

Document Generation

for Mendix

 2 / 11

Table of Contents

1 Document Generation for Mendix .. 3

1.1 Introduction .. 3

1.2 Prerequisites ... 3

2 Installation ... 4

2.1 Installing DocumentGenerationForMendix .. 4

2.2 Using the action SimpleMerge ... 5

2.3 Using the Java action AdvancedMerge ... 6

2.4 Using the Java action AdvancedMergeXML .. 8

2.5 Setting up the MS Word template inserting the merge field manually ... 9

2.6 Using the Document Generation for Mendix MS Word addon ... 10

 3 / 11

1 Document Generation for Mendix

1.1 Introduction

Document Generation for Mendix (further called DocGen) is a Mendix module that generates output documents based on

document templates. For example, if your company uses a specially designed template for all kinds of correspondence the

DocGen module will allow you to use this template for your Mendix application document output, so that the output

document from your Mendix application matches the corporate branding. The DocGen module is a powerful module for

applications that need to generate documents beyond the limitations of the built-in Mendix output generator.

1.2 Prerequisites

Before importing the DocGen module, make sure that the following modules are part of your Mendix application:

• MxModelReflection

• ApprontoLicencer

• CommunityCommons

These modules can be imported from the Mendix App Store. The following documentation will provide information about

importing modules in your Mendix application: Import modules from downloaded packages or Import modules from the

App store.

*note: to run the module in the cloud you will need a license. In development on your local machine the module will run

without a license. For a license please contact info@appronto.nl.

https://docs.mendix.com/howto/integration/importing-and-exporting-objects
https://docs.mendix.com/community/app-store/use-app-store-content-in-the-modeler
https://docs.mendix.com/community/app-store/use-app-store-content-in-the-modeler
mailto:info@appronto.nl

 4 / 11

2 Installation

The module works with the following main concepts: the administrator configures TemplateTypes. These template types

are technical configurations linking Word merge fields to actual data based on your domain model. The end user may

create their own Document Templates which are Word based templates referring to a TemplateType.

2.1 Installing DocumentGenerationForMendix

To install do the following:

• Download the DocumentGenerationForMendix module into your project from the app store (Import modules from
the App store)

• Add the TemplateManager module role to your administrator user role

• Add the TemplateUser module role to your end user user roles which may use the templates

• Add the NAV_OpenApprontoDocumentBuilderLicense and TemplateType_Overview_Administrator

to your admin navigation (USE ME / Add to admin nav). See figure 1

• Add the ASU_ActivateLicense to your After Start up microflow (Project settings). See figure 2 & 3

Figure 1

Figure 2

 Figure 3

It is highly recommended to avoid making changes in the imported modules (also a best practice in general). Not making

changes will make sure that you can install future updates. So, you probably do not want to use the

DocumentTemplate_Overview (USE ME / Add to user nav), which is just there for demo purposes. The main reason

https://docs.mendix.com/community/app-store/use-app-store-content-in-the-modeler
https://docs.mendix.com/community/app-store/use-app-store-content-in-the-modeler

 5 / 11

for not using this, is that you want your own security applied to document templates and extend it with own functionalities.

To create the optimal solution, follow these steps:

• Create a CustomDocumentTemplate object in one of your own modules and inherit from

DocumentGenerationForMendix.DocumentTemplate. Configure the access rules how you want them.

• Create an overview and new_edit form for this new object.

• Add the DocumentGenerationForMendix / Forms / TemplateSnippet to this
new_edit form. This snippet will allow your end users to upload a Word
template and see which fields they may use in the template (see figure 4).
Note: do not make changes to TemplateSnippet but copy the content of
TemplateSnippet to your created new_edit form if you want to make changes.

 Figure 4

2.2 Using the action SimpleMerge

The SimpleMerge uses the data that has been retrieved, but when there are multiple records in a list you will need to

configure all the fieldnames individually. That is acceptable if you know that there are a few records in the list, but when

you don’t you probably will miss some data in your output document. To prevent omitting data on the output document, we

recommend using the Java Action AdvancedMerge.

Setting up the Mendix application for generating documents with the SimpleMerge

To create a document with data from your Mendix application, first you need to create a new record in the

DocumentTemplate object. In the installation step you created a custom page for this object.

You need to fill in the following:

• Templatename: choose a name for the template

• Upload Word template: here you can upload the Word template

After saving the DocumentTemplate, an action button needs to be created on the overview page of the object containing

the data for the document. The microflow behind the button must contain the following actions:

• A list of the data (Mergedata)

• Retrieve of the DocumentTemplate

• Create MergeInput

• Create Output

• SimpleMerge java action

• Optional: download file

Example:

 6 / 11

As you can notice we create a list of the MergeDataColumn. In this list we add all the data we need for the document

output. We do this with the microflow CreateMergeDataAndAddToList, which can be found at

DocumentGenerationforMendix -> USE ME. Of course, you can also create your custom logic and custom object to do

this.

