
Classification algorithms for the identification of structural injury in
TBI using brain electrical activity

Leslie S. Prichep a,n, Samanwoy Ghosh Dastidar b, Arnaud Jacquin b, William Koppes b,
Jonathan Miller b, Thomas Radman b, Brian O'Neil c, Rosanne Naunheim d, J. Stephen Huff e,d

a Brain Research Laboratories, Department of Psychiatry, NYU School of Medicine, New York, NY, USA
b Algorithm Development Department, BrainScope Co., Inc., Bethesda, MD, USA
c Wayne State University, School of Medicine, Department of Emergency Medicine, Detroit, MI, USA
d Washington University School of Medicine, Division of Emergency Medicine, St. Louis, MO, USA
e Departments of Emergency Medicine and Neurology, University of Virginia, Charlottesville, VA, USA

a r t i c l e i n f o

Article history:
Received 26 March 2014
Accepted 18 July 2014

Keywords:
TBI
Acute traumatic brain injury
Classifier algorithms
Genetic algorithms
Quantitative brain activity
Electrophysiology of TBI
TBI triage
Structural brain injury
CTþ TBI

a b s t r a c t

Background: There is an urgent need for objective criteria adjunctive to standard clinical assessment of
acute Traumatic Brain Injury (TBI). Details of the development of a quantitative index to identify
structural brain injury based on brain electrical activity will be described.
Methods: Acute closed head injured and normal patients (n¼1470) were recruited from 16 US
Emergency Departments and evaluated using brain electrical activity (EEG) recorded from forehead
electrodes. Patients had high GCS (median¼15), and most presented with low suspicion of brain injury.
Patients were divided into a CT positive (CTþ) group and a group with CT negative findings or where CT
scans were not ordered according to standard assessment (CT�/CT_NR). Three different classifier
methodologies, Ensemble Harmony, Least Absolute Shrinkage and Selection Operator (LASSO), and
Genetic Algorithm (GA), were utilized.
Results: Similar performance accuracy was obtained for all three methodologies with an average
sensitivity/specificity of 97.5%/59.5%, area under the curves (AUC) of 0.90 and average Negative Predictive
Validity (NPV)499%. Sensitivity was highest for CTþ cases with potentially life threatening hematomas,
where two of three classifiers were 100%.
Conclusion: Similar performance of these classifiers suggests that the optimal separation of the
populations was obtained given the overlap of the underlying distributions of features of brain activity.
High sensitivity to CTþ injuries (highest in hematomas) and specificity significantly higher than that
obtained using ED guidelines for imaging, supports the enhanced clinical utility of this technology and
suggests the potential role in the objective, rapid and more optimal triage of TBI patients.

Published by Elsevier Ltd.

1. Introduction

Traumatic brain injury (TBI) accounts for over 1.5 million
emergency department (ED) visits annually within the United
States and the majority of these visits are for mild injury (mTBI)
[1]. The “Center for Disease Control” (CDC) additionally estimates
that more than 2 million patients per year with nonfatal traumatic
brain injury from sports and recreation activities do not seek
medical care [2]. It is critical that medical providers at the scene of
the injury and in the ED be able to rapidly and accurately

determine if the traumatic brain injury is life or quality of life
threatening. Currently, non-contrast cranial computed tomogra-
phy (CT) scan is the method of choice for evaluating acute brain
injury. In the ED departments of US hospitals, patients presenting
with mTBI routinely undergo CT scans. This occurs primarily
because of the high risk associated with missed intracranial lesions
and because current decision rules for the use of CT scanning in
mTBI have high sensitivity at the expense of very poor specificity
[3].

The emergency medicine, neurosurgical and neuroscience
literature indicates that the prevalence of structural brain injury
visible on CT (“CT positive”, CTþ) in adult patients with mTBI and
Glasgow Coma Scale score (GCS) [4] of 13–15, evaluated in the ED
ranges from 7.5% to 12.1% [5–7]. Several factors related to the
status of the patients at the time of evaluation are important
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determinants in the prevalence numbers reported. Furthermore,
CT positive scans include a continuum of injuries from those that
require little or no clinical intervention to those that are poten-
tially life-threatening, with different clinical paths and actions
required for the different levels of injury severity. As defined by
Stiell et al. [8] “clinically important” brain lesions are those that
require surgical intervention or observation in hospital whereas
“clinically unimportant” brain lesions are those that require
neither admission nor specialized follow-up.. This underscores
the importance of rapid and reliable triage at the point of injury in
TBI patients presenting to the ED with low suspicion of brain
injury.

