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Abstract—Assessment of medical disorders is often aided by ob-
jective diagnostic tests which can lead to early intervention and
appropriate treatment. In the case of brain dysfunction caused by
head injury, there is an urgent need for quantitative evaluation
methods to aid in acute triage of those subjects who have sustained
traumatic brain injury (TBI). Current clinical tools to detect mild
TBI (mTBI/concussion) are limited to subjective reports of symp-
toms and short neurocognitive batteries, offering little objective ev-
idence for clinical decisions; or computed tomography (CT) scans,
with radiation-risk, that are most often negative in mTBI. This
paper describes a novel methodology for the development of algo-
rithms to provide multi-class classification in a substantial popu-
lation of brain injured subjects, across a broad age range and rep-
resentative subpopulations. The method is based on age-regressed
quantitative features (linear and nonlinear) extracted from brain
electrical activity recorded from a limited montage of scalp elec-
trodes. These features are used as input to a unique “informed
data reduction”method,maximizing confidence of prospective val-
idation and minimizing over-fitting. A training set for supervised
learning was used, including: “normal control,” “concussed,” and
“structural injury/CT positive (CT+).” The classifier function sep-
arating CT+ from the other groups demonstrated a sensitivity of
96% and specificity of 78%; the classifier separating “normal con-
trols” from the other groups demonstrated a sensitivity of 81% and
specificity of 74%, suggesting high utility of such classifiers in acute
clinical settings. The use of a sequence of classifiers where the de-
sired risk can be stratified further supports clinical utility.

Index Terms—Genetic algorithms (GAs), informed data reduc-
tion, multiclass classification, quantitative electroencephalography
(QEEG), traumatic brain injury (TBI).

I. INTRODUCTION

A SSESSMENT of medical disorders is often aided by ob-
jective diagnostic tests used for early intervention and ap-

propriate treatment. Whether integrated into a testing device or
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as a comparison with normal ranges for interpretation of test re-
sults, classification of subjects into two or more categories is an
integral part of the diagnostic process. Many types of classifi-
cation approaches have been used for medical diagnostics, in-
cluding discriminant analysis, logistic regression, cluster anal-
ysis, neural networks, and tree-based algorithms [1], [2]. The
method selected for analyzing and developing classification al-
gorithms for diagnostic data must take into account the size of
the dataset (sample size and number of features) and the con-
struction and dimensionality of the feature space [3]. In the field
of neurological and psychiatric disorders, there is an extensive
literature demonstrating the clinical utility of linear discriminant
functions or other types of classifier functions, using features
extracted from quantitative analysis of the electroencephalog-
raphy (QEEG), as adjuncts to the diagnostic process, early de-
tection, and treatment optimization [4]–[7].
This paper focuses on the derivation of a method for the

objective evaluation and classification of traumatic brain in-
jury (TBI) subjects using quantitative features of brain elec-
trical activity, with particular emphasis on the translation of
these methods into clinically useful tools for the acute care set-
ting. There are more than 1.7 million emergency department
(ED) visits annually for TBI [8] an estimated 75% of which are
“mild,” and an estimated 3.8 million sports related concussive
injuries incurred annually in the United States [9]. Of critical
importance to the emergency medicine clinician, whether in a
civilian or military environment, is the ability to identify which
patients have a “clinically important brain injury,” for which the
current “Gold Standard” is a positive result on the computed to-
mography (CT) scan [10]. Attempts to develop “clinical deci-
sion rules” for obtaining a CT scan in the emergency depart-
ment (ED), [e.g., New Orleans Criteria (NOC) and the Cana-
dian CT Head Rule (CCHR)], have resulted in extremely high
sensitivity for clinically significant brain injury, (95%–100%),
with extremely low specificities ( 12%–20%) [11], [12]. Fur-
thermore, the growing awareness of the possible radiation risks
associated with CT scans further complicates its use in the di-
agnosis process and highlights the shortcomings of current de-
cision rules. In contrast, the large majority of TBI patients who
are CT negative (CT-) or for whom a CT is not medically in-
dicated (mTBI or concussion), may have significant abnormal-
ities in brain function for which no “Gold Standard” currently
exists, despite attempts to establish guidelines to identify and
determine the severity of such concussive injury [13].
Mild TBI patients have been separated from moderate/severe

TBI and from normal with high accuracy using linear discrimi-
nant functions built on variables extracted from 19-lead QEEG

1534-4320/$31.00 © 2012 IEEE



PRICHEP et al.: CLASSIFICATION OF TRAUMATIC BRAIN INJURY SEVERITY USING INFORMED DATA REDUCTION 807

[6], [14], [15]. Features of brain function which contributed
most to these separations were those that reflect changes in
power and synchrony relationships between brain regions,
reflecting disturbances in “connectivity.” It is important to note
that such measures are the ones which have been suggested to
correlate with the abnormalities reported using diffusion tensor
imaging (DTI) in diffuse or traumatic axonal injury (DAI or
TAI), suggested to be of etiological significance in concussion
[16]–[18]. Cao et al. have shown that classical quantitative
QEEG variables extracted from the EEG power spectrum could
successfully detect functional deficits following concussion in
a study of 61 athletes [19]. These researchers all used EEG data
collected from the full set of 19 leads standardly positioned.
Although previous QEEG findings in mTBI are suggestive, a

method for classification which is based on 19 lead EEG data
is clinically impractical, since resources to obtain such data in
the acute setting are typically not available or too cumbersome
to employ. The EEG input to the algorithms described in this
paper was therefore restricted to a more clinically viable lim-
ited montage of data acquired from only frontal forehead loca-
tions. The use of this limited montage is supported by consider-
able evidence of the maximum vulnerability of frontal regions
of the brain to TBI, regardless of the direction of the forces, of
where the trauma was sustained, or of the etiology of the in-
jury [13], [16], [20], [21]. Furthermore, recent evidence from
DTI studies have reported abnormalities in frontal fiber tracts
in mTBI [13], and demonstrated that frontal tract abnormali-
ties were most highly correlated with EEG phase synchrony be-
tween frontal regions [17]. Such evidence supports the unique
importance of these brain regions to the disruption of connec-
tions thought to be fundamental to concussive injury, and sug-
gests that recordings made over the frontal regions alone should
be sufficient in obtaining high sensitivity to mTBI.
Important to this study was the use of statistical classifica-

tion in the separation of mTBI subjects into clinically mean-
ingful categories. A generic multiclass classification task can
be thought of as a mathematical function (linear or nonlinear)
which uses as its input a vector of computed quantitative fea-
tures of an object (also called observations or patterns) and pro-
duces as output, a label which assigns the object to a specific
category (or class). Suppose that we want to build a classifica-
tion system (also called classifier function) which separates ob-
jects of interest into categories . Suppose in ad-
dition, that for each incoming object, , a set of K quantitative
features: are computed. The classifier function
should be designed such that it uniquely assigns a category label
to each incoming object . This can

be written symbolically as

(1)

When there are two categories, the classifier function is often
referred to as a binary classifier function. Duda et al., [22] noted
that “the degree of difficulty in a classification problem depends
on the variability in the features values for objects in the same
category relative to the difference in feature values for objects
in different categories.” In any nontrivial classification problem,
the distributions of features for objects in two or more categories
will significantly overlap. Multiclass classifiers (with cate-
gories) are usually designed by combining the outputs of up to

binary classifier functions [23]. A binary classifier function
for the two classes and is usually derived in a straightfor-
ward way from a discriminant function which assigns a value
to an incoming object . This derivation is done according

to the following assignment rule:

