, experimentally derived
densities were still used, meaning that their method was not

completely free of input from experiment). With this second
approach and using unit cells in the range of 8−16 molecules,
they were able to identify several known polymorphs of ice,
without the need for experimentally derived lattice vectors.
We admit from the outset that this study will not do

dramatically better than Buch et al. in locating the known ice
polymorphs using the TIP4P model, Buch et al. having already
found most of them. However, we can make improvements in
some respects. First, we will be using a more advanced algorithm
for locating low-lying minima, and our access to better
computational resources than was presumably available to
Buch et al. will allow us to perform a more thorough search.
Second, we will aim to perform an entirely unconstrained search,
in which no experimental data is used as input. In particular, our
algorithm does not require the need for experimentally realistic
densities or cell vectors, which are allowed to vary during the
course of the search as the algorithm sees fit. And, last, we will be
using a full Ewald sum for the electrostatic interactions, whereas
Buch’s study appears to employ a purely real-space sum, out to a
large cutoff, which is likely to be less accurate than the complete
Ewald sum approach.
An important part of Buch’s study was the use of very small

unit cells, containing only a fewmolecules, in the range n = 8..24,
for which their crystal structure prediction algorithm had a
realistic chance of finding low lying minima, if not the global
minimum for that size range. Fortunately, the minimal unit cells
of ice polymorphs, as well as many other crystal structures, are in
this size range, and so the use of small unit cells seems ideal for
many crystal structure prediction purposes.
There is, however, a problem with using very small unit cells

with conventional simulation methods. For technical reasons we
will explain in this work, the cutoff sphere is very often restricted
to be small enough to fit inside the simulation cell, making it
difficult to converge the nonelectrostatic part of the interactions.
As Buch et al. noted, these difficulties can be essentially solved

through modifying the standard algorithm to allow the use of
unrestricted cutoff spheres, allowing the interaction energy to be
converged, no matter how small the unit cell.
In this work, we will describe one approach to implementing

unrestricted cutoff spheres, through use of a supercell method.
The central idea is to replicate the unit cell to create a larger
supercell, capacious enough to hold a cutoff sphere capable of
converging the energy sum.
The supercell method, in conjunction with our modified

basin-hopping algorithm, will then be used to perform a
systematic search for crystalline ice structures using the TIP4P
(4-site transferable interaction potential) model of Jorgensen et
al.,37 a popular empirical model for water, which has often been
used as a benchmark system for optimization algorithms. Our
aim will be to perform a systematic search of low energy
structures over the pressure range 0−8000 bar, and over cell
sizes of 1−16 molecules, where we do not just look for known
experimental structures but allow the algorithms to rank all the
best structures over the search range, to see which structures this
water model predicts.

■ ENERGY SUM FOR TRICLINIC CELLS
Suppose that we are simulating a system in periodic boundary
conditions with N particles per unit cell interacting under a
(nonelectrostatic) pair potential, where the energy of a pair of
particles with separation r is given by u(r), with u(r)→ 0 as r→
∞. The true energy of the periodic system includes interactions
between every particle image with every other particle image
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between all replicas, but the configurational energy per
simulation cell is commonly taken to be approximated by

∑ ∑= ̃ +
>

̃ <

U u r U( )
i

N

j i

r r

N

ji
LR

ji c (1)

where r ̃j̃i = |r ̃j̃i|, with r ̃j̃i being the so-calledminimum image of rji =
rj − ri (see Appendix I), and the sum is assumed to only count
pair energy contributions for which rj̃i < rc, where rc is the cutoff
radius. ULR(rc), to be discussed presently, is a long-range
correction, which approximates interactions outside of the cutoff
sphere.
Also note that, in the case of a nonzero pressure, the above is

to be supplemented by a PV term, to give the enthalpy per
simulation cell: H = U + PV, where P is the externally applied
pressure and V is the cell volume.
The minimum image (see Appendix I) and the cutoff radius

work in tandem to restrict the energy sum to include only those
translationally distinct pair interactions in the periodic system
which lie inside the cutoff sphere. In standard approaches, the
size of the cutoff radius is restricted such that the associated
cutoff sphere fits inside a unit cell. This is required to be
consistent with the minimum image process, which always
returns vectors inside one unit cell.
Themaximum value of the cutoff radius then is determined by

the largest sphere that can fit inside a triclinic cell, and it is not
too difficult to show that, for a unit cell of lattice vectors a, b, c,
the radius of such a sphere must satisfy

≤
* * *

r
a b c

1
2

min
1

,
1

,
1

c
i
k
jjj

y
{
zzz (2)

where a* = |a*| are magnitudes of the reciprocal cell vectors, a*
= b × c/V, with V = a(b × c) being the cell volume and similarly
for b* and c*. (A result which has been derived in a slightly
different form by Smith.38)
The aforementioned long-range correction approximates the

contribution to the energy from interactions outside the cutoff
sphere. Approximating the density of particles at r > rc by a
uniform distribution, this long-range correction takes the form

∫π=
∞

U
N
V

u r r r2 ( ) dLR

r

2
2

c (3)

For sufficiently fast converging interactions, the energy sum,
including the long-range correction, is often quite a good
approximation to the actual energy per unit cell, i.e., when the
entire periodic system is taken into account, and, in the limit, it
ought to converge to the ideal result. However, as the energy
sum stands, the cutoff radius is always limited by the size of the
simulation cell. Thus, obtaining converged results requires that
the simulation cell be large enough to contain a sufficiently large
cutoff sphere.

