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The 3 Magic Numbers

Many of us find statistics daunting, so the purpose of this series 
it to demystify some of those powerful statistics for use by 
supply chain professionals. This paper, the first in our Supply 
Chain Masterclass Series, explains how to understand underlying 
demand patterns with three simple statistical calculations. In 
subsequent editions of the series, we will build on this to consider 
seasonality and promotions and the overall implications for history 
correction, buffer stock management and forecast performance 
management processes.

The Data Example

Let’s begin by taking a look at the graph below. This is a screenshot 
from the Vuealta Demand Planning Application which is built on 
the Anaplan platform. The graph shows us the historical data 
in black. The mean is represented by the light blue line and the 
regression or ‘best fit’ line is shown in red. To the right we have 
a series of statistical values that we will delve into in order to 
understand the data pattern. 

From a cursory glance at the graph, you can probably guess 
that the data is trending and seasonal. For the purposes of this 
paper, we will use the base measures of the mean, gradient 
and standard deviation, which can be applied to any dataset to 
broadly understand the principles. We will explore the additional 
considerations for trending and seasonal products in the next 
edition of this series.



The Mean as the Anchor

There are in fact several measures of the mid-point of a dataset 
(mean, median and mode) but here we will be using the mean. 
The table to the right of the graph, above, gives us various useful 
statistics. The first of these is the mean at 81,526. The mean is also 
drawn on the graph as the light blue line, visually representing how 
the mean serves as the central point of the dataset, or the anchor. 

While the mean is probably the most used statistical measure in 
existence, it is arguably also one of the least descriptive. There is 
a real danger of relying on averages in supply chain management, 
so we consider the mean as nothing more than an anchor here 
and we need to supplement it with other descriptive statistics for 
trend and variability. 

Regression for the Trend

Regression lines are incredibly useful for identifying trends in 
data. As scary as regression analysis sounds, the system does 
the calculations for us and we only need to extract the gradient 
from the regression equation, which is the ‘m’ in the regression 
equation y = mx + b. The box labelled ‘y = mx + b’ next to the graph 
shows the regression equation for this product of y = 160.7x + 
68,827.4 and so we can extract that our gradient is 160.7. This 
effectively means that our straight-line regression is increasing 
by 160.7 units per week. 

The regression line is shown in red on the graph and interestingly 
it highlights an upward trend that may not be spotted by the 
naked eye. In fact, the trend is very shallow on the graph so let’s 
estimate the trend as an annual percentage. The regression line 
is increasing by 160.7 units per week which equates to 8,356 units 
per year. Dividing this annual increase by any point along the 
trendline will give us the annual percentage increase from that 
point.  To gain the annual percentage at the ‘anchor’ we can divide 
the gradient by the mean and this is shown as ‘Gradient / Mean’ in 
the statistical summaries next to the graph, with a value of 10.25%.    

Had we not looked at the statistics it would have been hard to 
identify the underlying trend of 10.25% due to the large seasonal 
peaks present in the data, which are masking the underlying trend.  
And we now have a way to estimate the underlying trend in any 
dataset which is particularly useful in highly variable data.
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Technical Note
If the trend were declining then m would be negative. 
For example y = -160.7x + 68,827.4.  If there is no trend, then  
m would be 0. 

Standard Deviation for the Variability

The fact that the variability in the data is strong enough to disguise 
a 10% trend shows why the regression analysis is important and 
also why we need a measure of variability.  The standard deviation 
allows us to get a handle on the amplitude of the underlying 
variability from our anchor (the mean).  

The statistical summaries next to the graph show that the system 
calculated standard deviation is 41,776.  Assuming that we wanted 
to know how frequently historic demand would likely exceed 
a certain level (i.e. our planned inventory levels), it is useful to 
consider the normal distribution theory which again sounds 
daunting, but simply tells us that: 

84% of values will be less than one standard deviation from 
the mean, or 123,302 in this example (81,526 + 41,776)

97.8% of values will be less than two standard deviations 
from the mean, or 165,078 in this example (81,526 + 83,552). 

99.87% of values will be less than three standard deviations 
from the mean or 206,854 in this example (81,526 + 125,328).    

Technical Note
These values are obtained by using the z values in a one-tailed 
normal distribution table.  It is a one-tailed distribution because 
we are only interested in when the values are higher than the 
mean and could therefore cause a stockout. 

A cursory glance at the graph confirms that a couple of data points 
exceed the value for three standard deviations (206,854) during 
the three years of weekly data (156 data points). The standard 
deviation is incredibly powerful in allowing us to understand 
the underlying variability in data and it enables us to put some 



boundaries around expected values.  This has implications for 
history correction, safety stocks, and performance management.  

But before we consider these in more detail in the next 
masterclass of the series, let us first consider making the 
standard deviation a relative value so that we can compare the 
variability of different products or different product ranges. 

The Coefficient of Variability: A Relative 
Measure of Deviation

As powerful as the standard deviation is, it is not useful for 
comparing variability between products because it is an 
absolute value.  A standard deviation of 100 would be very high 
if the underlying data had a mean of 5, but would be almost 
insignificant with a mean of 1,000.  The coefficient of variability 
sounds scary, but it is simply the standard deviation divided by 
the mean.  In this example it is therefore 41,776 by 81,526 which 
equals 0.5124. This value is the ‘C-VAR (Mean)’ in the summary 
statistics next to the graph.  

Because the coefficient of variability is a relative measure, we can 
use it to understand inherent variability in products and product 
ranges and to be able to compare them to each other.  What 
is high for the ‘C-VAR (Mean)’ will depend on your business and 
the underlying variability, but we typically draw the line for ‘high 
variability’ somewhere between 0.5 at the low end and 1.5 at the 
top end.

Additional Example

To further our development of the mean, gradient, and C-VAR let us 
now contrast the analysis with a product that is relatively stable. 
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In the example above, we have demand that is almost a straight 
line (note that the scale of the x-axis on the graph above is from 
485 to 520).  To highlight the lack of variability further, the same 
data is also plotted below, with the x-axis starting at 0.  

If we now consider the summary statistical values generated by 
the system for this product, we see that the mean is 502.2, the 
standard deviation is 6.779, and we therefore have a coefficient 
of variability of 0.01349 (6.779 / 502.2).  The regression equation 
is y = 0x + 501.9, so with a gradient of 0 we know that there is no 
trend.  In summary we basically have a straight line with very little 
variability around the mean of 502.2.

Implications for Business Processes

The three values that we have used in this example are useful in 
understanding underlying demand patterns.  Without even looking 
at a graph you can begin to visualize approximate data patterns, 
for instance by knowing that the mean is the anchor at 500, that 
you have an upward gradient of 25% and high variability of 0.5, 
it is possible to picture the graph in your mind and to compare 
products en masse.  

We have identified that a product with a coefficient of variability of 
0.5 is relatively more variable than a product with a coefficient of 
variability of 0.01. Therefore, we could conclude that it should be 
harder to forecast, has a greater need for history correction, and 
requires higher levels of buffer stocks to protect service levels.  
However, because the trend and seasonality in our first dataset 
is clearly forecastable, this would be erroneous.  We would have 
overstated the ‘random variability’ and would be protecting against 
the expected.  In the next edition of this masterclass series, we 
will enhance our techniques for managing trending and seasonal 
products with the introduction of forecast decomposition. 
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