(2)

where indicates a numeric classification threshold. Moving
this threshold in overlapping distributions results in a trade-off
between sensitivity and specificity, emphasizing the importance
of considering the stratification of risk (i.e., false positive versus
false negative) as appropriate for the specific application of the
classifier function. To classify subjects into one of several cat-
egories, multiple approaches can be used. A single three-class
classifier identifies the category with the highest likelihood of
membership for each subject, but this approach is less effective
when there is considerable overlap between the categories (as
is the case in our TBI categories). A set of three binary classi-
fiers (i.e., 1 versus 2, 2 versus 3, and 3 versus 1) can be used
with a voting strategy to combine the three results and deter-
mine the appropriate category for the subject. However, this
approach often results in confounding results or disagreement
between two classifiers that must be resolved. Furthermore, as
often occurs with biological signals, the subject classes are not
well separated (highly overlapping), potentially causing lack of
reliability and diminished utility of the classification method.
In this paper, we describe a method that enables such a subject
population, patients who have suffered a head injury, to be clas-
sified into clinically useful categories using a multidimensional
set of QEEGmeasures, informed data reduction, and a sequence
of binary classifiers.

II. METHODS DATA ACQUISITION

A. Subjects

Data was collected at 13 EDs across the US, with approval
from local Institutional Review Boards (IRBs). Subjects were
a convenience sample of males (70%) and females
meeting inclusion/exclusion criteria described below. In 499 of
these cases a second sample of non-overlapping data was se-
lected from the same recording to be used as a stability sample.
All subjects signed written informed consent.
Inclusion Criteria: Males and females between the ages of 15

and 80, who suffered a closed head injury and with a Glasgow
Coma Scale score (GCS, [24]) above 8, with or without loss of
consciousness (LOC) or traumatic amnesia and with symptoms
of TBI. Inclusion criteria for “normal controls”: 1) ED patients
under duress without head injuries or problems related to the
central nervous system; or subjects who participated in college
and high school sports, but who did not sustain head injury; and
2) subjects who sustained head injury but had no altered mental
status (AMS), no LOC, no amnesia and no significant symptoms
related to head injury upon presentation.
Exclusion Criteria: Subjects with scalp or skull abnormal-

ities or whose clinical condition, such as head trauma, will
not allow placement of the electrodes; intoxication in those
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TABLE I
AGE DISTRIBUTION BY CATEGORY

obtunded to the point where they could not participate in
the study. In addition, the following patients were excluded:
those with advanced Dementias, Parkinson’s disease, chronic
drug or alcohol dependence, known seizure disorder, mental
retardation, or those taking daily prescribed medication for a
known psychiatric disorder.
In a triage setting, complicating factors such as drugs, al-

cohol, fatigue, pain, etc., are present and can affect the clinical
presentation of a patient and the characteristics of their EEG,
and therefore need to be considered to enable accurate classi-
fication. The strategy adopted in our investigation was to not
attempt to exclude these factors, but rather include them in all
subject groups. By doing this, they are eliminated as differenti-
ating factors among groups, and features sensitive to these fac-
tors are not selected for the two classifiers that enable separation
of subjects into categories.

B. Classification of TBI

Since the statistical classification approach described in this
paper belongs to the category of supervised learning methods, it
required the assignment of each subject in the training database
to a category specific to severity of TBI. Since there is no estab-
lished “gold standard” for mTBI or agreed upon definitions of
categories within the spectrum of TBI, we consulted with emer-
gency medicine and sports medicine physicians in conjunction
with published guidelines [25], [26], to define three clinically
relevant categories for subjects suspected of a traumatically in-
duced structural and/or functional brain injury.
1) Category 1 (“normal controls”): Absence of acute trau-
matic structural brain injury (visible on CT scan or CT
deemed unwarranted) and no evidence of functional brain
injury.

2) Category 2: Absence of acute traumatic structural brain
injury (visible on CT scan or CT deemed unwarranted),
but evidence of functional brain injury (based on validated
symptom and neurocognitive assessments, as determined
by the expert group of physicians).

3) Category 3: Presence of acute traumatic structural brain
injury (visible on CT scan, CT+).

These categories, therefore, provide both the basis for
training the classification algorithms and a standard against
which their performance can be evaluated in a prospective
study or with an independent test group. Table I shows the total
number of subjects in each category and their age distribution
by decade from 15 to 80 years. It should be noted that the age,
gender, and race distributions of the sample were determined
by the representation of each in the populations served by the
participating sites involved.

C. EEG Data Acquisition and Artifact Detection

EEG Protocol: Ten minutes of eyes closed resting EEG was
recorded from the following locations of the expanded Inter-
national 10–20 Electrode Placement System: Fp1, Fp2, F7, F8,
AFz, A1, and A2. FPz was used as ground electrode. Signals
were remontaged to linked ears per standard QEEG practice,
and consistent with the normative data described below. A sam-
pling rate of 8 kHz1 was used and the data was subsequently
down-sampled to 100 Hz for processing.
Automatic Artifact Detection: The classification system de-

scribed in this work included a fully-automated artifact detec-
tion module (comprised of a set of algorithms functionally de-
scribed below). Approximately one to 2 min of artifact-free
EEG data (representing 24–48 epochs of length 2.56 s) were se-
lected from the recording using the artifact detection algorithms
described briefly below. It was required that each epoch be cre-
ated from continuous EEG data. The 2.56 s epoch corresponds
to an FFT size of 256 points used to compute estimates of the
power spectra of the subject’s EEG.
The artifact detection module identifies the following types

of artifacts, briefly summarized below.
Type 1.a: Vertical eye movement (VEM). Detection of a
vertical eye movement (VEM) is performed by locating
large excursions (“peaks”) beyond a given threshold on the
Fp1 and Fp2 leads. Since both eyes move in unison, the
algorithm ensures that only such excursions which occur
concurrently and in the same direction (same polarity of
the peaks) are identified as vertical eye movements.
Type 1.b: Horizontal/Lateral Eye Movement (HEM/LEM).
Slow lateral eye movements (HEMs) produce waveforms
of that have opposite polarity at F7 and F8. They are char-
acterized by a low-frequency ( Hz) “scissor-pattern”
best seen on these two electrodes. Thresholded differences
between these leads filtered in the band of interest (0.5–3
Hz) are identified as artifact.
Type 2: Patient Cable (or Electrode) Movement (PCM).
This artifact typically produces extremely large slow
waves in the EEG traces. It is detected by identi-
fying excessively large EEG magnitudes (also called
“over-range”), using an amplitude threshold above that
thought to occur normally in brain activity in any of the
five recorded frontal EEG channels.
Type 3: Impulse artifacts (IMP). This algorithm looks at
high-frequency variations of signal amplitude in each sub-
epoch. Within each window examined (100 ms width), the
value is computed and triggers an IMP arti-
fact detection when it exceeds a given threshold. Care is
also taken to eliminate “sharp alpha” as a trigger of IMP,
using an additional filter.
Type 4: Muscle activity (EMG). This artifact is character-
ized by high-frequency signals (above 20 Hz) occurring
in bursts of variable duration, as reported in the literature
[27]. Its effect on the power spectrum of the EEG is to
modify its general morphology towards a “flat spectrum,”
which is a characteristic of the power spectrum of White

18 kHz sampling was used to enable functionality to collect brainstem evoked
responses not used in this work which therefore used only the 100 Hz data.
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Gaussian Noise. As such, this artifact can be detected by
comparing the power in two neighboring EEG frequency
bands.
Type 5: Significantly Low Amplitude Signal (SLAS). This
artifact is meant to capture extremely low-amplitude EEG
signals (at all frequencies) which occur, for example, when
the brain is in Burst Suppression mode; a condition which
can occur (but should be avoided) during anesthesia. This
artifact can be detected by looking for signal epochs with
mean-square energy below a threshold.
Type 6: Atypical Electrical Activity Pattern (AEAP). This
artifact type is meant to detect unusual patterns of ac-
tivity in the EEG such as those which occur in the EEG
of epileptic subjects during a convulsive or nonconvul-
sive seizure. The algorithm is sensitive to spike-wave
complexes occurring in bursts over several hundred mil-
liseconds. It uses a combination of wavelet analysis and
fractal dimension computation and was presented in detail
in [28].

