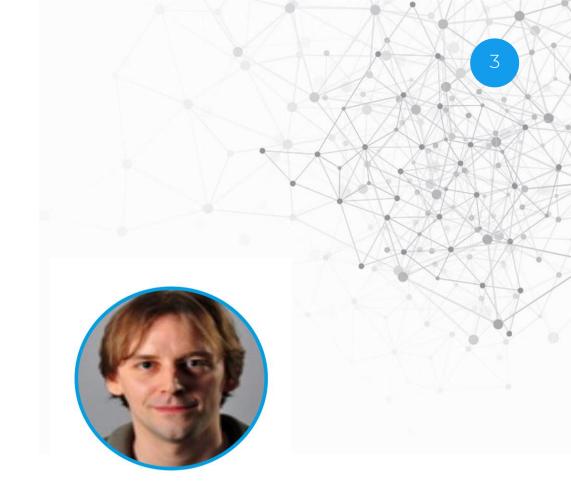


advancing structural science

What's Up Customer Update Webinar

18th March 2021

Today's presenters


Ioana Sovago

Applications Scientist

Alex Eyes

Customer Success Manager

Seth Wiggin Senior Scientific Editor

Overview

In this webinar we will discuss:

- Latest updates and news
- Designing Co-Crystals with CSD-Materials
- CSD MOF collection
- Q&A: the floor is yours

Latest updates and news from CCDC > Events

- CCDC User Group Meetings 2021 all virtual:
 - CCDC Educators UGM 16th and 17th March (watch on demand on our YouTube channel)
 - CCDC Discovery Science UGM 9th and 10th June
 - CCDC Materials Science UGM 7th and 8th September
- Virtual workshops series starting soon
 - > Visualisation and Analysis in Mercury (Intermediate) 7th April
 - > Pharmacophore Searching with CSD-CrossMiner 14th April
 - > Programmatic search and analysis using the CSD Python API 21st April

Latest updates and news from CCDC

- CSD data update February 2021
 - > 20,058 new structures and increasing the total size of the CSD to over 1.1 million structures.

Latest CSD Release

- > 2020.3.1 CSD Release patch release for users working on macOS 11.0 Big Sur update
- Find out more about what's new in our website https://www.ccdc.cam.ac.uk/solutions/whatsnew/

The February 2021 CSD Data Update. Update now.	
PATCH RELEASE	
macOS 11.0 - Big Sur. Update now. CCDC	

The CCDC team is growing...

Recently joined CCDC

Susan Reutzel-Edens - Head of Science

>Joseph Rossetto – UX/UI Specialist

Just a reminder...

CSD-KNIME and Pipeline Pilot are still available, if you haven't tried them yet, please do – we welcome your suggestions.

➤ To get the latest version of the 2020.3 you need to do a full uninstall/reinstall.

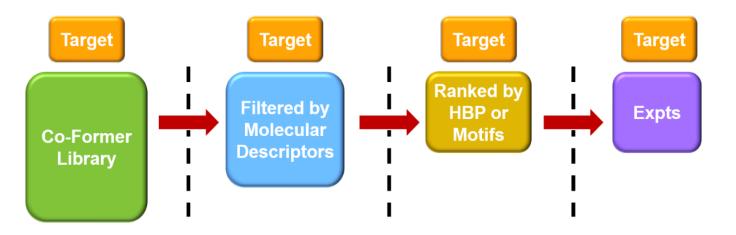
CSD-Materials applications: DASH will be migrating to open source in late 2021/ early 2022

