

GODATADRIVEN ACADEMY VALUES

(1) Learn Today, Apply Tomorrow

(2) Authority From the Field,
Like No Other

(3) Learn by Doing, in Hands-On Labs

(4) From Team to Boardroom

(5) Learn Your Way, at Your Pace

Check out our full o!ering of open
courses and in-company programs
at gdd.li/academy.

ggd.li/academy ›

https://godatadriven.com/what-we-do/train/?utm_medium=print&utm_source=godatadriven&utm_campaign=gdd-train-guide-2021&utm_content=academy-general&utm_term=shortlink
https://godatadriven.com/what-we-do/train/?utm_medium=print&utm_source=godatadriven&utm_campaign=gdd-train-guide-2021&utm_content=academy-general&utm_term=shortlink
https://godatadriven.com/what-we-do/train/?utm_medium=print&utm_source=godatadriven&utm_campaign=gdd-train-guide-2021&utm_content=academy-general&utm_term=shortlink
https://godatadriven.com/what-we-do/train/?utm_medium=print&utm_source=godatadriven&utm_campaign=gdd-train-guide-2021&utm_content=academy-general&utm_term=shortlink

0
4

So we strive to provide you with the best learning

experience possible, by adhering to five promises:

(1) Learn Today & Apply Tomorrow
We design our programs so you can apply your

newly acquired knowledge right out of the

classroom. That way you can immediately increase

your business value. We push the content of

every training far beyond textbooks and theory.

Applicability is one of our core values.

(2) Authority From the Field, Like No Other
We don’t come from an abstract background;

we are practitioners as much as we are teachers.

All of our trainers work as consultants in the data

and AI field, supporting top enterprises like

Booking.com, ING, bol.com, Randstad, and

Heineken. They solve challenges like yours every

day, so you benefit directly from their experience.

(3) Learn by Doing, in Hands-On Labs
You learn best by doing. That’s why, in every

training, you can develop your skills and craft in

our hands-on labs. We provide both the theory

and context to get you up and running fast.

All of our courses have a 50/50 split between

theory and hands-on labs.

(4) From Team to Boardroom
Built through years of working with the top

enterprises in Europe, GoDataDriven has the

expertise to turn your data-driven ambition into

reality. But becoming data-driven impacts your

whole organization. That’s why we deliver a wide

range of programs suitable for all shapes and

sizes—from individual teams to global workforces,

as well as the boardroom.

(5) Learn Your Way At Your Pace
We deliver our curriculum through various training

formats—classroom, in-company, online, or a

combination. You choose the format that fits your

purpose and preferred method of learning—or ask

one of our academy advisors to guide you.

GoDataDriven Academy—
Our Promise to You
At GoDataDriven, we believe professional development goes
hand-in-hand with staying happy, motivated, confident, and relevant
in your job. You trust in us to help you improve your data and AI skills,
and we take that very seriously.

_ INTRODUCTION

Proudly Part of Xebia Group
GoDataDriven is proudly part of Xebia

Group, an international consulting and

training company, specialized in

digital transformation. Xebia employs

over 1,000 consultants worldwide.

GoDataDriven and the GoDataDriven

Academy both share Xebia’s values:

(1) People First

(2) Sharing Knowledge

(3) Customer Intimacy

(4) Quality Without Compromise

gdd.li/academy ›

https://godatadriven.com/what-we-do/train/?utm_medium=print&utm_source=godatadriven&utm_campaign=gdd-train-guide-2021&utm_content=academy-general&utm_term=shortlink
https://godatadriven.com/what-we-do/train/?utm_medium=print&utm_source=godatadriven&utm_campaign=gdd-train-guide-2021&utm_content=academy-general&utm_term=shortlink
https://godatadriven.com/what-we-do/train/?utm_medium=print&utm_source=godatadriven&utm_campaign=gdd-train-guide-2021&utm_content=academy-general&utm_term=shortlink
Pepijn Steijger

Pepijn Steijger

A Practical Guide to Using Setup.py

example_project/
├── exampleproject/ Python package with source code.
│ ├── __init__.py Make the folder a package.
│ └── example.py Example module.
└── README.md README with info of the project.