Note that out of these artifact types, two are nonphysiological
(type 2, type 3), three are physiological but are not brain-gener-
ated (type 1a–1b, type 4) and two are brain-generated (type 5,
type 6). All of these artifacts reflect nonstationarity of the noisy
EEG signal. Examples of artifacts of these types, as they appear
on a 19-lead electrode montage, can be found in a standard EEG
reference text [29]. When an artifact is identified in any lead,
data from all leads are removed from that time period. Thresh-
olds referred to in the above summaries were determined in in-
teractive studies with expert visual analysis of the records, and
were based on good performance on the match between tech-
nologist-based and automatic detection of the artifact type for
the training dataset. It is important to note that comparison of
the automatic artifactor with visual editing of an EEG expert re-
sulted in a high percentage of data overlap (87.6%) [30], which
is significantly higher than the average inter-rater agreement re-
ported in the literature between visual editors [31], thereby val-
idating the assumption that automatic editing of EEG performs
at least as well as an expert EEG technologist.

III. CONSTRUCTION OF DATABASE OF QUANTITATIVE
EEG FEATURES

The classification algorithms reported on here derive their
performance from our diverse set of QEEG features, both
linear and nonlinear. Features include both traditional features
derived from estimates of power spectra [32] computed in
the conventional frequency bands as well as nontraditional
quantitative features computed using state-of-the-art signal
processing methods. The nontraditional features are reviewed
in detail elsewhere by Thakor et al. [33] and Sakkalis et al.
[34]. It is also noted that since there is no single unique solution
to the classification problem posed, and considering the high
correlation between QEEG variables in the reduced space
of the frontal regions, we used an expanded set of measures
considered to be descriptive of perturbations of the QEEG
in clinical populations. Below, we give the formulas used to
derive the features that are part of our feature set.

A. Univariate Features

1) Age-Regression and -Transform of Univariate Features:
The EEG of a normally functioning person in the resting
or ground state of the brain is regulated by an anatomically
extensive, genetically based neurophysiologic homeostatic
system which changes predictably as a function of age. The
relationship with age has been demonstrated to be well de-
scribed by a set of regression equations across ages 6–90 years,
which have been published [32], [35], [36], replicated in a
series of international peer reviewed publications and demon-
strated to enhance clinical utility of QEEG [4]. The sample of
normal/control subjects used in these equations is referred to
as the norming group. In order to remove age as a factor in the
development of the classification algorithms, the development
process includes an age regression step which is performed in
order to eliminate the (normal) influence of age on any uni-
variate variable computed from the EEG. A model is assumed
in which a raw variable (transformed) varies approximately
linearly with the of the patient age expressed in years.
For each QEEG variable the age-regression parameter
is therefore computed (offline and only once on the norming
group) as the slope of the best-fitting straight line for the
cloud of points . The age-regressed
variable will consequently have a linear fit of slope zero with
the variable , which results for this variable
in a very small correlation with age

(3)

The -transform is a standard statistical transform which
normalizes the distributions of QEEG variables to an ap-
proximately Gaussian distribution. Z-transformed values of
univariate variables are obtained by the equation

(4)

where and denote, respectively, the mean and standard
deviation of the age-regressed variable . These two scalar
parameters are also computed offline for the norming group.
After this process, all features will have a mean and
standard deviation for the norming group and will be in
units of standard deviations, i.e., the feature will be expressed
on a common metric of probability. This facilitates the use of
combinations of features in discriminant functions without the
complication of different sets of units, as well as the creation of
multivariate features.
Examples of two specific variables and with their cor-

responding best linear fits with are shown in Figs. 1 and 2. In
these figures, we illustrate the age-regression process on two
sample QEEG variables: ‘BRF1F2A’ (“Bipolar Relative Power
variable in Alpha band, between Fp1 and Fp2”) and ‘BFrF7ZS’
(“Bipolar Fractal Dimension in S band, between F7 and AFz.”).
The top panels of Figs. 1 and 2 show the scatter plot of

, i.e., of the variable prior to age-re-
gression. Note that in each figure, the slope of the best linear
fit is not zero indicating the presence of a correlation of this
variable with age. In contrast, the bottom panels of these figures
show the scatter plot of , i.e., of the
variable after age-regression and z-transform. Note that in
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Fig. 1. Top panel shows scatter plot of for uni-
variate variable “BRF1F2A” (not age-regressed), for the 180 norming subjects.
The straight line indicates the best linear fit. Bottom panel shows scatter plot of

for univariate variable “BRF1F2A” (age-regressed
and z-transformed), for the 180 norming subjects. The (horizontal) straight line
indicates the best linear fit after age-regression.

each figure, the slope of the best linear fit is zero indicating
that the correlation of this age-regressed variable with age is
insignificant.
2) Traditional Univariate Features: These features are

computed in 10 frequency bands: Delta1 (0.5–1.5 Hz), Delta
(1.5–3.5 Hz), Theta (3.5–7.5 Hz), Alpha (7.5–12.5 Hz), Alpha1
(7.5–10 Hz), Alpha2 (10–12.5 Hz), Beta (12.5–25 Hz), Beta2
(25–35 Hz), Gamma (35–50 Hz), and Total (1.5–25 Hz).
Traditional QEEG features in our set consisted of monopolar
absolute and relative power, bipolar absolute and relative power,
monopolar and bipolar mean frequency, monopolar and bipolar
inter- and intra-hemispheric power asymmetry, monopolar and
bipolar inter- and intra-hemispheric coherence. These features
are derived from the EEG power spectrum, cross-spectrum
and covariance matrix and are described in detail elsewhere
[32], [36]. Following the computation of these “raw features”
a log-based transform was applied as described in the literature

Fig. 2. Top panel shows scatter plot of for uni-
variate variable “BFrF7ZS” (not age-regressed), for the 180 norming subjects.
The straight line indicates the best linear fit. Bottom shows panel scatter plot of

for univariate variable “BRF1F2A” (age-regressed
and z-transformed), for the 180 norming subjects. The (horizontal) straight line
indicates the best linear fit after age-regression.