CSD Materials

Designing Co-Crystals with CSD-Materials

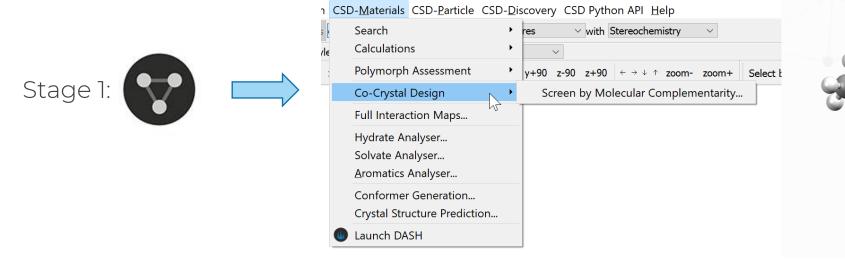
loana Sovago

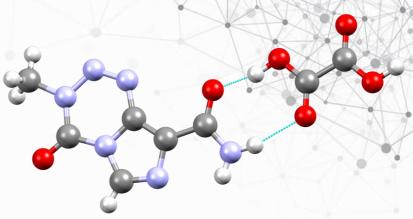
Applications Scientist

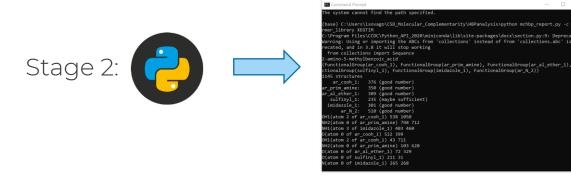


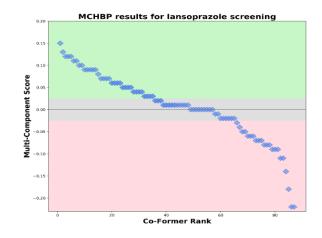
9

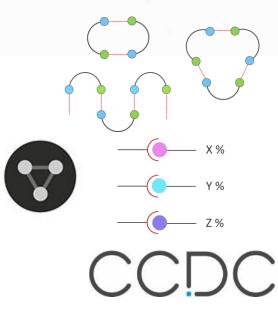
Co-crystal design approach

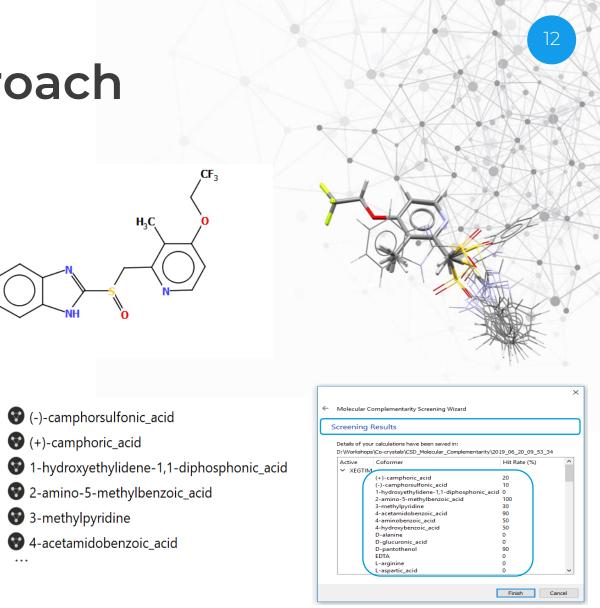

• The CCDC recommends a two-stage screening approach:


- Stage 1: Molecular complementarity analysis this is extremely fast and an ideal method for filtering out very unlikely co-formers from a list
- Stage 2: Motif search or HBP analysis this is more time-consuming, but is effective for ranking co-formers to improve enrichment




P. A. Wood, N. Feeder et al., CrystEngComm (2014) 16, 5839-5848.

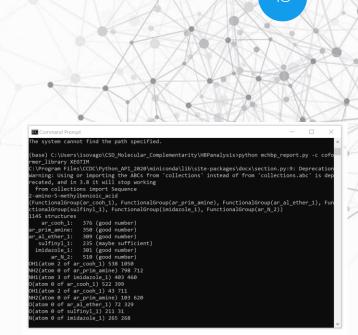

Designing Co-Crystals with CSD-Materials

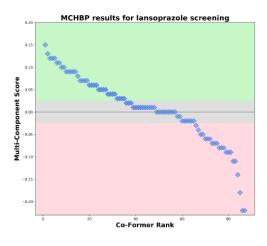


Co-crystal design approach

• Stage 1

- Identify the target molecule (or "active")
- Generate an ensemble of likely molecular conformations for the target molecule
- Identify the full co-former library to be considered
- Run *Screen by Molecular Complementarity* (in CSD-Materials)