You may have other �les or folders in your structure, for example

folders named notebooks/, tests/ or data/, but these aren't required.

The case for a setup.py
Once you have created a package like this, then you are likely

to use some of the code in other places. For example, you might want

When you are using python professionally it pays to set up your projects

in a consistent manner. This helps your collaborators quickly understand

the

structure of a project, and makes it easier for them to set up the project

on their machine. The key to setting up your project is the setup.py �le.

In this F�CPPL I'll go into the details of this �le.

Where we start

Here I assume that you already have a package that you want to set up.

This does not need to be a �nished package - ideally you should create the

setup.py long before your project is �nished. It could even be an empty package;

just make sure the package folder exists

and contains a �le named init.py (which may be empty).

If you follow my colleague Henk's structure

for your project, your starting situation should look something like this:

1

https://godatadriven.com/blog/a-practical-guide-to-using-setup-py/how-to-start-a-data-science-project-in-python

to do this in a notebook:

from exampleproject.example import example_function

This would work if your current working directory is example_project/, but in

all other cases python will give you output like:

ModuleNotFoundError: No module named 'exampleproject'

You could tell python where to look for the package by setting the PYTHONPATH
environment variable or adding the path to sys.path,

but that is far from ideal: it would require di�erent actions on di�erent

platforms, and the path you need to set depends on the location of your code.

A much better way is to install your package using a setup.py and pip,

since pip is the standard way to install all other packages, and it is bound

it work the same on all platforms.

A minimal example

So what does a setup.py �le look like? Here is a minimal example :

from setuptools import setup, find_packages

setup(
 name='example',
 version='0.1.0',
 packages=find_packages(include=['exampleproject', 'exampleproject.*'])

)

Here we specify three things:

The name of the package, which is the name that pip will use for your package.

This does not have to be the same as the folder name the package lives

in, although it may be confusing if it is not. An example of where the package

name and the directory do not match is Scikit-Learn: you install it

using pip install scikit-learn, while you use it by importing from sklearn.

The version of your package. This is the version pip will report, and is used

for example when you publish your package on .

What packages to include; in our case this is just exampleproject/.

Here we let setuptools �gure this out

automatically . While you could in principle use find_packages()

0

PyPI1

2

2

https://pypi.org/

without any arguments, this can potentially result in unwanted packages to

be included. This can happen, for example,

if you included an __init__.py in your tests/
directory. Alternatively, you can also use the exclude argument to explicitly

prevent the inclusion of tests in the package, but this is slightly

less robust.

Now all that you need to do in order to install your package is to run the following

from inside the example_project/ directory :

pip install -e .

The . here refers to the current working directory, which I assume to be the directory

where the setup.py can be found. The -e �ag speci�es that we want to install

in editable mode, which means

that when we edit the �les in our package we do not need to re-install the

package before the changes come into e�ect. You will need to either restart

python or reload the package though!

When you edit information in the setup.py itself you will need to re-install

the package in most cases, and also if you add new (sub)packages.

When in doubt, it can never hurt to re-install. Just run pip install -e . again.

Requirements

Most projects have some dependencies. You have most likely used

a

�le before, or an

if you are using conda. Now that you are creating a setup.py, you can specify your

dependencies in the install_requires argument.

For example, for a typical data science project you may have:

setup(
 name='example',
 version='0.1.0',
 packages=find_packages(include=['exampleproject',
'exampleproject.*']),
 install_requires=[

'PyYAML',
'pandas==0.23.3',
'numpy>=1.14.5',
'matplotlib>=2.2.0,,
'jupyter'

3

requirements.txt

environment.yml

3

https://pip.pypa.io/en/stable/user_guide/#requirements-files
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file

]
)

You may specify requirements without a version (PyYAML), pin a version

(pandas==0.23.3), specify a minimum

version ('numpy>=1.14.5) or set a range of versions (matplotlib>=2.2.0,<3.0.0).