[32], [35], [37] to improve the Gaussianity (or normality) of
these features prior to further statistical computations.
3) Nontraditional Univariate Features: In addition to

traditional univariate features, we also use chaotic/fractal
measures (fractal dimension and scale-free activity), informa-
tion theory-based measures (entropy and wavelet entropy),
and functional connectivity measures (phase lag and phase
synchrony). Measures of the first two types are computed on
the full-band signal only. The replicability criterion presented
in Section IV-A serves, for these chaotic measures, as a test
for quasi-stationarity. These features add to the dimensionality
of the total feature set and expand importantly for TBI, in the
domain of connectivity and other measures of disturbances of
the EEG signal beyond the frequency domain. Further details of
the computation of these measures are provided in Appendix A.

a) Fractal Dimension Measures: This measure evaluates
the global complexity of the brain electrical activity at each elec-
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trode location across the total spectrum. The fractal dimension
of a 1-D signal is the fractal dimension of the curve formed by
the plot of that signal. It is a nonlinear mathematical quantity
(taking values between 1 and 2), which reflects to what degree
the curve fills 2-D space as one zooms down to finer and finer
scales.

b) Scale-Free Brain Activity: Like the fractal dimension
this measure evaluates the global complexity of the brain elec-
trical activity at each electrode location. The power spectrum of
spontaneous brain activity typically follows a law over the
frequency range 1–25 Hz and is therefore approximately linear
when plotted on a log-log scale. This behavior of the power
spectrum is typical of fractal processes. The parameter is usu-
ally referred to as Scale-Free Brain Activity [38].

c) Information Theory-Based Measures: Four types of
these measures are computed: traditional Shannon entropy,
Tsallis entropy, wavelet entropy and relative wavelet entropy.
These entropy measures evaluate, each in a slightly different
way (see Appendix A), the degree of order/disorder of the brain
electrical activity at each electrode location.

d) Functional Connectivity Measures (Phase Lag and
Phase Synchrony): These are measures of functional connec-
tivity and evaluate the relationship between and among brain
regions. Phase lag was computed, in each frequency band,
as the average phase delay between signals at two electrodes
using the normalized cross-spectrum [39]. Phase synchrony
was computed from a time-frequency representation of the EEG
(RID-Rihaczek distribution) and measures the degree of phase
locking between two electrode locations in each frequency band
[17]. It is of note that we also computed mutual information
(MI) and cross mutual information (CMI) measures, but they
were not found to meet our entry criteria or were not selected
by the classification methods and so are not described in more
detail.

B. Multivariate Features

The set of QEEG variables also includes sets of multivariate
anterior features which are non-linear functions of selected
groups of the univariate variables described above. These
multivariate features are computed “across regions,” for any
given QEEG frequency band. Therefore, they correspond to a
larger, less focal region and help in capturing the functional
performance of this brain area treated as a “system.” Currently,
multivariate features are derived for combinations of regions
which include: all regions, all left hemisphere regions, all right
hemisphere regions, prefrontal regions, frontotemporal regions,
and cross-frontal regions.
Multivariate variables are computed as a cube root of sums

of squares of z-transformed, age-regressed univariate variables
as follows:

(5)

where denotes the number of univariate variables
included in the computation of the multi-

variate. Since the univariates are approximately Gaussian, the
sum-of-square has a Chi distribution (i.e., is positively skewed).
This skew is reduced by the application of the cube root.

A multivariate variable computed by (5) may no longer
have mean of zero and standard deviation of 1 for the norming
group and may also show a dependency on age. Thus, a second
stage of age-regression and z-transform is applied to each mul-
tivariate variable as follows:

(6)

where is the age-regression parameter (determined for the
norming group as described above) and and are the mean
and standard deviation of the age-regressed variable

.

IV. INFORMED DATA REDUCTION AND FEATURE
SELECTION METHODS

A. Informed Data Reduction

Our complete pool of quantitative features consists of a total
of 1536 features (1215 univariate, 321 multivariate) extracted
from each recording. With such a large number of features, it is
important to apply data reduction methods prior to selecting fea-
tures for the classifiers. Conventional methods of data reduction
reported in the scientific literature include t-tests and ANOVAs,
used to identify variables which are significantly related to de-
pendent variables of interest [40]. Variables which maximize
adjusted multiple correlation coefficients between QEEG and
dependent variables, minimizing the residual sum of squares
(RSS), are selected. While these methods are of some limited
use, they do not systematically address important considerations
of adequacy of feature selection, and may be inappropriate to
the construction of nonlinear (e.g., quadratic) discriminant func-
tions where means differences may no longer be of primary im-
portance. In this study, data reduction is advanced by using an
“informed” approach to the variable/feature pool, including the
following requirements for variables to be included in the set
available to the classifier construction methods.
1) Replicability: While there is a literature which attests to
the stability and replicability of classical QEEG features
across time when there is no known change in brain state
[41], the replicability of each quantitative feature in this
study was evaluated separately for short-term replicability,
where only those features above a certain replicability level
were candidates for input to algorithm development. To
test for replicability within this dataset, QEEG features
were extracted from a large population of normal and ab-
normal subjects from a first set of 48 clean
epochs (1–2 min) and then computed again from a second
set of 24–48 clean epochs (within the same recording and
immediately following the first, when available). For each
QEEG feature (z-score), we compute the mean and
standard deviation across subjects, of the magnitude of
the difference between the z-score and its replication, i.e.,

(7a)

(7b)

We then compute the “variability” of the features as

(7c)
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A “replicability score” (either 0 or 1) is then assigned
to each feature by comparing the variability to a fixed
threshold where if the replicability score ,
or else replicability score .
A value of was selected for the threshold using
empirical techniques to balance replicability requirements
with the need to preserve a sufficient number of features
in the variable database. By requiring replicability in all
features in the database, we ensure that we are representing
the quasi-stationary characteristics of the EEG which are
most important in characterizing brain activity in this
application.

2) Separability: It was hypothesized that selecting individual
features that are unequivocally able to separate the two
groups in a binary classification task will improve the
overall multivariate performance of the classifier func-
tion in terms of sensitivity and specificity. Therefore, a
two-sample Kolmogorov–Smirnov test was employed to
test the null hypothesis that the values for an individual
feature for the two groups are from the same distribution.
The alternative hypothesis is that they are from different
distributions. The significance level was selected to be
0.15 so as not to remove too many features. Any feature
that did not pass this test (i.e., null hypothesis was not
rejected) was removed from the feature pool available for
the construction of the classifier algorithm.

3) Homogeneity: It was also hypothesized that the consis-
tency of classification performance could be improved by
ensuring that we select those features that have similar dis-
tributions within each group considered separately. There-
fore, the data from each group were randomly divided into
two sets and a two-sample Kolmogorov–Smirnov test was
employed to test the null hypothesis that the values for an
individual feature for the two groups are from the same
continuous distribution. This process was repeated. The
significance level was selected to be 0.05. Any feature that
did not pass this test (i.e., null hypothesis was rejected) for
any one of the two repetitions was removed from the fea-
ture pool available to the classifier construction algorithm.

4) Normal means value: As described above, all features are
transformed to z-scores, expressed in standard deviation
units of the norming group. Since all features for the
norming group population have a mean of 0 and a standard
deviation of 1 (by definition), it may be expected that the
normal controls in a training population will also have
approximately the same mean and standard deviation.
Thus, for a feature to be considered a candidate for the
classification algorithm, it was required that it have a mean
value less than 1.0 in the normal training population.