Further complicating the situation is the fact that CT scans are
assessed by subjective visual inspection, with poor inter-rater
reliability, especially for etiology of the injury detected [9,10].
While some methods of scoring the severity of the abnormalities
seen in CT have been used, these scales are largely insensitive to
the type of injuries seen in patients who present with mild signs
and symptoms, (e.g., Marshall Scale) [11]. Thus, there remains a
need for more objective quantitative criteria as an adjunct to
standard clinical and imaging practice to help optimize sensitivity
to the “clinically important” brain injuries.

Changes in brain electrical activity that occur in TBI have been
reported in the scientific literature. The use of such measures for
the classification and identification of head injured patients has
also been studied using 19 lead electroencephalogram (EEG) data,
and reported to be sensitive to both structural and functional brain
injury [12–14]. This paper will describe the development of a
hand-held tool using a classification algorithm based on quantita-
tive features of brain electrical activity for rapid, objective, and
reliable assessment of the likelihood of the presence of structural
brain injury for the triage of patients who present with mild TBI to
the ED. Throughout the period of development independent
publications have presented evidence of the potential clinical
utility of the classification algorithm in development [15–18].

This paper will describe the development of a quantitative
biomarker or index, based on brain electrical activity that is
sensitive to the presence of structural brain injury. Embedded in
a hand-held device, this system could be used to rapidly, objec-
tively, reliably evaluate head injured patients presenting with low
suspicion of brain injury. Specifically, the development and clinical
utility of a binary classification algorithm, for classification into
one of two distinct categories, will be described. This algorithm
would assist in determining whether a patient is likely to have a
CT positive brain injury and thereby aid in the determination of
the presence of injuries requiring further clinical action.

2. Methods

2.1. Patient population

Data was collected at 16 Emergency Departments (EDs) across
the USn, with approval from local Institutional Review Boards
(IRBs). Subjects were a convenience sample (n¼1470; 33% female;
67% male) meeting inclusion/exclusion criteria described below.
All subjects signed written informed consent.

2.1.1. Inclusion criteria for TBI patients and controls
These were males and females between the ages of 15 and 90,

who suffered a closed head injury and with a GCS of 7 or higher,
with or without loss of consciousness (LOC) or traumatic amnesia
and with symptoms of TBI. Normal controls were: (1) ED patients
presenting without head injuries or problems related to the
central nervous system; or subjects who participated in college
and high school sports, but who did not sustain head injuries; and

(2) possible TBI controls were subjects who sustained head injury
but had no altered mental status (AMS), no loss of consciousness
(LOC), no amnesia and no significant symptoms related to head
injury upon presentation.

2.1.2. Exclusion criteria for TBI patients and normal controls
These were subjects with scalp or skull abnormalities or whose

clinical condition, such as head trauma, would not allow place-
ment of the electrodes; intoxication in those obtunded to the point
where they could not participate in the study. Patients with
advanced dementias, Parkinson's disease, diagnosed chronic drug
or alcohol dependence, known seizure disorder, mental retarda-
tion, or those currently taking daily prescribed medication for a
known diagnosed psychiatric disorder also were excluded.

With regard to factors such as drugs or alcohol, fatigue, pain,
and other factors which may be present in head injury cases, the
method used in this investigation was to include them in all
subject groups (controls and head injured patients), except as
defined by exclusion criteria. By doing this, they are eliminated as
differentiating factors between groups, and features sensitive to
these factors are not selected by the classifier, whereas features
independent of such factors that differentiate between groups are
candidates for selection.

2.2. Clinical assessments

All study subjects were evaluated with the following symptom
based scales or assessment tools: (1) Concussion Symptom Inven-
tory [19] (CSI): a brief screening measure that assesses the
presence and severity of 12 common post-concussive symptoms.
A Likert-type scale is used to assess symptom severity (range
0–6 per item), with a total score range of 0–72 for the full CSI.
Higher scores on the CSI indicate more severe symptoms reported;
and (2) Standard Assessment of Concussion (SAC) [20,21]: a brief
cognitive screening tool that has been used extensively to assess
the cognitive effects of concussion. The SAC includes brief subtests
of orientation, immediate memory, concentration, and delayed
recall. The total score range of the SAC is 0–30 with lower scores
on the SAC indicating poorer cognitive performance. In addition,
all measures which were components of the New Orleans Criteria
(NOC) for referral of head injured patients for CT scans were
collected by trained research assistants. The NOC is a decision
guideline for referral for CT in head injured patients which is
commonly used in the ED. NOC was computed on each subject for
the purpose of estimating the percentage of subjects who would
have been referred for CT scan if this decision rule had been used
as the sole determinant for referral. The components of the NOC
include: headache, vomiting, age above 60 years, drug or alcohol
intoxication, persistent anterograde amnesia, anticoagulants, visi-
ble trauma above the clavicle, and seizure [6].