■ THINKING OUTSIDE THE BOX: THE SUPERCELL
METHOD

As mentioned above, the maximum radius of the cutoff sphere is
limited to be no larger than what can fit inside one simulation
cell. This can become a serious problem for small simulation
cells, as the cutoff radius may be too small to properly converge
the energy. It could also be a problem if the simulation cell is
allowed to change size during the course of a simulation, as the

simulation cell could shrink such that it is no longer large enough
to support the cutoff sphere.
One solution is to use an Ewald summation technique, in

which the dispersion interactions are partly summed in
reciprocal space,39 an approach that has been implemented by
Elking et al.7 in their crystal structure prediction work. However,
in this work, we will try a supercell approach, in which the energy
sum is extended to range over a supercell consisting of replicas of
the original simulation cell, the idea being that this supercell can
always be made large enough to support any cutoff radius.
The general supercell approach is not original to us, as both

GMIN, the basin-hopping code developed by Wales et al., and
the CHARMM molecular simulation software package, for
instance, appear to implement a similar scheme,40 and Buch et
al.41 also briefly make mention of a presumably similar approach
in passing, but neither is this method as well-known or as well-
documented as it ought to be, and so, in this section, we think it
worth outlining our implementation of the supercell approach in
some detail.
Let the (triclinic) supercell be such that it has cell vectorsMaa,

Mbb, Mcc, where a, b, c are the cell vectors of the original
simulation cell and Ma, Mb, Mc are integers and where the
supercell comprises M = MaMbMc replicas, each of which are
identical to the original simulation cell.
The coordinates of the ith particle in themth replica are given

by ri
m = ri + Rm, where Rm = maa + mbb + mcc is the lattice

generated by integer multiples of the unit cell vectors.
Also, if rji= rj− ri is the pair vector between two particles in the

simulation cell, we will write rji
n,m = rj

n− ri
m = rji +Rn−m for the pair

vector between particles across replicas.
The standard minimum image process (see Appendix I) can

be applied to the supercell. Defining r ̅ to be the supercell
minimum image of r, the supercell minimum image of rji

n,m is
given by

̅ = − −r r C rC nint( )n m n m n m
ji ji

super super
ji

, , 1 ,
(4)

where nint(x) returns the nearest integer to x (or nearest even
integer if x is exactly halfway between two consecutive integers),
and

=C

M a M b M c

M b M c

M c

0

0 0

super

a x b x c x

b y c y

c z

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (5)

is the matrix of supercell cell vectors (here presented in upper-
triangular form; c.f. the treatment for a standard unit cell in
Appendix I).
The cutoff radius now has to fit inside the supercell and so

must satisfy (c.f. eq 2)

≤
* * *

r
M
a

M
b

M
c

1
2

min , ,c
a b ci

k
jjj

y
{
zzz

(6)

Suppose that the simulation cell vectors are allowed to change
during the course of a simulation. The cutoff radius, as usual, is
held fixed during the course of the simulation, but the size of the
supercell is not fixed, and theMa,Mb,Mc integers controlling its
dimensions can be adjusted on the fly such that the supercell is
always just large enough to hold its cutoff sphere. These values
can be calculated by inverting eq 6, to obtain

= * +M r aint(2 ) 1a c (7)
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and similarly forMb andMc, where the int(x) function (for x > 0)
rounds down to the nearest integer.
The energy per replica, i.e., per simulation cell, is given by

summing over every pair interaction in the supercell smaller than
the cutoff radius and dividing by the number of replicas, M.
Excepting the long-range correction, this energy is given by

∑ ∑ ∑ ∑= ̅
′

′U
M

u r
1
2

1
( )m m

i

N

j

N

ji
m

M

m

M
,

(8)

where the sums over m and m′ are over all M replicas in the
supercell and where it is assumed that the sum excludes the
nonphysical rĩi

m,m = 0 terms describing the interaction of each
particle with itself. As usual, only interactions inside the cutoff
radius are counted.
In principle, the above approach should work, but it is very

wasteful, as it involves counting translationally equivalent pair
interactions multiple times. In fact, as we shall presently show,
the above sum sums over every distinct ij interaction M times,
once for each replica in the supercell.
To remove the overcounting, first consider the following

identity

∑ ∑̅ = ̅u r u r( ) ( )
m

M
m k

m

M
m l

ji ji
, ,

(9)

which holds because the LHS sums the interaction of ri
k with

every replica of rj in the supercell and the RHS sums the
interaction of ri

l with every replica of rj in the supercell. But, in
periodic boundary conditions, ri

k and ri
l describe the same

particle, just in different replicas, so the two sums must be equal.
Using this result allows us to write

∑ ∑ ∑ ∑ ∑̅ = ̅ = ̅
′

′

′

′u r u r M u r( ) ( ) ( )
m

M

m

M
m m

m

M

m

M
m

m

M
m

ji ji ji
0 0, , ,

(10)

which, when applied to eq 8, gives the energy sum as a single sum
over replicas

∑ ∑ ∑= ̅U u r
1
2

( )
m

M
m

i

N

j

N

ji
0,

(11)