These

requirements will automatically be installed by pip when you install your package.

Extras-require

Sometimes you may have dependencies that are only required in certain situations. As a

data scientist

I often make packages which I use to train a model. When I work on such a model

interactively

I may need to have matplotlib and jupyter installed in order to interactively work with

the

data and to create visualizations

of the performance of the model. On the other hand, if the model runs in production I do

not

want to install matplotlib nor jupyter on the machine (or container) where I train

or do inference. Luckily setuptools allows to specify optional dependencies in

extras_require:

setup(
 name='example',
 version='0.1.0',
 packages=find_packages(include=['exampleproject',
'exampleproject.*']),
 install_requires=[

'PyYAML',
'pandas==0.23.3',
'numpy>=1.14.5'

],
 extras_require={

'interactive': ['matplotlib>=2.2.0,, 'jupyter'],
 }
)

Now if we install the package normally (pip install example from PyPI or pip
install -e . locally)

it will only install the dependencies PyYAML, pandas and numpy. However, when we specify

that we want the optional interactive dependencies (pip install
example[interactive]
or pip install -e .[interactive]),

then matplotlib and jupyter will also be installed. 4

Scripts and entry points

The main use case of most python packages that you install from PyPI is to provide

functionality

that can be used in other python code. In other words, you can import from those

packages.

As a data scientist I often make packages that aren't meant to be used by other python code

but

are meant to do something, for example to train a model. As such, I often have a python

script that

I want to execute from the command line.

The best way to expose functionality of your package to the command line is to de�ne

an entry_point as such:

setup(
 # ...,
 entry_points={

'console_scripts': ['my-command=exampleproject.example:main']
 }
)

Now you can use the command my-command from the command line, which will in turn

execute the main
function inside exampleproject/example.py. Do not forget to re-install - otherwise the

command

will not be registered.

Tests

Whenever you write any code, I strongly encourage you to also write tests for this code. For

testing

with python I suggest you use pytest. Of course you do not want to add pytest to your

dependencies

in install_requires: it isn't required by the users of your package. In order to have it

installed

automatically when you run tests you can add the following to your setup.py:

setup(
 # ...,
 setup_requires=['pytest-runner'],
 tests_require=['pytest'],
)

4

5

Additionally you will have to create a �le named setup.cfg with the following contents:

[aliases]
test=pytest

Now you can simply run python setup.py test and setuptools will ensure the

necessary dependencies

are installed and run pytest for you! Have a look if

you want to provide arguments or set con�guration options for pytest.

If you have any additional requirements for testing (e.g. pytest-flask) you can add them

to tests_require.

Flake8

Personally I think it is a good idea to run to

check the formatting of your code. Just like with pytest, you do not want to add flake8
to the

install_requires dependencies: it does not need to be installed in order to use your

package. Instead, you can add it to setup_requires:

setup(
 # ...,
 setup_requires=['flake8']
)

Now you can simply run python setup.py flake8. Of course you can also pin the

version

of flake8 (or any other package) in setup_requires.

If you want to change some of the con�guration parameters of Flake8 you can add a

[flake8] section to

your setup.cfg. For example:

[flake8]
max-line-length=120

Package data

Sometimes you may want to include some non-python �les in your package. These

may for example be schema �les or a small lookup table. Be aware that such �les

here

Flake8

6

https://docs.pytest.org/en/latest/goodpractices.html
http://flake8.pycqa.org/en/latest/

will be packaged together with your code, so it is in general a bad idea to include

any large �les.

Suppose we have a schema.json in our project, which we place in

exampleproject/data/schema.json.

If we want to include this in our package, we must use the package_data argument of

setup:

setup(
 # ...,
 package_data={'exampleproject': ['data/schema.json']}
)

This will make sure the �le is included in the package. We can also choose to include

all �les based on a pattern, for example:

setup(
 # ...,
 package_data={'': ['*.json']}
)

This will add all *.json �les in any package it encounters.