2.3 Using the Java action AdvancedMerge

The AdvancedMerge allows the use of records in a list, without naming the fields for each record in the list individually.

Setting up the Mendix application for generating documents with the AdvancedMerge

As an administrator you have to configure the TemplateType(s). After login go to the TemplateType_Overview which you

added to the navigation. The example template is shown below:

Figure 5

Within a template two things are configured:

• Table

• Merge Field

Table

A table contains all data that has been retrieved by the microflow for that table. The table is shown on the left side of figure

5.

• Alias: this is the alias end users have to use in the Word template indicating a TableStart of TableEnd

• MF Name: This is a reference to a microflow that should return a List of records for the table (maybe just one

record, but it should be in a list). The microflows are called by the Merging module. So, you don’t call them

yourself, just refer to them from the template based on the TableStart:alias construction.

Merge Field

The data within a table can be configured as Merge Fields (FieldMappings). After adding a table just click the table and

add Merge Field mappings in the list grid. A field mapping has the following properties:

• Name: this is the alias end users must use in the Word template indicating a Merge Field.

 7 / 11

• XPath: N-deep path to the domain attribute relative to the Table (use the modeler (data grids) to help you

creating this paths)

• Render as HTML: if the attribute contains HTML and you want to render it as HTML click the check box

• Formatting: custom formatting for dates and float/currencies based on Java SimpleDateFormat and

DecimalFormat. Examples are: ‘dd-MM-yyyy’ for datetimes or ‘#,##0.00’ for currencies with thousand separator.

Below the microflows we used for this example:

Left is the microflow for the Invoice table. As you

can see it does not retrieve anything from database

(you could do that as well of course) but it just

passes its input parameter. This is because you

have the Invoice Object available within your Export

microflow and you want to pass it instead of

retrieving it again (which can be hard if there is no

context).

This microflow is for the second table and retrieves

the InvoiceRow list from database related to the

input Invoice.

For a better understanding of why there is a difference between the microflow, a screenshot of an example domain model

is added below. *Please note that the attributes differ from figure 5.

Figure 8

To generate a document with the data from the selected record, a microflow action needs to be created. It will need at

least the following actions:

• Retrieve TemplateType

• Retrieve DocumentTemplate

• Create MergeInput

• Create Output

• AdvancedMerge java action

Example:

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/DecimalFormat.html

 8 / 11

2.4 Using the Java action AdvancedMergeXML

The AdvancedMergeXML action generates documents based on data from an XML file.

Setting up the Mendix application for generating documents with AdvancedMergeXML

When using AdvancedMerge there is no need to configure a TemplateType because there are no microflows needed to

collect the data. In this case the XML file contains the data for the output document. Like the AdvancedMerge a

DocumentTemplate needs to be created. Just like with SimpleMerge only the ‘Templatename’ and ‘Upload Word template’

parameters need to be filled in. The structure of the Word Template resembles the one of AdvancedMerge: it must contain

a TableStart:Container and TableEnd:Container.

In the XML example below we have used the same domain model structure as for AdvancedMerge. There is also another

example under DocumentGenerationForMendix->Examples

Notice that the XML also contains <Container> and

</Container>.

The XML structure must resemble as if you retrieve

data through a microflow as for the AdvancedMerge.

At the beginning of the XML file, you need to specify

the DocumentTemplate name in an XML tag.

You see in the example that the tables are identified

by a name. It is the same name as we use in the

Word template. The fields are also identified with

names followed by the values that need to be

displayed. The XML structure has an abstract

resemblance with the AdvancedMerge way.

You can choose to make an XML entity in your domain model and generalize it with System.FileDocument or create a

custom entity to work with. In this example we created an XML entity with the generalization of System.FileDocument. To

upload an XML file, a page to upload the XML will be needed, see Import XML Document.

To generate a document with the data within the XML file, a microflow action needs to be created. It will need at least the

following actions:

• Create MergeInput

• Create Output

• Retrieve DocumentTemplate

• AdvancedMergeXML java action

https://docs.mendix.com/howto/integration/importing-xml-documents

 9 / 11

Example:

2.5 Setting up the MS Word template inserting the merge field manually

Before you can generate a document with the DocGen module, a document template is necessary. You’ll find an example

right here: invoice_template. As you will notice in the example, the document contains ‘TableStart’ and ‘TableEnd’, and are

only necessary in the template when the javaAction: AdvancedMerge(XML) is used in the Mendix application. The

AdvancedMerge is commonly used when multiple row tables are needed. For example, you need additional data that

needs to be retrieved over a one-to-many association. This will result in a list, therefore an extra table with rows is needed

to display the data.