5) Absolute means difference: Following the same clinical
logic as for 4 above, the characteristics of the mean values
of a feature in the “normal” training population should
be closer to that of the normative population than the
“abnormal” training population with a structural head
injury (category 3). This condition is implemented as a
rule whereby all features for which the absolute value of
the mean for the abnormal population must exceed that
for the normal population by at least 0.01 to be included in

the available reduced feature pool for classifier selection.
In this way variables were eliminated that had spurious
differences between groups, i.e., where the normal group
had the more abnormal value.

6) 6. Neurophysiology-based exclusion: To avoid potential
contamination of the feature pool, certain variables were
excluded a priori when: 1) the literature shows them to
be inherently nonreplicable, 2) there existed an inadequate
norming sample, or 3) the feature may be affected by re-
maining artifacts (e.g., features for the delta1 band). In this
way, the potential for confounding factors not related to the
classification issue of interest would be minimized.

The use of such a method to help prune the size of available
features from a pool of over 1500 to a range (300–500) that can
be reasonably assessed using current generation computational
platforms is a major strength of this approach. Combining
these steps in the process of data reduction enriches the pool
of variables that are entered into Section IV-B. It is noted
that the thresholds used in the steps described above are
determined with respect to the size of the feature set and
number of subjects and would be modified accordingly for
different numbers of features and subjects, such that a sufficient
number of features remain.

B. Feature Selection Methods

To obtain optimal classification performance, two feature
selection methodologies were investigated, genetic algorithm
(GA) and deterministic feature selection (SFP). Both method-
ologies are based on different approaches but have a common
goal, i.e., to create increasing performance of the classifier
functions at each iteration of the process. These two methods
are described below.
1) Genetic algorithm and modified Random Mutation Hill
Climbing optimization: Following the informed data re-
duction steps described above, a large number of features
still remain in the reduced feature pool (denoted by )
for use in each classifier, which typically leads to a very
large value for the total number of distinct sets of fea-
tures taken from a total pool of features (which would
corresponds to the size of the search space in an exhaus-
tive search). In order to select near-optimal subsets of
features for a classifier function, a state-of-the-art GA was
used. GAs are special types of a class of search algorithms
called evolutionary algorithms that are used for solving a
wide range of optimization and search problems [22], [42].
These algorithms mimic the biological process of evolu-
tion or, more descriptively, the process of survival of the
fittest (see for example [22, Sec. 7.5]). They have been
used extensively in machine learning applications and are
particularly good at solving classes of problems involving
a search through a very large space of possible solutions,
including feature selection problems [43]–[46]. This ap-
proach was uniquely suited to the variable selection and
classifier problem faced in this study, although not previ-
ously used in the literature to design classifiers of brain
function using subsets of QEEG features.
• Fig. 3 shows a block diagram of the GA search tech-
nique applied to the problem of selecting a “best set” of
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features among in view of performing
a classification task using a discriminant function (DF)
built from the features. First, any subset (list) of
features from our total pool of features is represented
as a binary bit string of length , which we refer to as a
“chromosome” (in accordance with GA research litera-
ture), where bits are set to one and all other bits are set
to zero. Each bit corresponds to a single feature. If the
bit value is one (respectively zero), the corresponding
feature is present (respectively absent) in that particular
subset of features. According to this representation, the
“genes” of the chromosome are the individual bits.

• GAs require the selection of an objective function [also
called figure of merit (FOM)] which should reflect the
classification performance of any chromosome. In this
model, the area under the curve (AUC) for the receiver
operator characteristic was used as the objective func-
tion2 since a high AUC (close to 1) is associated with
high sensitivity/specificity of the DF [47]. Specifically,
the AUCwas computed using a ten-fold cross-validation
method. During the initialization phase, the GA-based
classifier builder produces random binary bit strings
(this initial chromosome population of size is referred
to as “generation 0”), where each chromosome repre-
sents a randomly selected subset of features. By ap-
plication of the standard GA operators (ranking, selec-
tion, recombination, (crossover), mutation and reinser-
tion), the initial population of chromosomes “evolves”
through generations towards a population with better
overall fitness. The search for “best discriminant func-
tions” with variables can therefore be seen as the
search for “best chromosomes” (in the sense of having a
high objective function value) in each generation, con-
taining bits set to one.

• The parameters of the GA algorithm were the following:
1) population size : 50; 2) number of generations

: 50; 3) recombination probability: 0.6; 40 mutation
probability: 0.003. These parameters are standard for
GA algorithms, and it was found that the final results
from GA runs were robust to modifications of these pa-
rameters.

• After generations, the overall best chromosome is
further improved through a local random search using
a modified Random Mutation Hill Climbing algorithm
(mRMHC). This last step is performed because while
the GA will typically produce a “highly fit” generation
of chromosomes after a number of iterations, it does not
guarantee that a local optimum is reached. This latter al-
gorithm simply performs a local search around the best
chromosome found among all generations, “modified”
in such a way to keep the number of features in the chro-
mosome constant. This is done by slightly modifying
the classical RMHC algorithm (see for example [42, p.
129]) so as to randomly flip two bits (of different values)

2A cost penalty was added to the AUCwhich increases linearly as the number
of features in the classifier departs from a base number of features. The base
number was selected such that it meets the maximum number of features rule
to prevent over-fitting.

instead of a single one, thereby repeatedly substituting a
single feature for another.

2) Deterministic feature selection (the “Simple Feature Picker
at a Time,” SFP ): The Simple Feature Picker (one at

a time) (acronym: SFPx1), was so named by the authors
because the deterministic process is conceptually simple.
It is a stepwise deterministic process that selects one fea-
ture at a time based on a FOM. In this case, the FOM
was the average of the AUC of the classifier receiver oper-
ating characteristic (ROC) curve computed using a ten-fold
cross-validation method (described below). The first fea-
ture used in the classifier is selected from the available fea-
ture pool by finding the one that yields the largest average
AUC based only on that single feature. The next feature
added to the classifier from those remaining in the feature
pool is the one that yields the largest increase in the AUC
for a classifier consisting of the pairing of that feature and
the previously selected feature. The process continues until
a predetermined number of features are selected or there
are no more features available that increase the AUC. One
of the distinct problems with using the SFPx1 algorithm,
particularly with large numbers of very similar features and
for classification problems with very similar groups, is that
it can easily latch on to a local maxima early in the process.
This tendency often prevents it from finding what are in
some cases significantly better solutions as more variables
are considered later into the process. To address this short-
coming, we modified the basic SFPx1 algorithm to retain
the best solutions at each iteration, rather than
the single best solution. This enhanced algorithm, referred
to as the SFPx algorithm, considers each of the solu-
tions as a starting point for the next iteration, and chooses
the subsequent set of best solutions from the feature pool.
To find the best trade-off between run time and solution
performance, we ran a series of experiments for values of
between 2 and 10. We found to be a reason-

able choice. The mRMHC process was also applied to the
SFPx solutions to further enhance these solutions.

C. Rules to Prevent Over-Fitting

An important consideration in the development of an effec-
tive classifier is that it not be over-fitted to the training data,
resulting in a loss of generalization to the broader population.
Over-fitting typically results in very good performance on the
training data, but poor performance on an independent test set.
To guard against it, we imposed a limit on the number of features
used in constructing each classifier. Statistical methods to help
determine the optimal subject to variable ratios have been sug-
gested, including a minimum subject-to-variable ratio of 10:1
for a linear discriminant model [48]. For a quadratic discrimi-
nant model, the number of variables selected, , should be such
that does not exceed the number of samples in
the smallest training category [48]. In the case of our 3 versus
2,1 quadratic discriminant function (QDF), the smallest group is
Category 3 subjects (109 subjects) and therefore the maximum
number of variables which we allow for this discriminant is 19
since .
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Fig. 3. Block diagram of exemplar linear discriminant function (LDF) building
system involving: 1) statistical preprocessing of initial pool of quantitative brain
activity features, 2) the representation of candidate LDF solutions as “chromo-
somes,” 3) evolutionary search strategies (GA with mRMHC algorithm).