Using this information in consultation with emergency medi-
cine and sports medicine physicians, and in conjunction with
published guidelines [22,23], the subjects were divided into four
clinical categories for the purpose of assessing performance of the
classifiers by injury severity. Category 1 subjects were functionally
normal controls, Category 2 subjects had mild concussions, Cate-
gory 3 subjects had moderate concussions, and Category 4 subjects
were CTþ (i.e. the CT scan showed evidence of structural injury).
Since this study was focused on the binary classification task
aimed at discriminating between subjects with structural brain
injury positive on CT scan (CTþ) from those without structural
injury, the first three categories were aggregated into a single
category referred to as CT negative or those not referred for a CT
(CT�/CT_NR). The age, gender and race distributions of the
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sample were determined by the representation of each in the
populations served by the participating sites involved.

2.3. CT Scans

The determination of which subjects will receive a CT scan was
made by the treating physician according to standard clinical
evaluation practice. Results of the CT scans were read by the
radiologist (read or over-read by a neuroradiologist) at each
clinical site. Based on the CT readings, patients were divided into
those with positive findings (CTþ) and those with negative
findings (CT�). Patients who were not referred for CT (CT_NR)
by standard of care were considered together with CT� group as
both being not-CTþ in terms of all further analyses. All CT scans
were done within 72 hours of injury (with the vast majority done
within 24 h).

2.4. EEG data acquisition

Five to ten minutes of eyes closed resting EEG was obtained
using BrainScope's prototype handheld EEG acquisition devices.
Since the intended use of the TBI algorithm is to aid in the triage of
head injured patients in the acute setting (e.g. emergency depart-
ment), it was important that the electrode sites be the minimum
number required to characterize EEG changes in TBI and be easily
accessible for rapid set-up. Therefore, EEG was recorded from a
limited frontal electrode montage, specifically including the fol-
lowing locations of the expanded International 10–20 Electrode
Placement System: Fp1, Fp2, F7, F8, AFz, A1 and A2. Fig. 1 shows
the hand-held recording device and the headset used to place
electrodes in the required locations. The EEG data was acquired at
a sampling rate of 8 kHz. All electrode impedances were below
10 kΩ. Amplifiers had a band pass filter from 0.5 to 70 Hz (3 dB
points).

2.5. EEG data processing

Recording sites were re-referenced to linked ears and down-
sampled from 8 kHz to 100 Hz prior to any processing of the data.
EEG recordings were processed through BrainScope's algorithms
for artifact detection [24] in order to identify for removal any
biologic and non-biologic contamination, including lateral and
horizontal eye movement, EMG muscle activity, high frequency
impulse artifacts, extremely low amplitude EEG activity, and
atypical electrical activity. In prior studies this artifact detection
algorithm showed 87.6% agreement on the artifact-free EEG
segments selected by an experienced EEG technologist and the
automatic artifact program. Previous experience has demonstrated

that sufficient artifact-free data (60–120 s; representing 24–48
contiguous epochs of length 2.56 s) can be obtained from these
five to ten-minute recordings in such a population. The epoch
length of 2.56 s was selected to correspond to a Fast Fourier
Transform (FFT) size of 256 bins used to compute estimates of
the power spectra of the subject's EEG.

2.6. Quantitative EEG (QEEG) feature extraction

The artifact-free EEG data was used to compute quantitative
EEG (QEEG) features of absolute and relative power, mean fre-
quency, inter- and intra-hemispheric coherence and symmetry
computed for the delta (1.5–3.5 Hz), theta (3.5–7.5 Hz), alpha (7.5–
12.5 Hz), beta (12.5–25 Hz) and gamma (30–45 Hz) frequency
bands. These measures are described in detail elsewhere [24]. In
addition to these traditional QEEG features, several additional
features were included: (a) chaotic/fractal measures (fractal
dimension and scale-free activity) [25] which evaluate the global
complexity of the brain electrical activity at each electrode loca-
tion across the total spectrum; (b) information theory-based
measures (entropy and wavelet entropy), which evaluate the
degree of order/disorder of the brain electrical activity at each
electrode location; and (c) connectivity measures (phase lag, phase
synchrony, and various across-region ratios of spectral power and
coherence) which evaluate relationships between and among
cortical regions [26,27]

Following neurometric QEEG methodology [28,29] all quanti-
tative features were transformed to obtain an approximately
Gaussian distribution and z-transformed relative to age expected
normal values. The importance of each of these steps in enhancing
the sensitivity and specificity of brain electrical activity has been
described in detail elsewhere as are the robust test–retest relia-
bility and independent replications of the normative data base of
brain electrical activity [30]. This database of QEEG feature z-
scores is referred to in this paper as the “algorithm development
database”. At this stage, blind to all other data, a final quality check
was run to identify non-EEG data contamination based on dis-
tribution characteristics of features outside the frequency range of
interest that were not identified by the artifact algorithms. Cases
with such contamination were eliminated from the database
(approximately 3%).