We still have an overcounting problem because both ij and ji are
summed over. We can try to avoid this by restricting the sum to j
> i, which works fine for the i ≠ j interactions, but the i = j
interactions cannot be summed this way. Considering these
interactions separately and using the identity rii

m,0 = Rm, we have

∑ ∑ ∑ ∑= ̅ + ̅
> ≠

U u r
N

u R( )
2

( )
m

M
m

m

M

m
i

N

j i

N

ji
0

0

,

(12)

This, then is our final form for the supercell version of the energy
sum, a sum in which the cutoff radius is no longer restricted to fit
inside the simulation cell but which can now be made arbitrarily
large. And as usual, it is possible to supplement the above with
the long-range correction of eq 3, to take into account
interactions outside the cutoff sphere.
The above is very similar to the standard energy sum of eq 1,

except that (i) it involves a sum over replicas, (ii) the minimum
images are now applied with respect to the supercell cell vectors,
and (iii) the interactions of particles with their replicas now also
have to be summed over. Thus, we expect that it should not be

too difficult to modify standard molecular simulation codes to
implement this method.
The force-gradients Fk = −∇k{U} for the above energy sum

can be analytically found in the usual manner, but note, the
second part of the sum involving interactions between particles
and their images makes no contribution to the forces, as it has no
dependence on the particle coordinates.
Finally, it is worth briefly comparing the above algorithm to

that used by the GMIN basin-hopping code of Wales et al.
GMIN also allows for a real-space sum over cells, in order that it
can accommodate cutoff spheres of arbitrary size. However,
GMIN’s implementation makes use of a minimum image with
respect to the unit cell (as opposed to the supercell, as done in
this work). GMIN’s summation method is essentially equivalent
to

∑ ∑ ∑ ∑= ̃ + +
> =− =− ≠

r RU u
N

u R( )
2

( )
m K

K

m
m K

K

m
i

N

j i

N

ji
0

where r ̃j̃i is the minimum image in fractional coordinates with
respect to the unit cell (see Appendix I), the sum over cells is
between −Ka ≤ ma ≤ Ka (and similarly for mb, mc), where Ka =
int(rca* + 0.5) (again, similarly forKb,Kc), and where, as usual, it
is assumed that only the interactions within the cutoff are
counted.
The above should give the same answer as our approach.

However, it is constrained to sum over a supercell of size M =
(2Ka + 1)(2Kb + 1)(2Kc + 1) unit cells, which is expected to
make it more inefficient than our approach, which allows for
supercells having any number of unit cells along each side. This
can make a large difference in cases where the cutoff radius is
only just bigger than the unit cell.
In terms of the Supporting Information, a Fortran code for

calculating the radial distribution function is available on a web
repository,42 which gives an illustrative example implementation
of the supercell method as described in this section.

■ BASIN-HOPPING
Now that we have a method for handling small unit cells, we can
proceed to searching for global minima of the periodic system.
In the basin-hopping method, a simulation proceeds on a

transformed potential energy surface, U′, which is given by

′ =X XU U( ) ( )min (13)

where X = X1, X2, ..., XN areN coordinates specifying the system,
and Umin(X) is the local minimum, starting from X, under the
potential energy surface U. That is, U′(X) is obtained by using a
local-optimization algorithm, which starts from initial coor-
dinates X, and then travels downhill until it finds a local
minimum. Also, note that in the case of an externally applied
pressure, a transformed enthalpy surface, H′(X) = Hmin(X), will
be used.
In this method, a Metropolis Monte Carlo algorithm is

commonly used to walk around the transformed potential
energy surface. This will result in the system visiting a succession
of different local minima, with the hope that, if the simulation is
run long enough, it may eventually find its way to the global
minimum.
Most local-optimization algorithms require both the energy

and the derivatives of the energy with respect to each
coordinate; i.e., they need to be supplied with a subroutine
which returns the N derivatives ∂U(X)/∂Xi for any value of X.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00073
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

E

http://dx.doi.org/10.1021/acs.jctc.9b00073


And to make the code efficient, these derivatives usually need to
be implemented analytically.
In our case, a convenient set of coordinates is given by (i) the

3Nmolmolecular center of mass displacements f ia
com, f ib

com, f ic
com, for i

= 1 ... Nmol, (ii) the 3Nmol Euler angles ϕi, θi, ψi specifying the
rotation of each molecule about its center of mass (see, e.g., the
treatment of Allen and Tildesley43), and (iii) the 6 independent
lattice parameters, ax, bx, by, cx, cy, cz. Thus, the code needs to be
furnished with analytic derivatives: ∂H/∂rix

com, ∂H/∂θi, and ∂H/
∂ax (and like components). (In the coding stage, these can and
should be checked against numerical derivatives.)
A problem we often encountered in using the Monte Carlo

algorithm on the transformed surface is that we quite often saw
situations where there would be a large number of consecutive
rejections, with the Monte Carlo walk effectively getting stuck in
regions where it is surrounded by multiple higher minima.
However, this problem can be largely solved by resetting to the
local minimum on every accept. This method, which has been
used with success by Wales et al.,44−46 has been found by White
and Mayne47 to be substantially more efficient; this is a claim
which has been confirmed by our own internal tests.
Basin-hopping approaches typically use quite large Monte

Carlo step sizes, and another problem we encountered was that
sometimes the trial step could move a molecule unphysically
close to another molecule, resulting in huge forces, which, in
turn, could cause problems for the local optimization algorithm,
making it hard to find the local minimum.
To solve this problem, we restricted the possible space of trial

moves that the Monte Carlo walk was allowed to take, such that
valid trial moves are to configurations where every intermo-
lecular particle pair is larger than a specified minimum distance.
(If a trial move does not satisfy this criterion, then a new trial
move is generated, until the algorithm finds a move which does.)
Explicitly, our implementation of the basin-hopping algorithm

takes the form

(i) Begin the algorithm at a local minimum (obtained
through local optimization) with coordinates X and
enthalpy H.