Beyond simply limiting the number of features selected,
an attempt was also made to ensure that each selected feature
provided a significant and independent contribution to the
information content of the classifier function. This rule was
implemented during the feature selection process (both GA
and SFP) whereby only features that were highly correlated
(i.e., Pearson correlation coefficient greater than 0.95) with any
existing feature in the feature list could not be selected. This
directly reduced the possibility of over-fitting due to redundant
information.

D. Cross-Validation

As with many classifier development efforts involving the
use of human subjects, we too were faced with the problem
of having very limited sized populations. In order to use all
available data for both testing and training in a way that was
statistically validated, cross-validation methods were used.
Cross-validation involves iteratively dividing a population
into nonoverlapping test and training groups, where, at each
iteration, the training group is used to develop a classifier
and the test group is used to evaluate the performance of that
classifier. The process repeated until all data has been used for

both testing and training, with an aggregate performance mea-
sure constructed by combining the individual test performance
measures obtained at each iteration.
In this work, we use cross-validation both during the feature

selection phase of binary classifier development and for eval-
uating classifier performance once a reduced pool of features
has been identified. For the feature selection phase, as described
above we use ten-fold cross validation [49], ensuring that each
of the three categories of subjects is equally represented in each
fold. To evaluate classifier performance after the subset of fea-
tures (selected from the reduced pool of features) has been final-
ized (using GA or SFP), a leave one out (LOO) cross-validation
was used. LOO cross-validation can be viewed as the limiting
case of an N-fold cross-validation in that at each iteration only
one subject is used for testing while the remaining population
is used to train the classifier. Hence, if there are total sub-
jects across the combined categories, we develop and test dif-
ferent classifiers. We again compute an aggregate performance
measure by combining the individual performance measures
from the different classifiers. The use of these two different
cross-validation methods is intended to provide both conserva-
tive and reliable predictions of future classifier performance.

E. ROC Curves and Performance Metrics

In order to obtain a statistical description of the performance
of a given two-class classifier function, it is useful to compute
and plot the ROC curve. The ROC curve illustrates, for any
choice of a discriminant output threshold, the performance [sen-
sitivity, specificity, positive predictive value (PPV), and nega-
tive predictive value (NPV)] which can be expected of the bi-
nary classification algorithm. For definitions of ROC, sensi-
tivity, specificity, PPV, and NPV in the context of our discrim-
inants, the reader is referred to Appendix B. A useful global
scalar measure of performance of a binary classifier is the AUC.

F. Sequence of Binary Classifiers

The algorithm used in this work employs two binary discrim-
inant functions (DF), constructed from the reduced pool of fea-
tures extracted from the EEG, defined as follows: 1) structural
injury versus nonstructural injury/normal—Category 3 versus
Categories 1 and 2 (DF_3v21) and 2) abnormal versus normal-
Categories 2 and 3 versus Category 1 (DF_32v1).
To classify a subject, we apply these classifiers sequentially,

following simple category assignment logic: If subject X is clas-
sified as “3” by binary classifier DF_3v21, assign the subject
to category “3.” Otherwise, use the output of the second bi-
nary classifier DF_32v1 to determine the assignment category.
If subject X is classified as “32” by binary classifier DF_32v1,
assign the subject to category “2,” otherwise assign it to cate-
gory “1.”
This sequence not only provides a unique category assign-

ment for each subject, but the specific order used incorporates
a stratification of risk into the classification process by identi-
fying those subjects with a structural injury (and in need of the
most urgent medical care) in the first discriminant step.
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Fig. 4. Top panel: ROC curve for QDF discriminant function Category 3v21.
Operating point selected for a target sensitivity of 95%. Bottom panel: His-
togram of discriminant outputs/scores, with threshold indicated by “T,” as de-
termined in the top panel.

V. RESULTS

A. Individual Classifier Performance

Following the prescribed procedure described above, the best
performance for the two binary classification tasks was achieved
by creating two QDF, one for classification of category 3v21
and a second for the classification of category 32v1. Target LOO
sensitivities of 95% and 80%, respectively, were selected in cre-
ating the discriminants to reflect the desire for very high sen-
sitivity in identifying the subjects in category 3 (structural in-
jury visible on CT scan), and a balance between sensitivity and
specificity for identification of the category 2 and 1 subjects.
The QDF for 3v21 uses eighteen features (as determined by
the method described above in Section IV-C “Rules to prevent
over-fitting”).
The variables that contributed most to this discrimination in-

cluded monopolar and bipolar scale-free features for the total
spectrum, absolute, and relative power features, especially in
the theta frequency band, coherence features especially in high
frequencies (alpha2, gamma), and fractal features. The QDF for
32v1 uses 28 features. Half of the variables that contributed
most to this discrimination included measures of disturbances

Fig. 5. Top panel: ROC curve for QDF discriminant function Category 32v1.
Operating point selected for a target sensitivity of 95%. Bottom panel: His-
togram of discriminant outputs/scores, with threshold indicated by “T,” as de-
termined in the top panel.

between regions including coherence, power asymmetry and
phase synchrony, especially in the alpha band and total spec-
trum. Also contributing to this discrimination were monopolar
and bipolar relative power across the spectrum, scale-free fea-
tures for the total spectrum, and bipolar mean frequency espe-
cially in alpha and total spectrum.
Figs. 4 and 5 show the ROC curves for each discriminant and

their corresponding histograms of discriminant outputs (
calculated using the leave one out (LOO) framework. The LOO
performance of each discriminant is shown in Tables II-A and
II-B, including: sensitivity, specificity, PPV, NPV, AUC, and
Cohen’s d for the selected threshold values. High sensitivity
(90%) with specificity of 80%, and NPV of 99%, was achieved.
In contrast, the performance of the QDF for 32v1, is more

modest . This reflects the clinical desirability
for a balance between sensitivity and specificity, as well as the
reality of greater overlap between the distributions of the cat-
egories being separated in this binary classification task (and
hence the difficulty of separating them correctly). An illustra-
tion of the overlap between categories is shown in Fig. 6 for
features SFAF7S and CoF1F2A2, in the 32v1 QDF, showing
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TABLE II-A
PERFORMANCE OF CLASSIFIERS MEASURED USING SENSITIVITY

AND SPECIFICITY IN TEN-FOLD AND LOO FRAMEWORK

TABLE II-B
LOO PERFORMANCE OF CLASSIFIERS MEASURED USING SENSITIVITY

SPECIFICITY, PPV, NPV, AUC, AND COHEN’S D

the distributions of z-scores of these features for all subjects in
category 1 and category . The significant overlap between
the distributions is evident. Such overlap supports the use of a
quadratic classifier function since it enables separation based on
both mean and standard deviation, whereas the performance of
a linear classifier is dictated by separation in the means alone.
As an additional check of solution stability, as well as a

demonstration of the effectiveness of the measures to prevent
over-fitting, we compare the 10-fold and LOO performance
results. Table II-A clearly demonstrates that 10-fold and LOO
performance are very close, confirming good stability of the
classifiers.
Since the quantitative features present in each classifier are

age-regressed in order to remove the (normal) influence of age
on these features, we would expect that the discriminant outputs
and binary classification results are similarly not influence by
age. In order to verify this, we split the subjects of the training
database into four age bands: 15–25, 25–40, 40–55, 55 and over
and plot the misclassification rates in each age band for the
two binary QDF classifiers 3v21 and 32v1. Fig. 7 shows that
the misclassification rates are nearly constant across the entire
age range, confirming the effectiveness of our age regression
methodology.

