
Microservice Architecture for the Enterprise
How to take a design-based approach to microservice architecture
that addresses culture, organization, methodology and technology.

For the uninitiated, a microservice is defined as an independently deployable
component of bounded scope that supports interoperability through message-based
communication.

But, it’s not just about individual microservices—it’s about how microservices work
together. From this perspective, we look at “microservice architecture”—a style of
engineering highly automated, evolvable software systems made up of capability-
aligned microservices. This definition comes from the book Microservice Architecture,
published by O’Reilly.

What does this mean for businesses? Rather than building monolithic applications
that require long development cycles and big releases, organizations are creating
applications out of multiple, lightweight microservices that facilitate smaller, more
frequent changes and independent scalability.

02

In the pages that
follow, we’ll cover how
your organization can
improve availability
and system safety
while speeding up and
scaling software delivery
using a microservice
architecture.

What are microservices?

http://transform.ca.com/API-microservice-architecture-oreilly-book.html

03

Why microservices in the enterprise?

03

While such companies
are digital first, large
enterprises with legacy
systems to support
can also benefit
from a microservice
architecture. And though
the challenges—such as
monolithic systems, legacy
technology, skills gaps
and cultural issues—might
be great, the rewards can
be far greater.

Companies like Amazon and Netflix popularized the use of microservices, and other
pioneers—such as Gilt (now part of HBC Digital) and SoundCloud—use them to build
massive scalability and decrease time between releases.

Netflix started using a service-oriented approach to software engineering that we now
call microservices over 10 years ago. In a 2006 interview, Amazon CTO, Werner Vogels,
explained the benefits:

“We can scale our operation independently, maintain unparalleled
system availability and introduce new services quickly without
the need for massive reconfiguration.”

Gilt uses microservices to lessen dependencies between teams, allowing the company
to get code more quickly into production. SoundCloud, after expanding as a company,
progressed from using agile to continuous delivery to microservices to improve lead
and delivery times that it was accustomed to in its start up days.

http://queue.acm.org/detail.cfm?id=1142065

04

The difference between these
is that you’ll never get rid of
the essential complexity. In
fact, software solutions are
a great way to try to deal
with essential complexity.
On the other hand, accidental
complexity is something that
we would hope to reduce as
much as possible.

What are the challenges?

From an enterprise perspective, much of what we’re dealing with when introducing
microservices and trying to get advantages from microservices is the inevitability of
software complexity. And software complexity is certainly a subject that’s been studied
much longer than we’ve been talking about the buzz term “microservices.” Software
complexity goes back almost to the origins of software engineering.

Fred Brooks describes two types of complexity in his paper “No Silver Bullet: Essence
and Accident in Software Engineering”:

• Essential complexity—The complexity of the software’s functional scope and
the problems it solves (e.g., correlating and analyzing large amounts of data in
real time). There are some problems we are trying to solve with software that
are inherently complex and we can’t do anything about it.

• Accidental complexity—The complexity of the software’s implementation
details (e.g., the languages, processes and messages used to do the work).
This is the complexity we create in trying to solve the problem.

So, how do we deal with essential complexity? There’s a reason domain-driven design
has become resurgent with the microservices movement. Domain-driven design, at a
high level, is a very effective way of modeling the systems which then map nicely into
microservice architectures.

This is possible because the topology of the implemented system closely resembles the
model of the system’s “essence.” In other words, there’s a close resemblance between
a model of the essential complexity of a system and a model of a microservice
architecture. It makes microservice architecture an intuitive way of solving these
essential complexity problems.

On the other hand, accidental complexity in a microservice architecture can be
minimized through automation and distribution via continuous delivery tooling,
cloud native platforms, containers and APIs.

02

What we see with
microservices is now,
instead of the developers
building their code and
having to merge it with
a monolithic application,
they can break things
down and work on the
individual microservices,
eliminating a lot of the
accidental complexity.
Their job gets simpler and
they can just focus on
building a service.

05

How do we overcome the challenges
of building an enterprise microservice
architecture?

A Design-Based Approach to
Microservice Architecture

When looking at how to approach the introduction of microservices to an enterprise, taking a design-based
approach is very helpful. This approach can be broken down into five different steps of design:

Outcome design.
Look at your goals
and ask, “Why are
you doing this?” It’s
not enough to say:
“Everybody’s on
the microservice
bandwagon, let’s
jump on too.” It’s
important that you
understand the
value points you’re
going after.

System design.
Examine how you
identify the scope
of the system that
you’re going to be
architecting. This is
about decomposing
the domain.

Service design.
Once you have a
picture of what your
domain is and what all
its services are going to
be, look at the design
of all those individual
services to make sure
they’re built in the right
way, so that they can
evolve and interact in
the correct way for the
system you want to
build.