2.7. Feature reduction

Following feature extraction, the algorithm development data-
base contained several thousand features (M¼10,308) and sub-
jects (n¼1470). The problem of data reduction is common in
quantitative electrophysiology as well as in machine learning
problems in general. These problems typically involve large
datasets where the number of features can be much greater than
the number of subjects. In these cases an exhaustive search of such
a large feature space for an optimal subset of features from which
a classifier is to be constructed becomes computationally prohibi-
tive and statistically limited. Therefore, the first step is to reduce
the number of features from several thousand to a few hundred. In
this work this problemwas approached first using a strategy called
“informed feature reduction” (described in detail by Prichep et al.
[24]) which was performed to retain only those features that are
stable, replicable, physiologically meaningful, and show good
separation between the two categories. The reduced feature set
following this initial reduction becomes the candidate feature pool
for building the classifier.

Fig. 1. A patient with the headset for placement of the electrodes in the required
standard sites is shown. Hand held EEG data acquisition device is also shown.
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2.8. Classifier development

The classifier development stage involves searching the
reduced dimensionality feature space using advanced machine
learning-based search algorithms in order to obtain classifier
candidates that can optimally separate the two categories. Fig. 2
shows a flow chart of the process summarized here. Three
different classifier builder algorithms were utilized in parallel:
Ensemble Harmony (Harmony), Least Absolute Shrinkage and
Selection Operator (LASSO), and Genetic Algorithm (GA). In the
use of all three methods, the candidates' performance was com-
puted on a total of 35 “splits” of the total dataset. It is noted that
the number 35 was arbitrarily chosen and was considered to be
well above that demonstrated to be sufficient to get a good
estimate of average performance and variability across splits (we
have seen anything above or equal to 10 to be adequate). Each
“split” is defined as a specific division of the algorithm develop-
ment database such that a randomly selected 80% of the database
forms the “training” portion and the remaining 20% forms the
“test” portion. The train and test portions were balanced for
category composition. Ten-fold cross-validation performance was
used for feature selection using the reduced feature pool as
described above. Leave-one-out cross-validation performance
was used for selecting the classification threshold. Both of these
cross-validation methods are fairly standard and are described in
Statistical Classification texts (e.g., [31]). A target cross-validation
specificity was used to constrain the solution to acceptable ranges
of specificity in accordance with our tolerance for stratification of

risk. A decision was made to constrain the specificity instead of the
sensitivity because of the larger number of subjects on the
“negative side” of the classification task (CT�/CT_NR) which was
expected to reduce the chances of inadvertently selecting an
operating point based on a spurious peak on the ROC curve. The
metrics used for evaluating classifier performance were the area
under the curve (AUC) of the ROC as well as sensitivity, specificity,
NPV and PPV of the classifiers at their operating point. ROC curves
are useful for visualizing classifier performance and the AUC is a
simple to compute, global, scalar measure of classifier perfor-
mance which is commonly used in medical classification pro-
blems. In addition, ROC curves have the attractive property of
being insensitive to changes in class distributions [32]. At the end
of this procedure, an “All-In” classifier building run was conducted
on the full algorithm development database (no train and test
partitions), with the final objective to utilize the full algorithm
development data for training in order to derive a single binary
classifier.

While the three classifier builder algorithms all make use of
well-established methods for constructing statistical classifiers,
they approach the feature subset selection problem in specific ways
and impose different constraints. The Ensemble Harmony algorithm
and the GA are both evolutionary algorithms. An Evolutionary
Algorithm performs a stochastic search (which involves random-
ness from one iteration to the next) and evaluates a series of
candidate solutions, where each new candidate is informed by
high-performing predecessors, similar to genetic evolution [33–39].
In addition, the Harmony method uses ensemble classification to

Fig. 2. Flowchart of the general classifier building methodology, including the application of the training process for the nested cross-validation statistical assessment using
an 80%/20% train/test partition of the data, repeated 35 times. The final model uses 100% of the data, and is applied to a blinded test group. “If not final model” refers to steps
only applied for the nested cross-validation process, but not the final model.