(ii) Generate a random displacement vector ΔX.
(iii) Attempt a trial move by displacing the coordinates to Xtrial

= X + ΔX. If the trial coordinates have two particles with
an intermolecular separation closer than rmin, then return
to (iii) and pick a new random displacement vector.

(iv) Using the local optimization algorithm, find the relaxed
enthalpy of the trial coordinates: Htrial = Hmin(Xtrial).

(v) Decide whether to accept or reject the move based on the
standard Metropolis Monte Carlo criterion: Accept if R <
min[1, exp(−β(Htrial − H))], where R is a uniform
random number between 0 and 1 and β is the inverse
temperature, β = 1/kBT, where kB is Boltzmann’s constant.

(vi) If the step is accepted, set X = Xmin(Xtrial) and H =
H(Xmin). Otherwise, return X to the value of the last
accepted local minimum before rejection.

(vii) Return to (ii).

TheΔXi random displacements are chosen from distributions
ρi. In our case, we have chosen to use Gaussian distributions
(although uniform distributions between ±S/2 are also
common). Explicitly, we used the following: the displacements
in each fractional coordinate are taken from a Gaussian
distribution ρf = exp(−Xf

2/2σf
2), with sigma values σf; the

displacements in the Euler angles are taken from a Gaussian
distribution with sigma values σe; and the displacements in each

of the six cell vector components are taken from a Gaussian
distribution with sigma values σc. The values of σf, σe, σc are
adjustable parameters, which affect the efficiency of the basin-
hopping. The inverse temperature, β, is also an adjustable
parameter, and should generally be chosen such that the system
has a reasonable probability of sometimes accepting a move to
higher energy/enthalpy, so that it can overcome barriers. But the
temperature should not be made so large that the walk spends all
its time exploring high energy configurations.

■ CASE STUDY: WATER−ICE
In this section, we will attempt to use our crystal structure
prediction algorithm to search for the lowest enthalpy structures
of the 4-site TIP4P empirical molecular model of water of
Jorgensen et al.37 in the range 4000−8000 bar.

Technical Details. The energy for this model is given by
summing over all interatomic pairs, where the energy for an ij
pair is given by

π
= + +

ϵ
u r

A
r

A
r

q q

r
( )

4ij
ij ij

i j

ij

12
12

6
6

0

i

k

jjjjjj
y

{

zzzzzz
(14)

TIP4P is a rigid water model, having a fixed geometry
determined by a HOH angle, θHOH, and OH bond distance,
rOH. It has a single Lennard-Jones interaction site on the oxygen
site of each water, charges qH on the hydrogen atoms, and a
charge of −2qH on a massless “M-site”, which is placed on the
molecular bisector, at a distance of rOM from the oxygen nucleus
toward the H nuclei. The model parameters are given in Table 1.

The electrostatic interactions were handled by implementing
an Ewald sum for triclinic periodic cells, where the real space
part of the sum together with the Lennard-Jones interactions
were summed using the supercell technique, which was found to
be good enough to converge the energy per simulation cell to
about 1/10th of a kJ/mol. The reciprocal space part of the sum is
unaffected by the supercell method and was implemented in the
standard manner.
The Ewald method was used, as opposed to particle-mesh

variants, owing to the Ewald approach being faster for up to
∼1000 point charges,42 which is very effective when using the
tiny periodic cells made possible by our innovative supercell
approach. Naturally, for larger systems, approaching 1000 point
charges in size, particle-mesh Ewald approaches would then be
recommended.
To prevent discontinuities at the cutoff, the Lennard-Jones

pair interactions were multiplied by a sigmoidal cubic smooth
step function, S(x), which smoothly interpolates from S(x) = 1,
x < 0.9rc, to S(x) = 0, x > rc. With this function implemented, it is

Table 1. Model Parameters of the TIP4P Model of Watera

qH (|e|) 0.52
qM (|e|) −1.04
A12 (kJ/mol Å12) 2 510 400.00
A6 (kJ/mol Å6) −2552.24
θHOH (deg) 104.52
rOH (Å) 0.9572
rOM (Å) 0.15

aNote the reported densities were calculated using the (slightly
idealized) atomic masses mH = mP, mO = 16.0mP, and mM = 0, where
mP is the proton mass: mP = 1.67262178 × 10−27 kg.
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appropriate to modify the expression for ULR, the long-range
energy, in eq 3 such that the integral is from 0.95 rc to ∞.
The real space part of the Ewald sum involves summing over

Gaussian charge distributions of the formG(k) = exp(−k2/4ζ2),
and the reciprocal space part of the sum involves summing over
its Fourier transform pair: G(k) = exp(−k2/4ζ2), where ϵ is a
freely chosen parameter, which determines the convergence of
the Ewald sum. To ensure good convergence, we want g(r) to be
very small at the real space cutoff, and wewill also choose a cutoff
in reciprocal space, kc, such that G(k) is similarly small at kc. To
this end, we choose ζ and kc such that