These templates all have the same things in common:

• They contain the concept TableStart:Container. This is always required for technical reasons. Every table is

closed with TableEnd:… In this example template we have two tables for retrieving data: Invoice table and

InvoiceRows table.

• They contain merge fields. To create new merge fields you can copy existing merge fields. Be sure to edit them

in the right way (right click: Edit Field, then edit the field name). Typing directly will just edit the alias and not the

technical name, unless you have the fields displayed with their technical names. OR follow these steps: insert

FieldCode and choose in the Field names column: MergeField. In the Field properties under Field name type in

the name of the MergeField.

After the TemplateType and Word template have been set up, a DocumentTemplate record needs to be created. You

need to do this on the page DocumentTemplateOverview. In the overview you will see the following:

• Templatename: choose a name for the template

• Template type: here you can choose the template type you configured on the TemplateOverview page. When

chosen you will see below the tables related to the template

• Upload word template: choose the Word template for this Document template.

Below an example:

https://appronto-docgen.s3.eu-central-1.amazonaws.com/InvoiceTemplate.docx
https://support.office.com/en-us/article/insert-edit-and-view-fields-in-word-c429bbb0-8669-48a7-bd24-bab6ba6b06bb
https://support.office.com/en-us/article/insert-edit-and-view-fields-in-word-c429bbb0-8669-48a7-bd24-bab6ba6b06bb

 10 / 11

2.6 Using the Document Generation for Mendix MS Word addon

The DocGen addon for MS Word gives the opportunity to create a Word template to drag and drop. Please keep in mind

that a TemplateType and a DocumentTemplate already must have been configured. You can upload an empty Word

template in the DocumentTemplate.

The following steps must be done to have the addon work properly:

• Add the APIKkey_Overview (can be found at in the DocumentGenerationForMendix -> USE ME -> add to admin

nav) to your admin navigation.

• In MS Word you will need the install the add-on: go to the tab Insert -> Add-ins -> Store. A pop up will follow.

Type in Mendix in the search field and hit enter. The add-on will be displayed. Click on the Add button. In the

Home tab there will be a new icon on the right of the ribbon:

When clicking on the icon the window below will appear on the right side of the screen.

• The application URL can be found

under your application Buzz ->

Deploy -> Environments

• The API Key needs to be generated.

You can do this at the

APIKkey_Overview and create a

new one. Copy this key in the API

key field in Word.

• Click connect and you will see your

configured templates.

Now you can start building your Word

template.

Once a template has been selected, the tables related to the chosen template will be loaded and shown. By clicking on

one of the table names, the fields of the table will be shown (these are the tables and fields configured in the

TemplateType Overview Administrator page). By placing the cursor on the preferred position in the document and then

clicking on the Fieldname, a mergefield with the name of field will appear in the document. Keep in mind that the Word

 11 / 11

template must contain the Tablestart:Container and TableEnd:Container. And every Fieldname must be place within the

TableStart and TableEnd of the table it belongs to. This can be done easily by clicking on the ‘Insert default structure’

button.

After the Word template is fully customized with the Fieldnames, just click on the ‘Save template to your application’

button. This will automatically upload the customized Word template to the right template in your application.

Before use

Disable cloud security in your run configuration (this is only applicable for apps running in the Mendix cloud

v3). This is because the Aspose Module needs certain privileges which are not granted by default by the Mendix cloud. So

when you are going to run this in the cloud as well, please file a ticket to (“java.lang.RuntimePermission” “preferences”).

To generate an output, there must be a button or microflow action that generates the output. There is an Example

microflow in DocumentGenerationForMendix / Examples / GenerateAdvancedMergeExample. To create a very simple

test just:

• Add a microflow button to the CustomDocumentTemplate_Overview grid which calls this example

microflow. Note: do not forget to update the GenerateAdvanced-MergeExample with a RootContextObject

if you’re expecting one in your root document tables!

• Restart your project

• Login as an end user and create a CustomDocumentTemplate. Upload your MS word template (see attachments

for example) and select the corresponding template type.

• Save it and click the Generate button from the overview.

• Getting errors? Enable logging for ApprontoDocumentGeneration log node to trace level.

The microflow that generates the output must contain:

• Create MergeInput parameter. This is needed for the AdvancedMerge Java Action. You have to set the desired

output type (Word, PDF, HTML, BMP, and so on)

• Retrieve a template.

• Call the AdvancedMerge Java action. All parameters are pretty clear from the context. The RootContextObject is

not required but if empty nothing will be passed to Root Table microflows.