L.S. Prichep et al. / Computers in Biology and Medicine 53 (2014) 125–133128



combine a number of evolutionarily derived sub-classifiers (dis-
criminant functions) into a single binary classifier. Combining sub-
classifiers in this way serves to average out random anomalies that
may be present in any one sub-classifier thereby possibly improving
alignment between the combined model and the true underlying
signal distributions [40–43]. The LASSO method builds a classifier
using a regularized logistic regression model with an L1 absolute
value (“LASSO”) penalty [44]. The L1 penalty increasingly constrains
the feature weights, with the optimal constraint level tuned
through cross-validation. By adding the LASSO penalty to the
starting regression, the original weights are constrained, preventing
over-fitting. The GA algorithm imposes a penalty constraint on the
number of variables in the classifier candidates so as to maintain a
high subject-to-variable ratio, thereby reducing the risk of over-
fitting. The commonalities and differences in the three methods and
their implementation are summarized in Table 1.

3. Results

Subjects (N¼1470, 973 males and 497 females) were enrolled
at 16 Emergency Departments (EDs) across the US, with approval
from local Institutional Review Boards (IRBs). The data was divided
into two groups based on the presence or absence of structural
brain injury: CT�/CT_NR (low suspicion of structural injury based
on clinical symptoms) and CTþ (structural injury visible on a CT
scan). Table 2 shows the descriptive statistics for the CT�/CT_NR
group (1284 subjects) and the CTþ group (186 subjects). The two
groups showed significant differences at intake for several demo-
graphic and clinical characteristics, with CTþ patients being older,
having lower total SAC scores, and more often having history of
LOC and AMS related to injury. While GCS for both groups had a
median of 15 (normal score), with an interquartile range (IQR) of 0,
significant differences were found, possibly reflecting the extre-
mely small variance on the CT�/CT_NR population.

3.1. Classifier performance

The Receiver Operating Characteristic (ROC) curve for the three
classifier methods (Harmony, GA and LASSO) generated using the
full un-partitioned algorithm development database is shown in
Fig. 3. The overall sensitivity/specificity at the selected operating

point on the ROC curve (defined by selecting a classification
threshold) of the three classifiers were: 97.8/61.4 (Ensemble
Harmony), 97.8/59.1 (LASSO), and 96.8/57.9 (GA). The Negative
Predictive Value (NPV) and Positive Predictive value (PPV) of the
three classifiers were: 99.6/26.8 (Ensemble Harmony), 99.6/25.7
(LASSO), and 99.2/25 (GA). The contingency table for these results
is shown in Table 3, and additional performance metrics are
shown in Table 4.

As can be seen in Fig. 3, the ROCs for the three classifiers were
largely overlapping, demonstrating similar performance on the
All-In database, despite the differences in method and selected
features. These results suggest that the performance obtained by
any one of these methods represented the optimal Bayes decision
boundary [45]. This boundary is considered to represent the best
possible separation obtainable for a given type of discriminant and
a given overlap of the true underlying distributions of the classes,
(i.e., CTþ from CT�/CT_NR in this very mild presentation of TBI).

Fig. 4 shows the distribution of discriminant scores for the GA
solution as an example of the separation between groups. It can be

Table 1
Commonalities and differences in the three classifier building methods and final classifiers produced by: HARMONY, LASSO, and GA.

Harmony LASSO GA

Classifier building method (feature subset
selection)

Stochastic search Deterministic search Stochastic search

Discriminant function type Linear discriminant function (LDF) Logistic regression LDF
Variable constraint mechanism Ensemble of 64 LDFs 20 features

each
Weight constraint (L1 norm
penalty)

Ceiling for maximum feature number
(35)

Objective Function Area under ROC curve (AUC) AUC AUC with penalty for too many features
# of Features in final classifier 152 48 28

Table 2
Descriptive statistics and group comparison p-values for subject population enrolled in the study. Where appropriate, median was used and inter-quartile range (IQR,
quartile 3�quartile 1) are reported.

CTþ CT� /CT_NR Group comparison p-value

Sample size, N 186 1284 Chi square 0.0165
% Female 25.8 35.0 Chi square 0.0128
AGE [Median (IQR, range)] 53.9 (29.0; 18.2–91.7) 32.3 (27.6; 15.1–87.3) t-test o0.0001
GCS [Median, (IQR; Range)] 15 (0; 7–15) 15 (0; 13–15) t-test o0.0001
SAC [Median, (IQR; Range)] 23.0 (6; 2–30) 26.0 (5; 7–30) t-test o0.0001
LOC (% positive) 72.0 39.2 Chi square o0.0001
AMS (% positive ) 51.1 31.1 Chi square o0.0001
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Fig. 3. ROC curves with 95% confidence intervals indicated (dotted lines) for the
three classifiers developed using the different classifier building methods (GA,
Ensemble Harmony, and LASSO).
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seen that the discriminant scores for the CT�/CT_NR group
(shown in green) lies to the right of the both the CTþ groups,
shown in blue (CTþ but not hematomas) and red (CTþ hemato-
mas). The discriminant score distribution of the “most severe
group” (group with brain injury which is potentially most life-
threatening), seen in red, contains the most abnormal scores.
These findings support the fact that the GA classifier is sensitive
to the continuum of severity present within the CTþ population. It
is noted that similar distributions were obtained for the other two
classifiers.