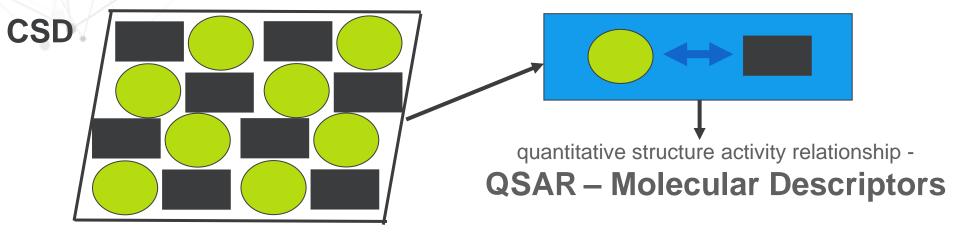



Co-crystal design approach

• Stage 2

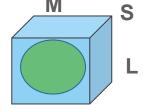
- Identify the co-formers that have passed stage I screening
- Use one of the these approaches to rank co-formers that passed stage 1:
 - *Hydrogen-bond motif search* (in CSD-Materials)
 - Screen by hydrogen-bond propensity (in CSD-Materials)
- Start experiments from the top of the ranked list of co-formers and work down depending on how many experiments you choose to do

	А	В	c
1	Results Summary		
2			
3	Coformer	Hit Rate %	
4	(+)-camphoric_acid	20	
5	(-)-camphorsulfonic_acid	10	
6	1-hydroxyethylidene-1,1-diphosphonic_acid	0	
7	2-amino-5-methylbenzoic_acid	100	
8	3-methylpyridine	30	
9	4-acetamidobenzoic_acid	90	
10	4-aminobenzoic_acid	50	
11	4-hydroxybenzoic_acid	50	
12	D-alanine	0	
13	D-glucuronic_acid	0	
14	D-pantothenol	90	
15	EDTA	0	
16	L-arginine	0	
17	L-aspartic_acid	0	



Molecular complementarity

• Molecular Complementarity (Fábián) Method*



- Calculated QSAR-type molecular descriptors (131 in total) for each pair of molecules in each co-crystal
- Molecules that form co-crystals tend to have *similar* properties

*L. Fábián, Cryst. Growth Des. (2009) 9, 1436-1443.

Molecular complementarity

- Surveyed the CSD used QSAR principles to select 5 most statistically significant descriptors + cut-offs
 - Shape: S axis length
 - Shape: S/L axis ratio
 - Shape: M/L axis ratio
 - Fraction of N/O atoms
 - Dipole moment

Shape Descriptors

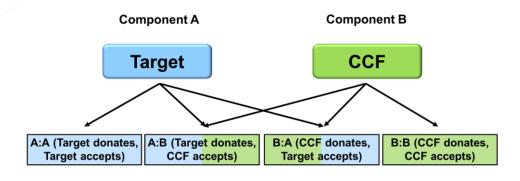
FNO= (#O+#N)/(#Heavy atoms)

• Co-crystal formation is predicted to be **likely** if all descriptors differ by less than the cut-off values among the molecules*

*L. Fábián, Cryst. Growth Des. (2009) 9, 1436-1443.

Illustrative example - MC

Considerable enrichment can be achieved experimentally*


	API-CF pairings	Co-crystal observed	No co-crystal observed	Percentage co-crystals
Total	218	48	170	22%
Predicted to be Likely	107	40	67	37%
Predicted to be Unlikely	111	8	103	7%

- 49.1% of the experiments, but a retention of 83.3% of the hits
- Can remove 111 experiments which only have a 7% hit rate

*L. Fábián, unpublished results.