B. Combined Classifier Performance

Beyond the output of the individual classifiers, we use the
combined outputs of the two binary classifiers in conjunction
with the category assignment logic described above to achieve
three category classifications. These results can be summarized
using a confusion matrix (see Tables III-A and III-B). In this
matrix, each row represents the true category for each subject
(truth) and each column represents the category determined by
the discriminant algorithms (test). Hence, the main diagonal
shows those subjects for whom the true and test categories agree
and off-diagonal elements show misclassifications. Table III-B

Fig. 6. Top panel: Distributions of z-transformed scale-free univariate variable
SFAF7S for Normals (category 1) and for TBI subjects (category ). Bottom
panel: Distributions of z-transformed coherence univariate variable CoF1F2A2
for Normals (category 1) and for TBI subjects (category ).

normalizes each entry by the total number of subjects in that
category and expresses them as percentages.

VI. DISCUSSION

Classification of mTBI patients into three clinically useful
categories has been demonstrated using the proposed methods
for discriminant classifier development. The classification of the

group showed the expected high discrimination accuracy,
as this group with structural brain injury on CT scan was most
different from all the others (least overlapping). The target sen-
sitivity was also set highest for this group, as the critical na-
ture of the injury would not allow for many false negatives. The
fact that specificity of 77% was achieved with this high sen-
sitivity, with extremely high NPV showing that 99% of those
called normal will in fact be normal upon scanning (absence of
visible structural injury), further suggests that this could be a
useful adjunct in the acute evaluation of head injuries and refer-
rals for CT scans. In assessing the adequacy of this performance,
the reported performance of other neuroimaging and screening
tools should to be considered. The reported sensitivity for head
CT in detecting acute stroke is approximately 78% [50]. Use
of near-infrared spectroscopy (NIS) to assess the presence of
a cerebral hematoma in patients presenting with mTBI, report
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Fig. 7. Top panel: LOO misclassification rates for subjects in four age bands:
15–25, 25–40, 40–55, 55 and over for classifier QDF_3v21. Bottom panel: LOO
misclassification rates for classifier QDF_32v1.

TABLE III-A
LOO CONFUSION MATRIX FOR CATEGORY ASSIGNMENT RULE (NUMBER
OF SUBJECTS) BASED ON SEQUENCE OF 3 V 21 FOLLOWED BY 32 V 1

sensitivities and specificities around 80% [51]–[54], and per-
formance was limited to specific volumes and distance from
the brain surface. The sensitivity/specificity for the NOC and
Canadian Head CT Rule (CCHR), clinical decision rules for ob-
taining a head CT for a suspected brain injury, are 100%/12.7%
and 100%/50.6%, respectively, for detection of a clinically im-
portant brain injury, and achieve this high sensitivity at the ex-
pense of specificity [55]. TheAUC of our discriminant was 0.91,

TABLE III-B
LOO CONFUSION MATRIX FOR CATEGORY ASSIGNMENT RULE (% OF

SUBJECTS) BASED ON SEQUENCE OF 3 V 21 FOLLOWED BY 32 V 1

demonstrating the ability of the prescribed process to create a
discriminant function that enables accurate separation of the
categories.
In the case of the identification of concussion, the sen-

sitivity and specificity were lower, as expected due to the
greater overlap between the categories, but still reached the
sensitivity target of 80% with a specificity of 74%. From a
neurophysiological or clinical perspective, the overlap between
the categories and performance of the QDF_32v1 classifier also
reflects the overlap the heterogeneity of milder traumatic brain
injuries and less clear distinction between normal controls and
mild concussion. Despite this, our performance is considerably
higher than existing mTBI screening methods (primarily neu-
rocognitive assessments) and the PPV of 85% further suggests
that this method leads to a clinically useful evaluation tool that
performs with high accuracy in the case of the presence of
concussive injury. For example, the Military Acute Concussion
Evaluation (MACE), a neurocognitive screening tool for mTBI,
has a sensitivity of only 26% with a specificity of 88% [56],
indicating that is not especially helpful in identifying injured
soldiers, but rather only identifying those without injury.
The importance of the optimization of two different functions

in the sequential application of classifiers allows for stratifica-
tion-of-risk to be addressed separately in the discrimination of
the three groups. That is, by first addressing the extreme risk
of false negatives for the discriminant, together with the
fact that this group has the least overlap with the others,
could be identified with the highest targets for sensitivity and
specificity. In the second function, where there is a significant
overlap between the concussed patients and normal controls,
and the “cost” of false positives is lower, appropriate targets can
be met. A single function could not be optimized in this way.
The use of age regression of all QEEG features has been

demonstrated previously in the scientific literature to greatly
enhance the clinical utility of electroencephalography in the
field of neuropsychiatry [57]. Among the important aspects of
this approach is the fact that all features are converted to the
common metric of probability and therefore can be combined
into multivariate descriptors which can be used to describe brain
“processes.” The demonstration herein, that all classification
was independent of age, supports the ability to use a single set
of discriminant functions for all subjects as long as their age is
known.
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The informed data reduction step directly confronts a well-
known problem for classification algorithms applied to conven-
tional neuroimaging data (e.g., PET, MRI), that is, the small
number of subjects compared with the enormous quantity of
extracted features. Some researchers have ignored this problem
completely, using thousands of variables as input to the classifi-
cation algorithm, resulting in high classification accuracy with
poor replicability or limited prospective validation. Others have
used methods reliant on one dimension of feature reduction. In
this paper we use a novel multidimensional approach including
examination of the potential variables in terms of: replicability,
separability, homogeneity of the distribution of each variable
within the populations of interest, and assurance that the z-value
for the feature in the more normal group is closer to zero. The
resulting reduced feature pool then serves as input to a GA, a
method uniquely suited to search problems in the biological do-
main, and not previously used in the literature in QEEG fea-
ture selection. In parallel, SFP, another feature selection method
was implemented, which uses a deterministic approach to the
selection problem. We note that although these two data mining
methods were used in this work, there are other such methods
not explored which could contribute to enhanced performance,
and may be explored in future work. In recognition of the im-
portance of the clinical applicability of the derived algorithms
in solving the problem posed in this study, additional care was
taken to reduce over-fitting andmaximize use of the total subject
population, and included cross-validation methods embedded in
the algorithm development. Finally, selected features are input
to two binary discriminant algorithms which are used to divide
the population into the desired three categories.
The two discriminants both used a multidimensional com-