In order to assess the impact of severity of injury on the
classification performance, we computed the percentage of sub-
jects classified as CTþ for five functional/structural injury cate-
gories of subjects: these were the three categories previously
defined in Section 2.2 [categories 1 (controls), 2 (mild concussion),
3 (moderate concussion)], along with the following two subgroups
of category 4 subjects: category 4 “clinically unimportant” struc-
tural injury, and category 4 “clinically important” traumatic
hematomas with measureable blood. The percentage of these
subjects classified as CTþ is summarized in Table 5. Note that
the number of traumatic hematomas in category 4/CTþ subjects is
quite small (n¼12 and therefore, one miss-classification appears
to be a large performance drop even though it is insignificant. For
all three classifiers, it can be seen that there was a clear relation-
ship between the degree of functional impairment and classifier
performance. For example, in the case of the harmony classifier,
31.0% of category 1, 40.3% of category 2, 46.9% of category
3 subjects, and 97.8% of category 4 subjects were classified as
CTþ . Furthermore, for the clinically most important group (hema-
tomas) performance was 100% for both Harmony and LASSO. This
is further illustrated in Fig. 4 which shows the distribution of

discriminant scores for the GA algorithm, color coded for clinical
categories 1–3 (CT�/CT_NR), category 4 (CTþ which are not
severe) and category 4 hematomas (CTþ severe). Greater overlap
can be seen between the CT�/CT_NR and “clinically unimportant”
non-severe CTþ cases, with greatest separation for the severe
CTþ cases.

The three classifier models selected different QEEG features
and a different number of features, supporting the premise that
there is no one unique solution to the optimal separation of the
two groups (CTþ and CT�/CT_NR). However, the features
contributing most to classification for all three on the artifact-
free EEG segments selected by included features from the same
feature domains (measure sets). The selected features for all
classifiers contained measures which reflect changes in power
and frequency distributions, largely reflected in shifts in mean
frequency of the total spectrum, as well as individual wide
bands, especially alpha. The multivariate expression of these
features reflecting the side of maximal abnormality, with
no meaning attributed to which hemisphere the maximum
occurred on, played a pivotal role. Also important were features
that measure disturbances in connectivity between regions
(including coherence and phase synchrony), and ratios of these
quantities, in order to capture temporal and spatial relation-
ships in brain activity among different regions and frequency
bands.

Table 6 is the contingency table for the NOC applied to this
population. It can be seen that the specificity of the NOC was
extremely low for the CT�/CT_NR patients. Comparing these
numbers to the specificity of the TBI algorithm shows the
improvement of the algorithm over the standard of care using a
decision rule like the NOC.

Table 4
Comparison of performance metrics for all three classifiers. Metrics of performance
reported in the Table include: Sensitivity/Specificity (with 95% confidence intervals
(CI)), Area Under the ROC Curve (AUC, with 95% CI), Negative Predictive Value
(NPV) and Positive Predictive Value (PPV) and Sensitivity on the subgroup of
“Severe CTþ” (N¼12). For calculation of NPV and PPV the 10% prevalence rates
are used.

Comparative
performance

Sensitivity
(%) (95% CI)

Specificity
(%) (95% CI)

AUC
(95%
CI)

NPV PPV CTþ Severe
sensitivity
(%)

Harmony 97.85 61.37 0.90 99.6 26.8 100.00
(94.23–
99.31)

(58.64–
64.03)

(0.89–
0.91)

LASSO 97.85 59.11 0.92 99.6 25.7 100.00
(94.23–
99.31)

(56.36–
61.81)

(0.90–
0.93)

GA 96.77 57.94 0.89 99.2 25.0 91.7
(92.79–
98.68)

(55.18–
60.65)

(0.87–
0.91)
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Fig. 4. Histograms of the GA discriminant scores with fitted Gaussians, as a
function of clinical category, shown in green for categories 1, 2 and 3 (CT�/CT_NR),
blue for CTþ cases that were not hematomas and in red for the hematoma
subgroups (“clinically important”) of the CTþ patients. The histograms are each
independently scaled to have peak value of 0.5, and the fitted curves are scaled to
have peak value of 1.0. High scores correspond to normal patients and low scores
correspond to abnormality. The threshold for classifying Cat4 is set at 0.637. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 5
Impact of severity of functional impairment on classifier performance; Percentage
of subjects classified as CTþ for five categories of subjects with increasing degree of
functional impairment (starting from Cat 1 which are the normal control subjects).

