
CONTENT

The need for ML
Ops

Solution
implementation

MACHINE
LEARNING
OPS

Maturity curve with
GCP adoption



02

There is no doubt regarding the fact that Machine Learning is changing the world. Hailed
as “next electricity” by Andrew Ng, it comes with a lot of promises. Despite these
promises, the internet is overflooded with statistics and anecdotes about Machine
Learning and Data Science products failing to make it to production. One such report, by
VentureBeat, claims the number to be 87%. This paper aims to look into the problem of
why only one in ten machine learning projects make it to production and how MLOps can
help organisations to effectively manage machine learning systems in production.

INTRODUCTION

A brief history Software Development Lifecyle (SDLC):
In the last couple of decades, Agile methodologies have revolutionized software
development. Rather than having a one-shot launch (waterfall model way), Agile
methodologies introduced an incremental and iterative approach towards innovation.
While “Pure Agile” terminated after deployment, a product or solution required constant
monitoring, so that response to changes can be made as quickly as possible. 

This required development and operations to become “one”, and hence, DevOps was
born. Though a relatively recent phenomenon, DevOps is now a standard way of
managing software lifecycles.So, the question arises, if DevOps is the standard across the
industry, why is it not suitable for Machine Learning systems? The answer is fairly
straightforward. Machine Learning applications contain “data”, which is generated by an
infinite entropy source, the “real world”. 

DevOps does a great job of managing the code, but managing a large number of data
sources and models (weights and biases) is altogether a different ball game. So, as in-
production solutions called for continuous monitoring, which led SDLC to evolve from
Agile to DevOps, now, as our solutions are becoming more and more data-savvy, it is 

THE NEED FOR ML OPS

https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/


02

The problem with traditional approaches:
The problem with adopting traditional methodologies for Machine Learning is that it is
very difficult to define “incremental progress” in machine learning, which is at the core of
Agile. A machine learning model usually contains data streams and a machine learning
model (which at its core is nothing but numerous matrices of numbers). 

These are accompanied by pre-processing and post-processing pipelines, making data
ready for machine learning models and human consumption respectively. Deploying any
one part without the other, makes no impact. One part of this holistic system doesn’t
enhance a solution or a product, unless or until all of them act in synergy.

time for us to make progress in the SDLC ladder. ML modeling and productionalizing has
adopted a similar lifecycle as shown below.



02

The environment in which the model is deployed, is itself affected by the model. This
affects the assumptions that we took into consideration while building that particular
model. This is especially the case in recommendation engines and personalisation
engines. Because the ranking of products and ads are the result of model predictions,
it invariably starts affecting the user inputs. This feedback loop introduces the
selection bias, which wasn’t present earlier when the model was being built. 
No matter how good the model is, there is always a downfall in the prediction power.
This calls for new retraining at continuous intervals.

Redefining Agile in the context of ML:
There are a few challenges that we need to take into consideration while deploying a
model. These are:-

To meet these challenges of putting machine learning models in production, a SDLC
process needs traditional elements like Continuous Integration and Continuous
Development but we need constant monitoring and Continuous Training elements also,
which trains the model at necessary time intervals. The MLOps bring the necessary
philosophies, processes and tools under one hood and streamline the process of putting
machine learning models in production.

Before the advent of machine learning, data was part of certain applications and there
were certain methodologies that were used to manage such projects. The Knowledge
Discovery in Databases (KDD) was used in data mining applications, but it is rigid, making
it difficult to adopt it for continuously evolving training and prediction cycles.



04

SOLUTION

Easy experimentation - A machine learning engineer should be able to iteratively try
out different sets of models, different feature engineering techniques and come out
with a good machine learning model, which can be readily deployed.
Feature Store - A feature store makes sure that the consistent features are being
served in the training and inference pipelines.
Continuous Training - validating the currently deployed model’s performance and
triggering the training job if required. 
Continuous Integration - The continuous integration can help us to test, integrate and
build the changes to the machine learning pipeline.
Continuous Delivery - The developed model could be easily deployed for serving and
can be integrated to the existing application easily.
Orchestration Engine - The orchestration engine is an automation engine that triggers
training with the predefined schedule, upscale and downscale the system depending
upon the request traffic and other configuration parameters.

The MLOps consists of three primary stages, Continuous Integration, Continuous
Development and Continuous Training. The setup for MLOps must include the following:-



02

Can be vertically scaled up or down according to the load
Natively integrated with other services like BigQuery, Cloud Storage
Google Cloud Source Repository support

Reuse features, entities, sets and embeddings instead of running the job again and
again.
Can serve batch and near real-time inference.
With every training session, we can update the features and serve them with every
respective inference.