bination of measure sets (absolute and relative power, power
asymmetry, mean frequency, coherence, scale-free activity,
phase synchrony, and fractal dimension), suggesting that the
brain injury seen in this population would not have been well
characterized by the use of one specific measure set, such as
power in the lower frequency bands (e.g., delta and theta).
Interestingly, while there is overlap in the features selected in
the two functions, the selected feature sets are distinctive to the
types of injury being discriminated. For example, half of the
features selected in the classification of concussion contained
measures of disturbances between frontal regions of the brain,
including incoherence, power asymmetry and decreased phase
synchrony (only present in this discriminant), emphasizing
the role of functional connectivity and disturbances in power
gradients in the pathophysiology of concussion. Since phase
synchrony, has been demonstrated in the literature to correlate
with injury to white matter tracts in the brain, a proposed
etiological factor in concussion, it is confirmational that these
features are selected in the classification of subjects with
a concussion, Furthermore, in the work of Sponheim et al.
(2011) [17], DTI findings correlated highest with frontal and
frontotemporal phase synchrony of the EEG, supporting the
adequacy of the limited montage used in this work. On the
other hand, the classification of the structural injury group

contained both monopolar and bipolar scale-free fea-
tures and absolute and relative power in the theta band, as
would be expected from the literature in the description of

slow wave features related to gray matter abnormalities [19].
It is also of note that Fractal dimension has been reported as
a discriminating EEG feature in the classification in abnormal
neuropsychiatric populations [58].
This proposed methodology resulted in algorithms that can

be embedded in a portable device, using a limited montage of
brain electrical signals, enabling clinical utility for triage of TBI
in the acute setting. Implementing informed data reduction, and
a sequence of algorithms that perform optimally for the rela-
tive risks in different segments of the patient population, re-
sulted in high discriminant accuracy. Prospective validation in
a broader multicenter trial is currently underway and could pro-
vide the necessary evidence of clinical validity to introduce such
methods into the clinical community.

APPENDIX

A. Derivation of Nontraditional Univariate Features

1) Fractal dimension: The fractal dimension of a 1-D signal
is the fractal dimension of the curve formed by the plot of
that signal. It is a nonlinear mathematical quantity (taking
values between 1 and 2), which reflects to what degree
the curve fills 2-D space as one zooms down to finer and
finer scales. The feature is computed as the average fractal
dimension (FD) of the temporal EEG signal, obtained
from successive FD estimates computed over segments of
length 256 samples. These estimates are computed using
the method proposed by Higuchi [59], with the parameter

set to 6.
2) 2. Scale-free brain activity: The power spectrum of sponta-
neous brain activity typically follows a law over the
frequency range 1–25 Hz and is therefore approximately
linear when plotted on a log-log scale. This behavior of the
power spectrum is typical of fractal processes. The param-
eter is usually referred to as scale-free brain activity [38].
We compute this parameter by fitting a line to the graph of

versus , where denotes the frequency
in hertz and denotes the estimate of the power spec-
tral density of the EEG at frequency , computed using
artifact-free epochs.

3) Information theory-based measures: Our database in-
cludes four types of these measures: traditional Shannon
entropy, Tsallis entropy, wavelet entropy and relative
wavelet entropy. The traditional Shannon entropy of time
series is computed by first partitioning the amplitude
range of the EEG into bins of width 5 V. The
probability distribution is obtained by the calculating
the ratio of the number of data samples falling into each
bin . The formula for the Shannon entropy of the signal
is

(A1)

After the same binning procedure as described above,
the Tsallis entropy (computed for parameter and
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) of time series is computed from the following
formula:

(A2)

The computation of the (total) wavelet entropy of time
series first requires the computation of the complex
wavelet transform of . For this we used the complex
wavelet filters proposed by Selesnick (2002) [60]. We de-
note by the complex coefficient of the wavelet trans-
form at resolution level (scale) . Following the definitions
given in Rosso et al., (2001) [61], the energy of the detail
signal at scale is denoted by and the total energy by
. They are computed according to

(A3a)

The normalized values of represent the relative wavelet
energy denoted by .

(A3b)

The distribution can therefore be considered a time-
scale density for which the (Shannon) entropy is defined
as

(A3c)

This measure evaluates the complexity of the energy dis-
tribution across frequency bands [33].
The computation of the (relative) wavelet entropy of time
series and similarly first requires the computation
of the complex wavelet transforms of and . Let
and denote the respective distributions of wavelet

energies of and . The relative wavelet entropy is defined
as [61]

(A4)

4) Functional connectivity measures: Phase delay (or lag)
was shown by Thatcher et al. to be a useful feature for
the task of separating normal subjects from those with
mild head trauma [15]. Our computation of phase delay is
performed as described in the work of Thatcher et al. [62].

The Phase Synchrony measure described by Aviyente et al.
[63] proposes to measure the neural coordination in the brain.
In this sense it can be seen as a measure of brain connectivity.
This measure first requires the computation of a time-frequency
distribution (TFD) such as the RID-Rihaczek distribution for a
pair of signals and . We denote by
the TFDs of and , respectively. Then, the time-varying
phase spectrum of and is computed as follows [see [63]
(10)]:

(A5a)

The Phase Locking Value across epochs of EEG signals
and is then defined as the inter-epoch variability of this phase
spectrum [see [63] (12)], namely

(A5b)

The phase synchrony for a given frequency band is finally
defined as the average of the phase locking value (PLV) over
that frequency band.

B. Figures of Merit and Receiver Operating Characteristic

1) Definition of FOM: Sensitivity, Specificity, PPV, and NPV:
In the context of medical diagnostic where the goal is to
determine with accuracy the presence or absence of a spe-
cific disease or condition, it is useful to differentiate be-
tween “state A” versus “state B,” where states A and B can,
for example, represent respectively: “disease present” and
“disease absent.” For each subject in a sample group where
true classification information (diagnosis) is available, we
can determine whether the output of the classifier func-
tion (also called “output of the test”) matches the diagnosis
or not. This leads, for each subject, to incrementing one
counter among the following four: “true positives” (sub-
jects with the disease for which the test is positive), “true
negatives” (subjects without the disease for which the test
is negative), “false positives” (subjects without the disease
for which the test is positive), and “false negatives” (sub-
jects with the disease for which the test is negative).
Sensitivity of the classifier (or of the test) is the ratio of
“true positives” over the number of subjects for whom
“disease” is present. Specificity of the test is the ratio of
“true negatives” over the number of subjects for whom dis-
ease is absent. PPV is the probability that disease is present
when the test result is positive (“true positives” over the
number of subjects for whom the test result is positive).
NPV is the probability that disease is absent when the test
result is negative (“true negatives” over the number of sub-
jects for whom the test result was negative.) In the context
of our two binary classifiers, 3 v 21, 32 v 1, we adopt the
convention that the “most serious brain injury condition”
corresponds to the disease condition, (state A). Therefore,
for 3 v 21, the disease condition is “3,” for 32 v 1, the dis-
ease condition is “32.” All the sensitivity and specificity
numbers reported in this paper should be understood with
this convention in mind.

2) Discriminant Output and ROC Curves: The output of each
of our discriminant functions is a number which can take
any value between 0 and 100. Once a critical value (or
threshold) T is selected, the output of the test becomes
binary and sensitivity and specificity for this particular
threshold can be computed. The ROC is the curve through
the set of points: ,
which is obtained by varying the value of the critical value
T between 0 and 100.

The ROC curve is therefore a graphical illustration of the
achievable statistical performance of a given test/discriminant,
depending on the selected critical value. For any discriminant
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described in this document, we show ROC curves and his-
tograms of the discriminant out.
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