Percentage of subjects classified as CTþ

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Non-severe Cat. 4 Severe

N 497 414 373 174 12
Harmony 30.99 40.34 46.92 97.73 100.00
LASSO 33.40 42.27 49.33 97.73 100.00
GA 35.41 43.48 49.33 97.16 91.67

Table 3
Contingency tables for the three binary classifiers.

Predicted True

CT� /CT_NR CTþ Severe CTþ

Harmony CT� /CT_NR 788 4 0
CTþ 496 182 12

GA CT� /CT_NR 744 6 1
CTþ 540 180 11

LASSO CT� /CT_NR 759 4 0
CTþ 525 182 12
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4. Discussion

Three different classifier building algorithms were used to
explore the optimal separation of CTþ and CT�/CT_NR head
injured patients using subsets of quantitative features of brain
electrical activity. The three classifiers used different approaches
to data reduction and feature selection and imposed different
constraints. All three classifiers reported high sensitivity (average
97.5%) and specificity (average 59.5%) for traumatic structural
brain injury obtained using the classification approaches described
in this work. The NOC in the study sample (for those with all items
available) had a sensitivity equivalent to the three classifiers, but
on the artifact-free EEG segments selected by an extremely low
specificity of less than 8%, while the classifiers had a specificity of
approximately 60%, greatly exceeding that of the currently used
symptom based decision rules. It should be noted that due to the
high risk associated with false negative results, the algorithm
performance was specifically targeted to maximize sensitivity and
NPV at the expense of specificity and PPV, but while still achieving
specificity and PPV results that outperform currently available
standard of care assessments. These results suggest that the
BrainScope classifier used as an adjunct to standard clinical
evaluation has the potential to greatly reduce unnecessary expo-
sure to radiation associated with CT scans. Extremely high sensi-
tivity to hematomas was found without limitations to hematoma
volume which constrain current existing tools (e.g., those based on
near infra-red spectroscopy).

The increased risk for brain injury in the older population when
a head injury is sustained is consistent with our finding of a higher
age in the CTþ population. Since all variables are age regressed
relative to age expected normal values, the effect of age per se is
removed as a factor from the features derived from the brain
electrical activity data. In addition, no significant correlations were
found between age and classification accuracy. The increased
incidence of LOC and AMS in the CTþ population and the lower
mean SAC score were not unexpected, as the severity of the injury
would support such differences. While significant differences were
reported for GCS, it is more important to note that both groups
have a median of 15 (normal score) and an interquartile range
(IQR) of 0, giving support to the fact that both groups were
characterized by a GCS in the normal range, tightly around the
highest score of 15. The fact that there are a small number of CTþ
patients with lower GSC scores, and fewer outliers in the CT-/
CT_NR population, suggests that the variance differences explain
the significant, although not clinically meaningful, finding.

The observed similar performance of the three classifiers
suggests that the accuracy obtained by any one of these methods
represents the optimal Bayes decision boundary [45]. This bound-
ary is considered to represent the best possible separation obtain-
able, for a given type of discriminant and a given overlap of the
true underlying distributions of the classes, (i.e., CTþ from CT�/
CT_NR in this very mild presentation of TBI). Related to the overlap
of these distributions is the subjective nature of visual evaluation
and poor inter-rater reliability of the “gold standard” CT scan
particularly in milder forms of TBI. It is also important to take into
account the nature and severity of the structural brain damage

indicated by a positive CT scan. CTþ scans include a continuum of
injury from those that require little or no clinical intervention to
those that are clinically important and potentially life-threatening,
with associated different clinical responses and actions required.
The importance of additional quantitative evaluations of the CT
scans was demonstrated by the extremely high sensitivity
obtained by the algorithms when a measure of blood volume in
hematomas was used to define a “clinically important” subgroup
of the CTþ TBI population, where two of the three classifiers had
sensitivity of 100% and the third has a sensitivity of 92%. Further-
more, the high sensitivity of the algorithms to the full spectrum of
CTþ injuries suggests possible benefit even when neurosurgery is
not involved, and might aid in appropriate triage and interven-
tions such as restriction from sports activities, participation in
vigorous military duties, or additional clinical observation. This
technology may be especially relevant in situations where CT scans
are not readily available and transport for treatment is needed
such as in sports or military settings.