ϵ = =g r G k( ) ( )c c (15)

where δ is a very small number. (For this work, we have used δ =
10−7.)
Inverting the above gives

ζ = − ϵ rlog( ) / c (16)

and

ζ=k r2c c
2

(17)

The calculations were all performed using our own in-house
code, but the energies were checked against a standard
molecular dynamics package, to make sure that the results are
correct and reproducible.
Local optimizations were done using the FRPRMN

subroutine of Numerical Recipes,48 which is an implementation
of the Fletcher-Reeves conjugate-gradient algorithm.
The triclinic simulation cell vectors are not unique, and in

order to avoid long, thin unit cells, after each local optimization
is performed, the minimized cell vectors were checked to see if
an equivalent set with shorter cell vectors could be found (see
Appendix II).
The basin-hopping implementation used steps drawn from

Gaussian distributions with sigma values of σf = 0.08 for each
fractional center of mass coordinate, σe = 1 radians for each Euler
angle, and σc = 0.05 Å for each of the six independent cell vector
components. Each Monte Carlo step consisted of first choosing
a molecule at random and then performing a random translation
and rotation for that molecule, coupled with a random
displacement in all six cell vector components. A temperature
of 250 K was found to be near optimal for the Metropolis Monte
Carlo acceptance criterion.
Locating global minima is a hard problem, even with a good

algorithm, and so to stand the best chance of actually finding the
global minimum, for each case, we used multiple independent
basin-hopping simulations, each starting from different random
initial configurations, and using different random-number seeds
for the Monte Carlo displacements. In total, a population of 24
independent basin-hopping trajectories was used for each
structure, which were each run on separate cores. This acts to
effectively parallelize the problem and also to increase diversity
in the search, diversity being a key concern given that individual
walks can be highly correlated over long times, as they can get
trapped in funnels of low-lying minima.
Another advantage of using independent trajectories is that it

gives some assurance that the putative global minima are likely
correct, if the same lowest minimum structure is found from
multiple trajectories, begun from different initial conditions.
In this work, we will be not just interested in finding the global

minimum structures; we will also be concerned with finding a
range of the best (i.e., lowest enthalpy) structures, where the

best candidates hopefully include the true global minimum
structure. To do this, we will store not just the best structure
found but every minimum accepted during the course of each
quasi-Monte Carlo walk, making a list of candidate minima,
which can later be sorted and ranked.
As mentioned above, the initial structures were generated by

random placement of the molecules (random center of mass,
random orientations). In practice, we chose a cubic box, of size
large enough to accommodate the required number of
molecules without any molecules having to be unphysical
close, and then attempted to place each molecule at random,
rejecting and trying again if a site was chosen too close to one
already placed.
From the perspective of finding the best crystal structure, a

random placement method is likely suboptimal. For instance,
Wang et al.8 generate structures constrained to one of 230 space
groups. However, random structure placement does have the
advantage of (i) being easy to implement and (ii) being
completely unbiased.

Hydrogen-Bond Ring Analysis and Structure-Naming
Scheme. Many of the ice polymorphs are proton disordered.
That is, for a given hydrogen-bond configuration, the position of
the protons can adopt any number of possible configurations,
while still obeying the ice rules. With this in mind, we were
interested in finding the best (i.e., lowest enthalpy) structures
only up to a proton ordering, such that we have chosen to only
count the lowest enthalpy structure found for each different type
of hydrogen-bond network.
For each minimum-energy structure, we first enumerate the

list of H-bonds, where two water molecules are considered
hydrogen-bonded if their OO distance is less than 3.5 Å, and the
H−O---H angle is less than 30°.
We then want to know whether two structures share the same

hydrogen-bond network, which is a decidedly nontrivial task,
essentially equivalent to the graph-theory problem of deciding
the isomorphism of two graphs. Our (partial) solution was to
perform a ring analysis of each minimum energy structure, in
which we enumerate the number of water tetramer, pentamer,
hexamer, etc. rings present in the structure. Each ring is a
hydrogen-bonded circuit of water molecules, where only those
rings which cannot be further decomposed into smaller rings are
listed.
Rings are found through use of a recursive algorithm, which

begins on a graph node and then takes steps until it finds a path
which connects back to the original node. The rings are then
tested to see if they contain shorter rings by using another
recursive algorithm, which attempts to enumerate all the
connecting paths between every two nodes on the ring. If a
connecting path is found that is shorter than the separation of
the two nodes on the ring, then the ring is rejected.
The ring-decomposition problem is complicated by the use of

periodic boundary conditions, for which it is no longer true that
the topology of the hydrogen-bond network can be
unambiguously determined from its associated graph. This is
particularly a problem for small unit cells, for which rings can
“interfere” with themselves across replicas. Our solution to this
problem was to have the algorithm replicate small unit cells
using the supercell approach, where the size of the supercell is
constructed to be large enough to incorporate a cutoff sphere of
a user-defined radius, such that the supercell is large enough to
avoid the rings from interfering with themselves. The graph is
then constructed from the H-bond network of the supercell, and
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the resulting ring counts are divided by the number of unit cells
in the supercell, to give the number of rings per unit cell.
In terms of providing supporting code material, our