Foundation design.
The previous steps
have been very
technology-agnostic.
So now, you need to
look at the underlying
capabilities—the
technological tools
and platforms that
will be required to
build out the system
best-suited to the
needs of your
organization.

Organizational
design. Look at the
organization itself—
the people side.
How do you make sure
that the culture and
methodologies you’re
using, and even the
organizational
structure, match what
you hope to achieve?

We’ll dig into these a little deeper in the pages that follow.

51 2 3 4

06

07

Outcome Design: Define Goals and Principles

There are some key
types of microservice
goals such as agility,
composability, runtime
and scalability. Out of
these, you can decide
what are the principles
you want to use to incent
these behaviors.

STEP 1 is about defining measurable goals and developing associated principles.
First, you want to define where you are today and where you want to be. Ask:

• How can we reduce our release cycles?

• How can we introduce more microservices?

• How can we retire or depreciate unused services that may be out there?

Naturally, not everything can be concrete and measurable. Sometimes, it’s important
to define higher-level principles about the way things should be done to incent good
behavior. Defining these principles helps you build a common cause, which is very
important. We want this so that we can have alignment without having to have a lot
of coordination across the organization. So, these are constraints to help you with
those hard-to-measure goals.

1

System Design: Choose an Initial Scope Then
Decompose the Domain

Once you’ve defined your goals and principles, look at the best place to start working
towards achieving them. In STEP 2, you want to first identify the target domain and
start breaking that down into sub-domains in a bounded context—which are linguistic
boundaries where everyone speaks the language. Then, start to define the interaction
between those bounded contexts within your domain.

This is a process that’s helped through visual exercise. One approach is to use the
domain-driven design “Context Mapping” approach that breaks down a domain into its
sub-domains and bounded contexts. Since the accepted approach to understanding a
system is to focus on the relationship between its components, you need not go deeper
than the context map if you want a basic representation of a microservice system.

This context could be the decomposition of a monolithic application or the service
interactions of an initiative. The only way to coherently build a large organization’s
system of microservices is to do so piece by piece, context by context. Along the way,
these contexts can be combined to project the complete picture, if such a picture is
even needed.

Once you have the
bounded contexts,
you can start to define
services for your solution
within. And once you’ve
got a good map, you can
start enumerating the
services that you want
in the organization.

RELATED READING
Designing a System of
Microservices

08

2

http://www.apiacademy.co/designing-a-system-of-microservices/

3
You can expect the stages
of system design and service
design to be quite iterative at
first until things settle down
and the boundaries become
clear. But, it’s important to
remember that the system
design is going to be
enterprise-wide at the
system maintainer level and
the service design is going
to be much closer to the
individual developers and
the small teams that will
be building the individual
microservices.

09

CONSUMER TASKS

QUALITIES

Queries Commands Event
Subscriptions

Event
Publications

Service
• Task

Consumer
• Task

LOGIC/RULES DATA

DESCRIPTION

INTERFACE DEPENDENCIES

Service Design: Design the Services

In STEP 3, you want to take an outside-in approach. Start with:

• What are the interactions between services?

• Who is going to want to consume my services and what are they going
to consume?

• What other services am I going to be dependent on?

Then, you start to think about other external concerns like the quality of service,
SLAs, the security situation and versioning—all the things that are going to affect
the consuming services as well as the services you depend on. These are going to
be the most important factors in designing the service.

From there, you should start to investigate the logic, the rules and finally, the data
you need. It’s a common mistake to start with the data and work outwards.
That’s dangerous and it leads to tight coupling.

RELATED READING
The Microservice Design Canvas

3

http://www.apiacademy.co/the-microservice-design-canvas/

10

In addition, APIs are:

• A living part of the system, unlike some documentation that lives
outside the system and might be stale.

• A good way of bridging to service modelling through domain-
driven design. As you go from domain to bounded context to the
context map, think about your APIs as a helpful way to map your
system. It provides a way to understand the overall system of
microservices, and it contains the appropriate level of information
so you can connect the dots.

• A place where you can enforce security policies, provide
composition of services for aggregation, universally monitor
service levels and document services through API definition
languages, like OpenAPI. This is important because when you
have a microservice, you can no longer rely on something like
an app server to provide all the normalized information, such as
logging and security.

Another thing to think about when you’re
designing the services is to dig into the
APIs because they’re extremely helpful
and have a lot of value when it comes
to microservices. APIs provide a
technological way of expressing the
capabilities of your system.

If you didn’t know anything about a
system and you were only to look at the
API definition for the services that live
within the system, you would get a pretty
good idea of what functional capability
is in that system to the point where you
could have business and technical
conversations, bridging that gap using
the API definitions.

10

Service Design (cont’d): The Importance of APIs3

Now it’s time to think about the required capabilities.
These could be technical capabilities or they could be
standards and guidelines you want to abide by. But, be
careful not to go so deep as to be restrictive to your teams.

