ΛΚΛΜΛS

Autonomous Optimization for Kubernetes applications

Kubernetes is critical for app efficiency

Efficiency is one of **Kubernetes** top benefits, yet many companies often experience higher than expected **infrastructure/cloud costs** as well as **performance and stability issues**.

The **complexity of Kubernetes resource management** often leads developers, Performance Engineers and SREs to adopt very conservative configurations and **resource overprovisioning**.

The resulting **unnecessary infrastructure/could costs** may significantly affect the overall **cost efficiency** of delivered services, while not necessarily removing the **risks of missing SLOs**.

of companies mentioning lack of in-house skills and limited manpower as the #1 challenge with Kubernetes Source: Statista

of Kubernetes users with the unmet challenge of ensuring application performance and resilience Source: Akamas survey

customers facing increasing Kubernetes costs and missing/inadequate capabilities to avoid overspending Source: 2021 FinOps report

 $\Lambda K \Lambda M \Lambda S$

Tuning Kubernetes is very challenging

Kubernetes cluster size is determined by **resource requests** set by developers in the container manifest for each application - so clusters can be full even if utilization is very low (e.g. 1%).

Sizing Kubernetes containers/pods by properly setting resource requests and resource limits/may require weeks or months for each single microservice - so overprovisioning is common.

Kubernetes autoscaling enable automatic scaling under load but can also magnify latency & efficiency issues when Kubernetes microservices applications are not well configured.

too low resource requests may cause slowdowns and reliability issues - too high requests may lead to wasted resources and overspending

too low resource limits impact application stability and performance as containers get killed or slowed down under resource pressure

too high resource limits

allow runaway containers to act as "noisy neighbors" and degrade performance of other applications sharing the same nodes

ΛΚΛΜΛS

Autonomous Performance Optimization

$ \begin{array}{c} & & \\ & & $	Parameter 🔶	Relevance \$	Best	Baseline
 Imits_opu ● Imits_memory ● Coutaliner requests_memory ● Imits_memory ● Cloud Bill ↓49.1% 155 \$ → 79 \$ Mym_mctiveProcessorCount ● Imits_crype ● Imits_memory ProcessorCount ● Imits_crype ●<	requests_cpu		2.77 cores (+84.9%)	1.5 cores
 Imits_memory ● Baseline vs Best (Experiment #31) Cloud Bill ↓49.1% 155 \$ → 79 \$ ym_activeProcessorCount ● ym_gcType ● ym_minHeapSize ● Ym_minHeapSize ● Transactions/s ↓19.2% 85 TPS → 104 TPS 	Container limits_cpu	-	3.67 cores (+83.3%)	2 cores
$ \begin{array}{c} \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		-	Baseline vs Best (Expe	eriment #31)
$ \begin{array}{c} & \begin{tabular}{ c c } & tabu$		-		
$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	jvm jvm_activeProcessorCount	-		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ $	jvm ≝ jvm_gcType ❶	-		5
$ \int_{\text{jvm}_minHeapSize} \bullet $ $ \int_{\text{jvm}_min$	jvm jvm_maxHeapSize	-		5 V
- Exp 31, Trial 1, frontend_ jncoming_response_time_90_ms	jvm jvm_minHeapSize	-	↓ 19.2%	500 ms 250 ms 0 ms 0 0 ms 0 0 0 0 20 0 0 0 16 40 0 0 25 00 0 0 25 00 0 0 33 20 Time from the start of the trial

akamas.io • © 2022 Akamas S.p.a. • All Rights Reserved

Akamas Al-powered optimization automatically identifies the best configurations for hundreds of parameters for any Kubernetes microservices applications, and any IT component, including runtimes, databases, middleware and cloud instances.

Custom optimization goals & constraints allow you to set the desired performance, resilience and cost objectives for each application to be optimized.

Akamas benefits for Kubernetes apps


Akamas autonomous optimization guarantees the best levels of performance & resilience while also ensuring the **best cost efficiency** of your Kubernetes microservices applications, thus avoiding any resource overprovisioning and unnecessary infrastructure/cloud costs.

With Akamas, developers, performance engineering & SREs are freed from manual tuning activities and can focus on innovating and operating Kubernetes applications, by automatically receiving actionable insights on potential tradeoffs and recommended configurations.

This results into **higher operational efficiency**, business agility and competitive advantages.

-/0 -80%

decrease in response time with lower fluctuations and peaks

decrease in infrastructure/cloud costs with the same application performance

savings in engineering time spent for manual tuning tasks

ΛΚΛΜΛS