Now don't try to �gure out the installed �les' location yourself, as

pkg_resources has some very handy convenience functions:

pkg_resources.resource_stream will give you a stream of the �le, much like the

object you get when you call open(),

pkg_resources.resource_string will give you the contents of the �le as a string,

pkg_resources.resource_filename will give you the �lename of the �le (and

extract

it into a temporary if it is included in a zipped package) for if the two options

above do not suit your needs.

For example, we could read in our schema using:

from json import load
from pkg_resources import resource_stream

schema = load(resource_stream('exampleproject', 'data/schema.json'))

7

Metadata

If you are going to publish your package, then you probably want to give your

potential users some more information about your package, including a description,

the name of the author or maintainer, and the url to the package's home page.

You can �nd a complete list of all allowed metadata in the setuptools
.

Additionally, if you are going to publish to PyPI, then you may want to

automatically

,

and provide to tell pip even

from setuptools import setup, find_packages

setup(
 name='example',
 version='0.1.0',
 description='Setting up a python package',
 author='Rogier van der Geer',
 author_email='rogiervandergeer@godatadriven.com',
 url='https://blog.godatadriven.com/setup-py',
 packages=find_packages(include=['exampleproject',
'exampleproject.*']),
 install_requires=[

'PyYAML',
'pandas==0.23.3',
'numpy>=1.14.5'

],
 extras_require={'plotting': ['matplotlib>=2.2.0', 'jupyter']},
 setup_requires=['pytest-runner', 'flake8'],
 tests_require=['pytest'],
 entry_points={

'console_scripts': ['my-command=exampleproject.example:main']
 },
 package_data={'exampleproject': ['data/schema.json']}
)

and the accompanying setup.cfg:

docs

load the contents of your README.md
into the long_description

classi�ers

more about your package.

Wrap-up

This F�CPPL should be a good starting point to set up most of your python

projects. If you want to read more about python packaging have a look

at the docs. Here is an example setup.py
which combines all parts shown in this F�CPPL:

8

https://setuptools.readthedocs.io/en/latest/setuptools.html#metadata
https://packaging.python.org/guides/making-a-pypi-friendly-readme/
https://pypi.org/classifiers/
https://packaging.python.org/overview/

[aliases]
test=pytest

[flake8]
max-line-length=120

Improve your Python skills, learn from the
experts!

At GoDataDriven we o�er a host of Python courses from beginner to expert, taught by the

very best professionals in the �eld. Join us and level up your Python game:

 - Great if you are just starting with Python.

 - Want to make the step up from data

analysis and visualization to true data science? This is the right course.

 - Learn to productionize your models like a pro

and use Python for machine learning.

Python Essentials

Certi�ed Data Science with Python Foundation

Advanced Data Science with Python

Footnotes

0: In this F�CPPL I have used setuptools

to set up my example project. Alternatively

you could also use distutils,

which is the standard tool for packaging in python, but it lacks features

such as the find_packages() function and entry_points.

Since the use of setuptools is very common nowadays and many of its features

can be particularly useful, I suggest that you should use setuptools.

1: If you want the version of your package to also be available inside python,

have a look here.

2: You could also list your packages manually, but this is particularly error-prone.

3: Alternatively you could run pythonsetup.pyinstall, but using pip has�

many bene�ts, among which are automatic installation of dependencies and the

ability to uninstall or update your package.

4: You could also use the scripts argument (see for

example here)

but as this requires you to create a python shell script it may not work

as well (or at all) on Windows.
9

https://godatadriven.com/training/python-essentials-training/
https://godatadriven.com/training/data-science-python-foundation-training/
https://godatadriven.com/training/advanced-data-science-with-python-training/
https://setuptools.readthedocs.io/en/latest/
https://docs.python.org/3/library/distutils.html
https://packaging.python.org/guides/single-sourcing-package-version/
https://python-packaging.readthedocs.io/en/latest/command-line-scripts.html