FORTRAN code for ring decomposition is available online on
a web repository.49

Note that our ring-decomposition approach is not a full
solution, because it is possible that two structures could have the
same number of molecules per unit cell and the same ring
decomposition and yet have different hydrogen-bonding
networks. Nevertheless, this is the method that we shall use in
this work.
This ring-decomposition approach allows us to develop a

naming scheme, in which the structures are labeled by their
number of rings and the number of molecules per unit cell. In
this scheme, the structure S12/58647888, for example, has 12 (the
number following the “S”) molecules per unit cell. The numbers
following the forward slash give the ring count, and this structure
has eight five-membered rings, four six-membered rings, eight
seven-membered rings, and eight eight-membered rings.
In this work, we will calculate ring decompositions up to 10-

membered rings.
Calculations and Results. We performed a systematic

search in the range 1−14 TIP4P water molecules in periodic
boundary conditions and at pressures 0 bar, 4000 bar, and 8000
bar.
Our search located hundreds of structures, but Tables 2, 3,

and 4 list the 10 best (lowest-enthalpy) structures found at each

pressure; a selection of the best structures is shown in Figure 1,
and the coordinates for all structures are supplied in Supporting
Information.
Turning to Table 2, we see that, at zero pressure, the best

structure is tied between an ice Ic and an ice Ih structure
(structures S4/68 and S8/616), which have (to this precision)
identical energies of −57.104 kJ/mol (per molecule).
Of interest, we did find ice lattices with even smaller unit cells.

Our crystal structure prediction code did locate an ice Ic lattice
using just a two-molecule simulation cell and an ice Ih lattice
with just a four-molecule simulation cell, but both of these were
higher in energy than could be found with the larger cells,
presumably due to the better proton ordering afforded by the
larger unit cells.
The third best structure we found is an ice III structure, S12/

587888, which is just 0.3 kJ/mol higher in energy than the best ice
Ih and Ice Ic structures.
The ordering of the structures completely changes at 4000

bar, and looking at Table 3, we see that, at this higher pressure,
the ice Ih and ice Ic structures are no longer even in the best 10,
and an ice III structure is now the one with the lowest enthalpy.
Outside of the top 10, we also located an ice VI structure, S10/
410818.
Finally, at 8000 bar, the ice III structure is still in first place,

but our crystal structure prediction algorithm also locates, in
third place, an ice XII structure, S6/78812, just behind S12/
42688221030, which does not appear to be one of the known
polymorphs. Outside of the top 10, we also located an ice VII
structure, S2/64, which is a high pressure phase consisting of two
interpenetrating ice Ic lattices.
In the spirit of providing further supporting material to the

community, the xyz coordinates of all structures listed in Tables
2, 3, and 4 have been made available at an online depository.50

Analysis. Two zero-pressure crystalline structures were
found possessing the lowest energy per molecule: an ice Ic
structure, with a smallest unit cell of fourmolecules, and an ice Ih
structure, with a smallest unit cell of eight molecules, with both
structures having near identical energies (to five significant
figures).
That the energies of ice Ic and ice Ih are very close is not too

much of a surprise, given that they are both ice structures with a
practically identical tetrahedrally coordinated first-neighbor
shell around each molecule. But it is surprising that the best
structures we found appear to have practically identical energies.
However, the structures do differ (however slightly) in their

Table 2. Ten Lowest Enthalpy per Molecule Structures at 0
bar, Together with Their Enthalpies and Densities

structure enthalpy (kJ/mol) density (g/cm3)

S4/68 (ice Ic) −57.104 0.9851
S8/616 (ice Ih) −57.104 0.9835
S12/587888 (ice III) −56.793 1.2508
S12/41620810 −56.647 0.9660
S14/526227286 −56.593 0.9840
S14/62884 −56.581 1.0046
S12/58627486 −56.580 1.2366
S12/58647888 −56.578 0.9535
S12/4254647886 −56.577 1.2362
S12/5261678 −56.557 0.9924

Table 3. Ten Lowest Enthalpy per Molecule Structures at
4000 bara

structure enthalpy (kJ/mol) density (g/cm3)

S12/587888 (ice III) −51.086 1.2895
S12/4254647886 −50.818 1.2800
S12/58627486 −50.802 1.2725
S12/42688221030 −50.672 1.3586
S12/6148181030 (ice II) −50.609 1.2969
S12/5666748894 −50.548 1.3300
S6/78812 −50.394 1.4020
S14/44566486941024 −50.380 1.3727
S14/57617981096101 −50.362 1.3402
S10/546274816 −50.342 1.3758
... ... ...
S10/410818 (ice VI) −49.989 1.4529

aAlso presented is an ice VI structure, S10/410818.

Table 4. Ten Lowest Enthalpy per Molecule Structures at
8000 bara

structure enthalpy (kJ/mol) density (g/cm3)

S12/587888 (ice III) −45.533 1.3220
S12/42688221030 −45.380 1.3817
S6/78812 (ice XII) −45.261 1.4234
S14/61071682098 −45.256 1.4434
S12/4254647886 −45.227 1.3132
S12/5666748894 −45.172 1.3671
S12/58627486 −45.169 1.3018
S14/44566486941024 −45.143 1.3970
S10/546274816 −45.114 1.3983
S8/427482094 −45.112 1.4383
... ... ...
S2/64 (ice VII) −39.691 1.6157

aAlso presented is an ice VII structure, S2/64.
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densities, so we think the agreement in their energies is the result
of a numerical coincidence and not for any deeper physical
reason. Indeed, we find that slightly varying themodel charges or
applying an external pressure is enough to break the agreement.
Of the known polymorphs, we did miss a couple. Our