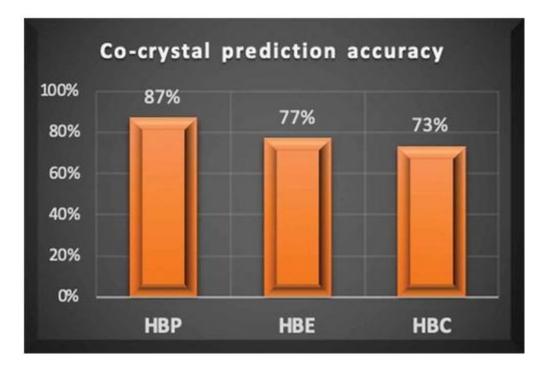
HBP co-former selection

Hydrogen-bond propensity permutations

MC Score	=	Best Hetero Interaction	_	Best Homo Interaction	
	Hig	hest propensit A:B or B:A interaction	y) (Highest propensity A:A or B:B interaction	$\Big)$

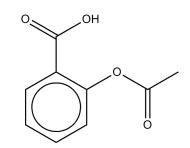
C:\Windows\System32\cmd.exe	_		2
rosoft Windows [Version 10.0.18362.295] 2019 Microsoft Corporation. All rights reserved.			
C_{0} cryst script>"C:\Drogram Files (x26)\CCDC\Dython ADI 2	010\min	icond	۰۱

 \times


):\Co-cryst_script>"C:\Program Files (x86)\CCDC\Python_API_2019\miniconda bython.exe" mchbp_report.py -c coformer_library XEGTIM

C:5.

			Max.	Max A:B or B:A	Max A:A	Max B:B
Rank	Component B	MC score	Interaction	propensity	propensity	propensity
1	L-arginine	0.15	B:A	0.92	0.77	0.7
2	folic_acid	0.13	B:A	0.91	0.78	0.72
3	glycine	0.12	B:A	0.9	0.78	0.75
4	biotin	0.12	B:A	0.92	0.8	0.71
5	t-butylamine	0.12	B:A	0.88	0.76	0.65
6	L-serine	0.11	B:A	0.85	0.74	0.63
7	D-alanine	0.11	B:A	0.89	0.78	0.69
8	L-methionine	0.1	B:A	0.88	0.78	0.62
9	L-leucine	0.1	B:A	0.88	0.78	0.61
10	L-glutamic_acid	0.09	B:A	0.88	0.79	0.64
11	alitame	0.09	B:A	0.87	0.78	0.69
12	L-glutathione	0.09	B:A	0.86	0.77	0.68
13	L-aspartic_acid	0.09	B:A	0.88	0.79	0.65
14	L-glutamine	0.09	B:A	0.89	0.8	0.8
15	4-aminobenzoic_acid	0.08	B:A	0.89	0.81	0.59
16	lactobionic_acid	0.07	B:A	0.83	0.76	0.66
17	acesulfame	0.07	B:A	0.86	0.79	0.6
18	2-amino-5-methylbenzoic_acid	0.07	B:A	0.88	0.81	0.54
19	lactose	0.07	B:A	0.9	0.83	0.76
20	maltitol	0.06	B:A	0.87	0.81	0.68


Illustrative example HBP

- Evaluation of hydrogen-bond propensity, hydrogen bond coordination and hydrogenbond energy tools
- Two API's were investigated Nevirapine and Diclofenac
- The highs accuracy is observed for HBP 87%

C. Aakeröy, et al., Supramolecular Chemistry, (2019), 32:2, 81-90

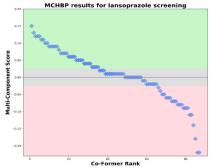
Motif searching

Groups to try

- There are two polymorphs of aspirin which share significant structural similarity including a carboxylic acid H-bonded dimer
- Let's assume we want to break that interaction...

2D Diagram	Dimer	Freq. of Occurrence	
О Н	carboxylic acid…carboxylic acid	29.7 %	
	carboxylic acid…carboxamide	50.3 %	
>N ^{OH}	carboxylic acid…oxime	59.5 %	
он	carboxylic acid…hydroxy	33.8 %	
\neg	carboxylic acid…ester	15.0 %	CCDC

