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Humans are surrounded by pathogenic assaults, from bacteria that 
lurk on surfaces, to airborne viruses that infect the respiratory system. 
As the world grapples with the ongoing pandemic, researchers 
focus on the body’s first line of defense: the immune system. 
Immunotherapy is typically thought of in the context of cancer 
treatment, but many of the same therapies used to activate the 
immune system to treat cancer may also combat infectious diseases. 
These therapies fall into three broad categories: engineered T cells, 
therapeutic antibodies, and the activation of endogenous T cells.1

Cytokines
Physicians administer proinflammatory cytokines 
to activate T cells capable of destroying pathogens. 
However, with SARS-CoV-2 infection, macrophages and 
T cells may produce too many cytokines, resulting in a 
cytokine storm. In such cases, physicians administer 
immunomodulatory drugs such as Tocilizumab to 
decrease cytokine production.2

Therapeutic Monoclonal 
Antibodies
Therapeutic antibodies are perhaps the most versatile 
immunotherapy treatment. Researchers use vaccines to 
supply therapeutic antibodies, or stimulate the production 
of therapeutic antibodies through various mechanisms, 
including introducing a dead or attenuated virus, or the 
RNA sequence for a viral protein.1 Monoclonal antibodies 
have neutralized the Zika virus, Ebola virus, and in some 
cases SARS-CoV-2, and are considered the treatment of 
choice for many bacterial pathogens.6,7,8,9

Monoclonal antibodies 
neutralize antigens on the 
surface of  viral and bacterial 
pathogens.

Molecular engineers may 
conjugate monoclonal 
antibodies with small 
molecules toxins and other 
biological agents to ensure 
their targeted delivery and 
efficiency. 

Checkpoint Inhibition
Similar to cancer cells, dysfunctional T cells infected with 
Mycobacterium tuberculosis aberrantly express inhibitory 
receptors such as PD-1 and PD-L1. These receptors bind to 
functioning T cells and dampen their ability to recognize 
and destroy diseased cells. Checkpoint inhibition therapy 
administers antibodies that bind to these inhibitory 
signals, allowing T cells to identify infected cells. While 
revolutionary for cancer, checkpoint inhibition for 
infectious disease is still under investigation.10,11 

Bispecific Antibodies
Bispecific antibodies bind two separate targets, an 
antigen on the diseased cell and an antigen, such as 
CD3, on a cytotoxic T cell. By binding both antigens, 
bispecific antibodies bring diseased cells into proximity 
with immune effector cells, where they can be promptly 
eliminated. Researchers engineered a bispecific antibody 
that neutralizes the Zika virus and prevents the generation 
of resistant mutant strains.6 Clinical trials investigating 
the ability of engineered bispecific antibodies for 
Pseudomonas aeruginosa and Staphylococcus 
aureus bacterial pathogens are also underway. Such 
treatments may prevent bacterial pneumonia in high-risk 
patients.12,13,14

Engineered T Cells
Researchers genetically modify patient-derived T cells 
to express chimeric antigen receptors (CARs) and 
return them intravenously into the body, where they 
preferentially target specific pathogens. Bi- and tri-
specific CARs prevent HIV infection while efficiently 
killing HIV-positive cells in mouse models.3 CARs specific 
to cytomegalovirus (CMV) have also been described.4 Two 
ongoing clinical trials are exploring the ability of CAR T 
cell therapy to eradicate latent HIV reservoirs in humans.1 
Researchers may also use adoptive cell transfer, where 
they manipulate and expand T cells ex vivo to combat the 
Zika virus.5
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