algorithm was unable to find any ice IV structures, which have a
16 molecule unit cell, and we did not get ice V, which requires a
28-molecule unit cell and is thus out of our search range. We
were also unable to find the very high-pressure ice X structure,
which has shared protons, and so cannot be described, ipso
facto, by the TIP4P rigid water model.
As previously mentioned, Abascal et al.34 have calculated the

phase diagram for TIP4P, and in their diagram it was shown that
TIP4P undergoes a transformation to ice II at ∼2000 bar, at
temperatures below ∼230 K, whereas, at this pressure ice III is
predicted in the temperature region 230−250 K. Thus, it was
surprising to us that our crystal structure prediction algorithm
predicts that our best ice II structure is higher in enthalpy than
our best ice III structure at all the pressures considered. This
may be simply because our algorithm failed to find a better ice II
structure which is present on the surface but which was not
visited during any of the walks. Or it may be because, at nonzero
temperatures, entropic effects will change the ordering. Still, we
would like to understand this better and think it worth
investigating further.

■ CONCLUSIONS

One of the key messages of this work is that, contrary to much
received wisdom, the cutoff sphere need not be restricted to fit
inside the simulation cell and it is quite possible to write a
molecular simulation program, or modify an existing one, such
that an unrestricted cutoff radius of arbitrary length can be used.
Furthermore, in this work, we described a remarkably simple

supercell summation method for unrestricted cutoff spheres that
can be implemented in just about any code for molecular
simulation with empirical models in periodic boundary
conditions.
The supercell approach is particularly useful for crystal

structure prediction, which often involves very small simulation
cells. Indeed, it would have been very hard to have found many
of the structures in this study using the conventional restrictions
on the cutoff sphere size.
Given the inherent algorithmic complexity of the problem,

with the number of possible minima increasing exponentially
with system size, all global minimum optimization routines will
eventually struggle for large enough systems, and indeed, we
found that, past 10 or so watermolecules, it becamemuch harder
to locate global minima with any certainty using a basin-hopping
approach. Nevertheless, many important crystal unit cells are
composed of just a few molecules, for which basin-hopping type
approaches should be very useful.
This work concluded with a case study of the crystal structure

prediction for the TIP4P water model, in which we found that, at
0 bar, the lowest energy structure, i.e., the putative global

Figure 1. Crystal structures and unit cells for a selection of structures in Tables 2−4.
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minimum for TIP4P water, is a tie between an ice Ic structure
with a four-molecule unit cell, having an energy of −57.104 kJ/
mol per molecule, and a density of 0.9851 g/cm3, and an ice Ih
structure with an eight molecule unit cell, also having an energy
of −57.104 kJ/mol per molecule, having a density of 0.9834 g/
cm3. That the TIP4P model can crystallize as ice Ih and ice Ic
with almost indistinguishable energies is already known in the
literature,51 but our approach adds extra confirmation that these
are indeed likely to be the true global minimum structures at 0
bar.
Searching over pressures 0, 4000, and 8000 bar, and in the

range 1−16 molecules per unit cell, our algorithm successfully
located seven polymorphs of ice: ice Ih, ice Ic, ice II, ice III, ice
VI, ice VII, and ice XII. Given that TIP4P is such a benchmark
system, it is perhaps not surprising that all of these
experimentally observed polymorphs have been found pre-
viously for this model.35 However, our present approach differs
from previous searches in that (i) it uses a full Ewald sum, (ii)
our search results return the best proton ordering for each
structure, and (iii) we have performed a more systematic search
in which we do not just look for the known ice polymorphs but
build up a database of all the structures encountered, which are
then ranked by their enthalpies. Of course, we cannot be
absolutely sure that there are structures which were missed by
our crystal structure prediction algorithm, but we did run the
searches long enough such that most of the putative global
minima for each unit-cell size were converged upon by more
than one walk, meaning that we performed a fairly
comprehensive survey.
It is a bit disturbing that several of the ice polymorphs found

by our algorithm were not ranked particularly highly under the
TIP4P water model in the pressure range considered, with other
(experimentally unknown) structures having lower enthalpies.
Thus, although the crystal structure prediction algorithm did
find them, it does not predict that these particular crystal
structures are favored. It may be that this is due to the inaccuracy
of the model, TIP4P being quite a simple nonpolarizable water
model, but our neglect of temperature effects is likely also a
problem. Still, we have to start somewhere, and even locating the
lowest enthalpy crystal structures at 0 K on an empirical
potential energy surface is a formidable task.
In conclusion, we have presented an algorithm that shows real

promise for the general crystal structure prediction problem
using empirical models. Our algorithm gave very convincing
results for an empirical water model, successfully finding several
ice polymorphs, and we hope to apply it to other systems in the
future. Also, as mentioned previously in the Introduction, in
future work, we plan to address the issue of parametrizing force
fields from electronic-structure data and leveraging their use in
crystal structure prediction.

■ APPENDIX I: FRACTIONAL COORDINATES AND
THE MINIMUM IMAGE

Consider a standard molecular dynamics or Monte Carlo
simulation in periodic boundary conditions with a triclinic
simulation cell of cell vectors a, b, and c. The simulation cell is a
unit cell of the periodic system and is replicated at positions

= + +R a b cm m mm a b c (A1)

where m = (ma, mb, mc) is an integer triplet labelling the mth
replica.