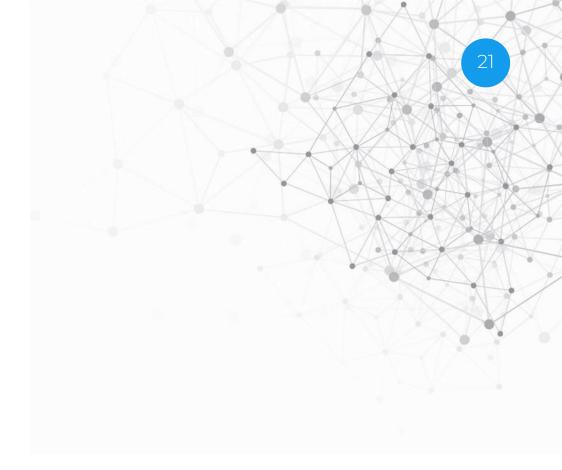
Live Demo



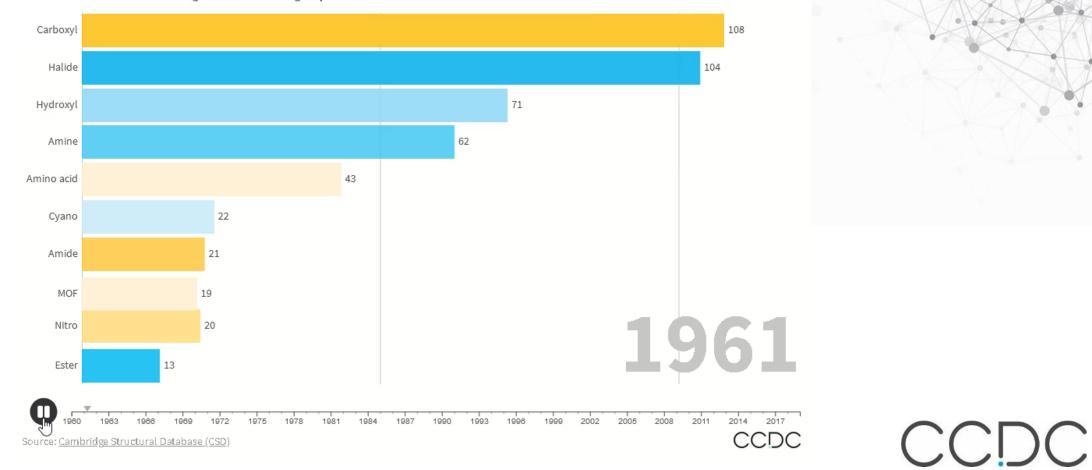
۱	CSE	D- <u>M</u> aterials	CSD- <u>P</u> article	CSD- <u>D</u>	iscover	y CSD Pyth	on API <u>H</u> elp		
5		Search		•	res	∨ with S	Stereochemistry	\sim	
/le		Calculation	าร	•		\sim			
	:	Polymorph	n Assessment	•	y+90	z-90 z+90	$\leftrightarrow \rightarrow \downarrow \uparrow$ zoom-	zoom+ Select	Ł
		Co-Crystal	Design	•	So	reen by Mo	lecular Complem	entarity	1
		Full Interac	ction Maps	45					
		Hydrate Ar Solvate An <u>A</u> romatics	alyser						
			r Generation ucture Predictio	on					
		Launch DA	SH						