The pathophysiology of TBI is complex and related to many
different aspects of brain function, including neurometabolic,
neurophysiological and structural changes [46]. Quantitative fea-
tures of brain electrical activity (QEEG) used in the BrainScope
technology have also been shown to be sensitive to these changes
in brain activity [12–14] without the limitations of other neuroi-
maging tools (e.g., availability at point of care, radiation exposure,
cost-effectiveness). For example, the hypometabolism reported in
PET imaging in TBI is consistent with slowing of the EEG spectra
seen in this population. Furthermore, changes in connectivity
reported in TBI using Diffusion Tensor Imaging (DTI) are consistent
with the phase synchrony abnormalities reported using QEEG [47].
It is also important to point out that there is not one unique
solution to the classification problem addressed in this work.
Rather, there is a multivariate profile of features which demon-
strate separation. Since there is a high correlation among EEG
features, especially in the restricted number of brain regions
sampled with this device, the important factor is whether the
three methods drew features from similar measures sets which
describe the underlying nature of the abnormalities detected.
When evaluated by measure set it is noted that using the features
selected by the GA (the smallest number of features used), the
overlap with Harmony is 92% and with LASSO is 75%. Thus, while
the three classifier models described selected different features
and different numbers of features, the feature sets in all three were
representative of similar alterations in brain function and well
reflected the underlying pathophysiology hypothesized in the
scientific literature for structural and functional brain injuries
sustained in TBI.

A limitation of the current study is that we did not acquire
follow-up data from patients after ED discharge. Future studies
would be desired to investigate expanded applications of this
technology for following recovery and progression of TBI to further
optimize treatment and minimize unnecessary follow-up imaging.
Another limitation is the small number of hematoma patients in
the CTþ population, a replication in a larger population would be
desirable. The need for independent validation of the predicted
performance of these classifiers is necessary and is currently
underway.

Clinical results obtained using the classifier algorithms con-
structed using the methodology described in this paper demon-
strate the potential added value of using such technology as an
adjunct to current clinical practice to assist in more objective,
timely and optimal triage of mTBI patients who have structural
brain injury. In addition, the specificity of the classifiers has been
shown to be better than that for existing standard guidelines for
determination of referral of head injured patients for CT scan, thus
potentially impacting on unnecessary CT scans.

Table 6
Contingency table applying the NOC to all study subjects. It is noted that all
subjects did not have all the necessary items to complete the NOC, the table shows
those with all items recorded (�75%).

NOCþ NOC� Sensitivity Specificity

CTþ 181 5 97.30% na
CT� /CT_NR 881 72 na 7.56%

L.S. Prichep et al. / Computers in Biology and Medicine 53 (2014) 125–133 131



5. Summary

There is an urgent need for objective criteria as an adjunct to
standard clinical assessment for the identification of acute Trau-
matic Brain Injury (TBI). Details of the development of a quanti-
tative index based on brain electrical activity that is highly
sensitive to the presence of structural brain injury is described.
Closed head injured and normal patients (n¼1470) were recruited
from 16 U.S. Emergency Departments (ED) and evaluated within
72 h of injury, using brain electrical activity (EEG) recorded from a
limited montage of electrodes on the frontal and frontotemporal
regions of the forehead and given a short battery of clinical/
neurocognitive tests. At time of the evaluation patients had high
GCS (median¼15), and most presented with low suspicion of
brain injury. Following radiological studies patients were divided
into two groups, a CT positive (CTþ) group and a group with CT
negative findings or where CT scans were not considered to be
needed according to current standard of care (CT�/CT_NR). Three
different classifier builder methods were utilized, including:
Ensemble Harmony, Least Absolute Shrinkage and Selection
Operator (LASSO), and Genetic Algorithm (GA). Input to the
algorithms was a selected subset of linear and non-linear features
describing brain electrical activity in terms of power, connectivity
and complexity. All features were z-transformed relative to age
expected normal values and transformed to obtain Gaussianity.
Similar performance was obtained for all three classifier meth-
odologies with an average sensitivity/specificity of 97.5%/59.5%,
with area under the curves (AUC) of 0.90 and average Negative
Predictive Validity (NPV) greater than 99%. Sensitivity was higher
for CTþ cases with potentially life threatening hematomas, where
two of three classifiers were 100%. Applying the New Orleans’s
Criteria (NOC), a guideline for CT referral in TBI used often in the
ED, to the study population, specificity was 7.6%. The observed
similar performance of these classifiers suggests that the accuracy
obtained represents the optimal separation obtainable given the
overlap of the underlying distributions of brain activity measures
within the CTþ and CT-/CT_NR populations. High sensitivity to
CTþ injuries (highest in clinically important hematomas) and
specificity significantly higher than that obtained by widely used
standard guidelines for imaging in the ED, supports the enhanced
clinical utility of this methodology and suggests the potential role
of such a technology in the objective, rapid and more optimal
assessment and triage of TBI patients.
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