If the Cartesian coordinate of the ith particle is given by ri,
then the coordinates of the same particle in the mth replica is
given by

= +r r Rm
mi i (A2)

It is convenient to define fractional coordinates, f = ( fa, f b, fc),
which label positions as fractional displacements along the unit
cell vectors. The conversion between Cartesian and fractional
coordinates is given by r = Cf and f = C−1r, where

=

a b c

b c

c

C 0

0 0

x x x

y y

z

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (A3)

is a matrix of cell vectors in upper triangular form.
The zero elements in the above are the result of choosing a

form of the cell vector matrix with the rotational degrees of the
cell removed. This works because the x axis can always be chosen
to be parallel to the a cell vector, and the y axis is such that the b
cell vector falls in the x−y plane.
Furthermore, it can be shown that ifC is upper triangular, then

so is C−1, its inverse, which is given by
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where a*= b× c/V is a reciprocal lattice vector (and similarly for
b* and c*), with V being the cell volume (which, when the
upper-triangular form is used, is simply given by V = axbycz).
Now, let the triplet fĩ = ( f ̃ĩa, f ̃ĩb, f ̃ĩc) be the minimum image of f i,

which is defined according to

̃ = −f f fnint( )i i i (A5)

where nint(x) is the nearest integer function, returning the
nearest integer to x.
It is easy to see that each component of f ̃̃i is folded into the

range −0.5 < f ̃̃̃ia < 0.5 (and similarly for f ̃ĩb and f ̃ĩc), which
encompasses one unit cell, centred at the origin, in fractional
coordinates.
But, given the periodicity of the system, if f i is the fractional

coordinate of particle i, then f ̃̃i must be one of its images, in
another (or possibly the same) replica. Thus, the minimum
image process returns, out of all the periodic images, the unique
image residing in an origin-centred unit cell.
The equivalent expression in Cartesians is obtained by pre-

multiplying both sides of the above by C, the matrix of cell
vectors, which gives

̃ = − −r r C C rnint( )i i i
1

(A6)

where, once again, the minimum image process returns the
unique image of ri inside the origin-centered unit cell. (And it
follows that the minimum image of ri

m is also equal to r ̃ĩ.)
The minimum image process can also be applied to pair

vectors rij. And doing so returns the unique pair vector, out of all
the pair vectors in the periodic system, that lies within the origin-
centered unit cell.
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■ APPENDIX II: EQUIVALENT LATTICE VECTORS
For a given periodic system, there is more than one way to
choose the lattice vectors of the unit cell; i.e., the lattice vectors
are not unique. This doesn not matter so much as far as the
crystal structure prediction algorithm goes, but it can result in
unit cells which would be unlikely to be chosen by a
crystallographer to represent a given periodic structure.
To make this more concrete, suppose the lattice vectors L =

{a, b, c} describe the unit cell of a periodic system. But, the set, L′
= {a + b, b, c} has the same cell volume as L, and also like L, it
contains just one lattice point. And since both L and L′ tile the
whole space, we conclude that both are equally good choices for
the unit cell. Thus, we are always free to make the substitution
anew = a ± b (or anew = a ± c) and still have a valid cell (and
similarly for the other two lattice vectors).
We can freely choose between any of the equivalent lattice

vectors, and in this work, we have chosen to use the set which
minimizes the lengths of each lattice vector. We do this by
making the substitutions: anew = a ± b, if |a ± b| < |a| (and
similarly for anew = a ± c, and for the other two vectors). This
process is then iterated over all lattice vectors until no more
reductions can be found. (It is here worth mentioning that
Oganov and Glass have employed11 a closed-form non-iterative
approach to solve this problem, which may be slightly more
elegant and which presumably gives the same results.)
One technical issue with changing the lattice vectors is that

our code uses an upper-diagonal representation of the lattice
vectors throughout, and it is possible that the new lattice vectors
aren not in this form; i.e., the new a axis is not parallel to x or the
new b axis is no longer in the x−y plane. This was remedied by
following the generation of new lattice vectors by a rotation to a
new x−y−z axis, in which both conditions are satisfied.
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(26) Middleton, T. F.; Hernańdez-Rojas, J.; Mortenson, P. N.; Wales,
D. J. Crystals of Binary Lennard-Jones Solids. Phys. Rev. B 2001, 64,
184201.
(27) Middleton, T. F.; Wales, D. J. Energy Landscapes of Model
Glasses. Ii. Results for Constant Pressure. J. Chem. Phys. 2003, 118,
4583.
(28) Stillinger, F. H.; Weber, T. A. Computer Simulation of Local
Order in Condensed Phases of Silicon. Phys. Rev. B: Condens. Matter
Mater. Phys. 1985, 31, 5262.
(29) Sutherland-Cash, K. H.;Wales, D. J.; Chakrabarti, D. Free Energy
Basin-Hopping. Chem. Phys. Lett. 2015, 625, 1.
(30) Strodel, B.; Lee, J. W. L.; Whittleston, C. S.; Wales, D. J.
Transmembrane Structures for Alzheimer’s A. J. Am. Chem. Soc. 2010,
132, 13300.
(31) Goedecker, S. Minima Hopping: An Efficient Search Method for
the Global Minimum of the Potential Energy Surface of Complex
Molecular Systems. J. Chem. Phys. 2004, 120, 9911.
(32) Amsler, M.; Goedecker, S. Crystal Structure Prediction Using the
Minima Hopping Method. J. Chem. Phys. 2010, 133, 224104.
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