<pre>base) C:\User<lisovago(sq_nolecular_complementarity)hbpanalysis>pythom mchbg_report.py</lisovago(sq_nolecular_complementarity)hbpanalysis></pre>	precati
<pre>:VProgram Files/CCCC/vpton_APC_2020/minicond/llb/site-packages/docs/section.py:9:00 earted, and in 3.8 it will stop working from collections import sequence .amino_Simptive_cold .amino_Simptive</pre>	
<pre>-amino 5-methylbenzoic.acid FunctionalGroup(ar_coch]), FunctionalGroup(ar_prim_amine), FunctionalGroup(ar_al_ethe tionalGroup(sulfinyl]), FunctionalGroup(imidazole_l), FunctionalGroup(ar_N_2)) 145 structures ar_coch_l: 376 (good number) r_al_ether_1: 380 (good number) sulfinyl]: 251 (emybe sufficient) imidazole_1: 381 (good number) ar_M_2: 518 (good number) ar_M_2: 518 (good number) ar_M_2: 518 (good number) 41(aton 2 of ar_coch_l) 538 1896 Hi(aton 2 of ar_coch_ar_minel arcon 278 722</pre>	c'is d
<pre>FunctionalGroup(ar_cook]), FunctionalGroup(ar_prim_amine), FunctionalGroup(ar_al_ethe tionalGroup(unifym),1), FunctionalGroup(imidazole_1), FunctionalGroup(ar_N_2)) 145 structures ar_cook_1: 376 (good number) _prim_amine: 380 (good number) _al_attier_1: 380 (good number) _solution_1: 380 (good number) _solution_1: 380 (good number) _ar_A:= 580 (good number) ar_A:= 580 (good number) ar_A:= 580 (good number) 41(aton 2 of ar_cook_1) 538 1050 #2(aton 0 of ar_cork_1) 538 1050</pre>	
an_cool_1: 376 (groad number) prim_anine: 380 (groad number) r_al_ether_1: 380 (groad number) sulfinyl_1: 235 (nuybe sufficient) inidizale_1: 381 (groad number) ar_M_2: 580 (groad number) 41(aton 2 of ar_cooh_1) 538 1896 Hi(aton 2 of ar_crim_anine) 928 722	
r_prim_marine: 350 (good number) 	
r_al_ctbr_1: 309 (good number) sulfnyll: 25 (explose inficient) imidazole_1: 301 (good number) ar_M_2: 510 (good number) Hi(atom 2 of ar_ccoh_1) 538 1050 Hi(atom 0 of ar_prim_samine) 798 722	
<pre>inifayD_1: 235 (myshe sufficient) imidazole_1: 301 (good number) ar.H_2: 510 (good number) Hi(atom 2 of ar.coch.1) 538 1050 Hi(atom 2 of ar.cori, anine) 798 712</pre>	
inidazole_1: 301 (good number) ar N_2: 510 (good number) H1(aton 2 of ar_cooh.1) 538 1050 H2(atom 0 of ar_prim_anine) 788 732	
ar_M_2: 510 (good number) H1(atom 2 of ar_coch_1) 538 1050 H2(atom 0 of ar_prin_amine) 798 712	
H1(atom 2 of ar_cooh_1) 538 1050 H2(atom 0 of ar_prim_amine) 798 712	
H2(atom 0 of ar_prim_amine) 798 712	
H1(atom 3 of imidazole 1) 403 460	
(atom 0 of ar_cooh_1) 522 399	
H1(atom 2 of ar_cooh_1) 43 711	
H2(atom 0 of ar_prim_amine) 103 620	
(atom 0 of ar_al_ether_1) 72 329	
(atom 0 of sulfinyl_1) 211 31 (atom 0 of imidazole 1) 265 268	

Command Prompt



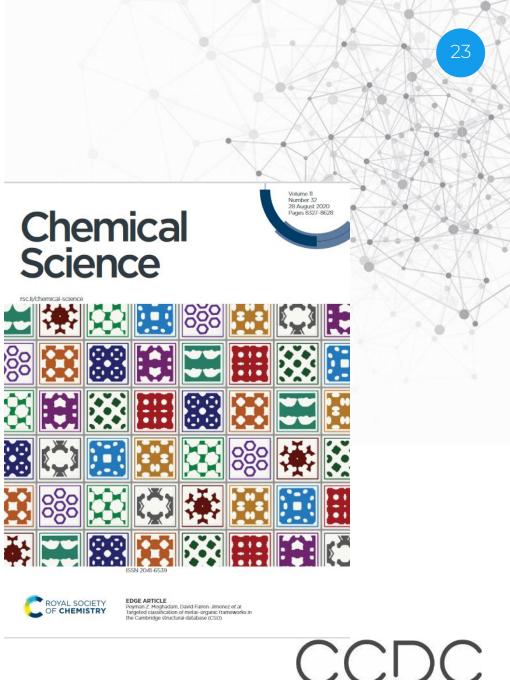
CSD MOF collection.