BigQuery is Severless. So, no hassle to manage the infrastructure.
BigQuery allows SQL to query the table
Scales to petabyte scale

Experimentation
The experimentation is at the centre of any machine learning flow. Though the jupyter
notebooks are the go to tools of the data scientists, they are at a considerable
disadvantage when it comes to collaboration. The AI Platform Notebooks are a
considerable improvement over the traditional on prem notebooks. They are basically
managed Jupyter Notebooks instances on the Google Cloud Platform. It comes with
various configurations and with libraries pre-installed. So, the developers need not to
configure the environment on their own. Other advantages offered by the Jupyter
Notebooks are:-

Feature Store
One of the ways we can avoid training-serving skew is by calculating our statistical
summaries on the training dataset only and using that same summaries with the testset.
The problem that arises here is how to store these calculations. This is the place where
Feature Store comes handy. The Feature Store is a recent development which provides
us with a centralized storage layer where we can read and write features, for training and
serving purposes. The feature store provides with following benefits:-

We can leverage Google Cloud Platform’s BigQuery to create our own custom feature
store. The BigQuery provides following benefits, which makes it a go to tool for this
purpose:-

Continuous Training
The Continuous training is performed by automating the model development, where the
model is retrained based on various triggers, which are marked by pipeline validation.
Pipeline Validation is a process of making sure whether the deployed model is relevant
or not. The machine learning pipeline expects a model to be tested and trained 



07

Data Validation - because the source of data is the real world, it is very susceptible
to the changes. These changes could be covariate shifts, which is a change in the
underlying probability distribution of the data. This can result in training serving
skews, massively impacting the performance of the data. In the case of training
serving skews, we need to trigger the model training.  The other problem could be
unavailability of the feature due to various reasons. This requires the development
team to brainstorm why it happened and how to overcome this situation.
Model Validation - the model validation is performed to check the performance of
the model on different subsets of data and evaluating its prediction consistency. This
can be done by capturing performance metrics across different subsets of data.

A CD pipeline should check all the dependencies that are required for seamless
execution are already installed in the serving environment. 
It should be automated to the maximum extent and require as little manual
interaction as possible. An example of this could be automatic deployment as soon as
the code is merged to the master branch. It follows the rule that anything in the
master branch deployment-ready, so an extensive code review definitely helps.
Able to provide the inference via a callable API. It makes model testing quite easy and
approachable. We can configure API input as such it doesn’t hinder the serving
pipeline.

automatically, without any manual interference. A machine learning model is made up of
two components, data and the machine learning algorithm, so, we need to test both of
these inputs, in order to arrive at a decision.

Continuous Integration
The continuous integration can help us to test, integrate and build the changes to the
machine learning pipeline as soon as the code is committed to the Cloud Source
Repository. We can leverage GCP’s Cloud Build for creating such pipelines. Though the
model itself can’t be tested on it’s own, due to varying performance metrics, the feature
engineering logic and post-processing code can be unit tested. For instance, we are only
accepting a categorical input for the columns that are to be Label Encoded or continuous
input for the column that is to be bucketised. 

Continuous Delivery
The continuous delivery pipeline continuously delivers the new changes made to the
machine learning pipeline to the serving environment. A good continuous delivery
pipeline has following characteristics:-



07

Orchestration
The orchestration engine is an automation engine that triggers training with the
predefined schedule, upscale and downscale the system depending upon the request
traffic and other configuration parameters. For this component of the MLOps, we can
use Cloud Composer which is a managed Apache Airflow service.A benefit of using
composer is that it allows us to build pipelines that can be multi or hybrid cloud.    This
covers all the aspects that are involved in the MLOps. The following table illustrates the
complete solution of MLOps on GCP. We can use AutoML as our model development
tool, for it automates the model training and deployment. GCP has many AutoML
offerings, depending upon whether we are dealing with unstructured and structured
data.

Maturity Curve with GCP Adoption



10

CONCLUSION 

The hidden technical debt of machine learning systems
MLOps: Continuous delivery and automation pipelines in machine learning
The architecture of MLOps using TFx, Kubeflow and Cloud Build
Knowledge Discovery in Databases

Though MLOps is in its nascent stage but it is evolving continuously. Google recently
open sourced Kubeflow, which makes deployment of machine learning pipelines very
easy and scalable. With multi framework support, it allows to compose, deploy and
orchestrate machine learning pipelines.  The efficiency of a MLOps setup can be
measured by calculating how quickly a new approach can be tested at scale, because
the ethos of software development is still “failing fast”.

References:

1.
2.
3.
4.

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/solutions/machine-learning/architecture-for-mlops-using-tfx-kubeflow-pipelines-and-cloud-build
https://www.cise.ufl.edu/~ddd/cap6635/Fall-97/Short-papers/KDD3.htm