To assist, use this capability model that outlines some of the
main categories you may want to consider. Not to say every
microservice environment needs all these capabilities,
but you can use the model to think about the important
capabilities you need in your system.

If you’re focused on reducing development time, you may
spend more time looking at design and development
capabilities. Whereas if your focus is more on scalability
and runtime efficiency, you may be looking more deeply
into security and mediation and platform capabilities.

11

 Mediation
• Routing
• Service Discovery
• Rate Limiting
• Orchestration
• Transcoding

Foundation Design: Identify Needed Capabilities

Microservices

 Development
• Design Tools
• Test Tools
• API Discovery
• Container Creation

• IDEs

 Security
• Access Control
• Identity

Management
• PKI

Deployment
• Container Orchestration
• CD Pipelines
• Repositories
• Release Management

 Hosting
• Container Hosting
• IaaS/PaaS/FaaS
• Data Management
• Storage

 Monitoring
• Logging
• Correlation
• Analytics
• Anomaly Detection
• Event Execution

4

Organizational Design: Align the Organization,
Culture and Architecture

Now we get into the human
side of microservices: the
organizational, cultural and
methodological capabilities.
When introducing something
like continuous delivery, it’s
more than just a technology
tool introduction. It’s the
whole process change that
impacts the way people do
things. And it’s important to
align your team structure so
you have cross-functional
teams that can own their
services end-to-end. Also, you
want to look at how you can
change culture.

On the methodological side, you’ll want to adopt agile practices. You want to be
able to automate everything.

On the organizational side, you want to break down silos into teams that are
cross-functional—product owners and developers, and even business leads in the
same team—so you can be more aligned with the business outcomes. There will
still be the need for teams that go across the organization and support those
cross-functional teams, but rather than dictating to those teams, it’s better to take
a more incentive-based approach to teams where you’re enabling those teams
and providing tools and services to them, to let them function and fly on their own.

Finally, on the cultural side, if you have digital teams that are counterpoint to their
IT teams, it’s time for a change. While change can be viewed as bad, which slows
down releases, try thinking about becoming efficient at change and embracing it,
so that you’re doing more frequent, smaller changes, which are going to have less
impact on the system and are much easier to roll back if things do go wrong.

12

5

Move to Microservices and Accelerate
Your Digital Transformation

You want to deliver new innovations, release apps faster and take advantage of new opportunities, but legacy
applications and infrastructure are holding you back. Transition to a modern architecture by decomposing
monolithic applications into agile microservices—independently created, managed and scaled. Your business will
be able to act more quickly and developers will love the easy access to APIs that give them the freedom to focus
on customer experience.

13

Start With Microservice
Strategy and Design

CA has the API Academy, a
team of API thought leaders
who wrote the book on
microservice architecture and
provide organizations with
the education and consulting
they need to build better APIs
and microservices, improve
software delivery and execute
on broader digital strategies.

Read API Academy
Microservice Best Practices

Low-Code Microservice Creation

CA Live API Creator is the
only automated, low-code
microservices development
solution and works up to 10 times
faster than other approaches.
It creates and exposes domain-
driven microservices and REST
APIs as application backends,
providing access to orchestrated
data and functionality from both
new and legacy systems.

Learn more about CA Live API
Creator

Orchestrate and Secure
Microservices

The award-winning CA API Gateway
and CA Microgateway enable
architects and developers to manage
discovery, orchestration and
transformation in a broad array of
microservices deployment patterns.
They are containerized and
deployable in Docker® and you’ll
also be able to apply best-in-class
OAuth security and authentication
to protect your business.

Learn more about CA API Gateway &
CA Microgateway

http://www.apiacademy.co/tag/microservices/
http://www.apiacademy.co/tag/microservices/
https://www.ca.com/us/trials/ca-live-api-creator.html
https://www.ca.com/us/trials/ca-live-api-creator.html
https://www.ca.com/us/products/ca-api-gateway.html
http://www.ca.com/microgateway
http://ca.com/microgateway

Start building microservices today with a trial of CA Live API Creator.
Get started at ca.com/createapis.

Learn how CA Technologies can help you with your
microservice architecture.
Visit ca.com/microservices.

Application Architecture
Built for Change

Copyright © 2017 CA, Inc. All rights reserved. All marks used herein may belong to their respective companies. This document
does not contain any warranties and is provided for informational purposes only. Any functionality descriptions may be unique
to the customers depicted herein and actual product performance may vary.

CS200-302066

CA Technologies (NASDAQ: CA) creates software that fuels transformation for companies and enables
them to seize the opportunities of the application economy. Software is at the heart of every business, in
every industry. From planning to development to management and security, CA is working with companies
worldwide to change the way we live, transact and communicate—across mobile, private and public cloud,
distributed and mainframe environments. Learn more at ca.com.

http://ca.com/createapis
http://ca.com/microservices
http://ca.com