Seth Wiggin Senior Scientific Editor

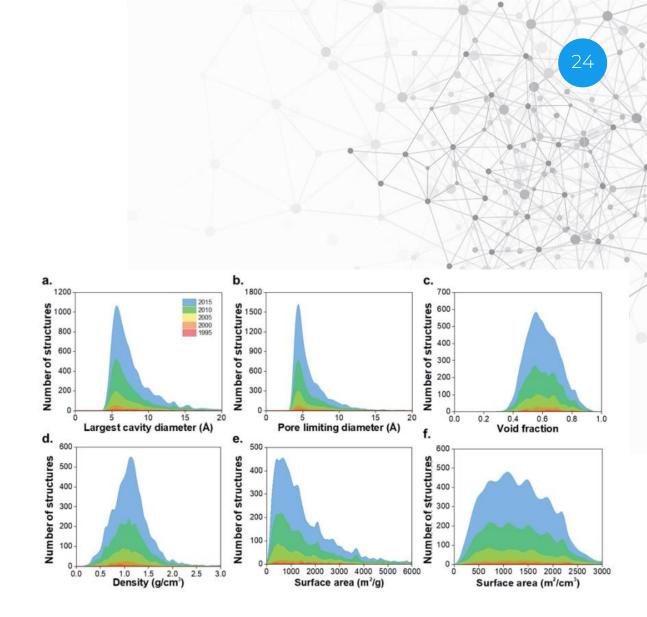
Chemistry in the CSD

Number of structures containing certain chemical groups

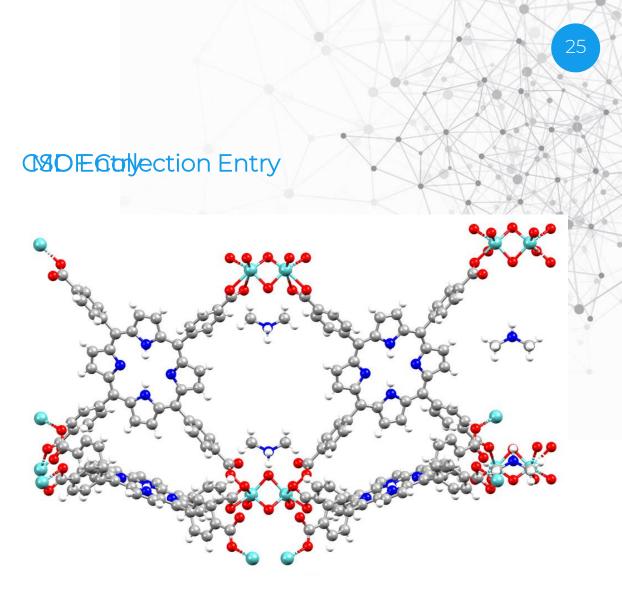

22

- CSD MOF subset
- Tools for MOF analysis
- Results from analysis of the MOF subset

Chemical Science, 2020, **11** 8373, **DOI**: <u>10.1039/D0SC01297A</u>


CrystEngComm, 2020, 22 7152-7161, DOI: 10.1039/D0CE00299B

Chem. Mater., 2017, **29** 2618-2625, **DOI:** <u>10.1021/acs.chemmater.7b00441</u>


Aspects of MOF research are well-suited to high-throughput analysis

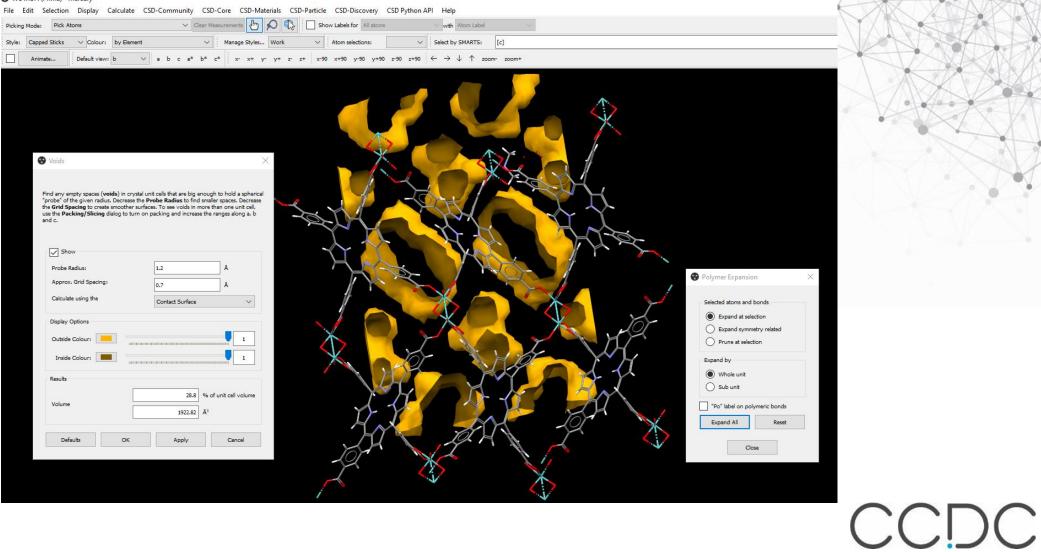
- Topology
- Pore size
- Void space
- Surface area

CSD MOF Collection

- 10,636 3D porous MOFs
 - All 3D MOFs containing over 10 % void space
 - Converted to space group P1
 - Non-bonded solvent removed
 - Missing hydrogen atoms added

CSD MOF Collection

- The CSD MOF Collection contains reference spreadsheets
 - Allows further categorisation within the collection


CSD refcode	CIF filename	original crystal system	Sohncke space group	Percentage void space	Charged framework	Hydrogen added	Unreliable	chemistry
ABAVIJ	abavij_P1	monoclinic	-	15.538	-	-	-	
ABAVOP	abavop_P1	monoclinic	-	13.946	-	-	-	
ABAYIO	abayio_P1_charged	cubic	-	62.844	Yes	-	-	
ABAZAF	abazaf_P1	monoclinic	-	21.272	-	-	-	
ABAZAF01	abazaf01 P1	monoclinic	-	22.353	-	-	-	

- The CSD MOF Collection has a Creative Commons licence: CC BY-NC-SA 4.0
- https://www.ccdc.cam.ac.uk/Community/csd-community/csd-mof-collection/

Live Demo

😵 WUTXUH (Pnma) - Mercury

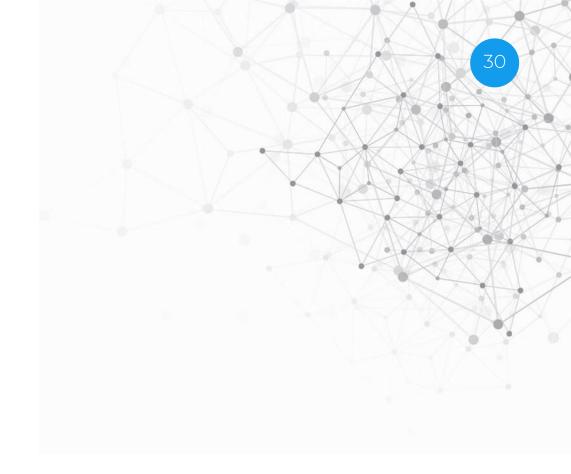
Q&A

• Type your questions in the box as shown

File View Help ⊕ • □ ♥ × ✓ Audio ♥ Sound Check • • • ? • Computer audio • Phone call • MUTED Microphone (HD Webcam C510) ✓ • • • • • • • • • • • • • • • • • • •			
Sound Check • • • • ? • Computer audio • Phone call • MUTED Microphone (HD Webcam C510) •		-	
Computer audio Computer audio Phone call MUTED Microphone (HD Webcam C510)	ľ		
speakers (High Definition Aud V		 Computer audio Phone call MUTED Microphone (HD Webcam C510) 	~
		▼ Questions	ប
▼ Questions 1			
		[Enter a question for staff]	
[Enter a question for staff]			
[Enter a question for staff]			
[Enter a question for staff]		Multi sessions different registrants	

Next What's Up Webinar

- Next webinar: 20th May
 - CSD-Discovery: Ligand Overlay
 - Agile Development at CCDC
- Follow us on social media
- Send us your ideas and news
 - hello@ccdc.cam.ac.uk



29

Thank you

hello@ccdc.cam.ac.uk

The Cambridge Crystallographic Data Centre 12 Union Road, Cambridge CB2 1EZ, United Kingdom Registered Charity No. 800579

