

Research Fellow Pine Biotech New Orleans, Louisiana, USA Introduction

The Esophageal Carcinoma is the 6th most common cancer in the world, accounting for 604100 new cases and 544076 deaths in the year 2020. The disease has a diverse geographical distribution. While Asia reported the largest number of Incidence and mortality, It is also seen that the incidence of Esophageal Cancer in Men is considerably more than the Females (Sung H et al). Moreover, the 5-year survival of Esophageal Carcinoma is between 12% and 20%, owing to the fact that the disease is usually diagnosed at advanced stages and is usually resistant to the majority of therapies due to molecular heterogeneity (Napier KJ et al).

The Esophageal Carcinoma has two major histological categories called the Esophageal Adenocarcinoma (EAC) and the Esophageal Squamous Cell Carcinoma (ESCC). The ESCC subtype is the neoplasm of squamous cells, usually associated with alcohol consumption and tobacco use. It is localised to the middle and lower esophagus. The esophageal Adenocarcinoma is predominant in the lower third of the esophagus. Unlike ESCC, Esophageal Adenocarcinoma is closely associated with conditions like gastroesophageal reflux disease, untreated can lead to Barrett's Esophagus (Napier KJ et al), a pre-neoplastic condition where the squamous epithelium is replaced by columnar epithelium.

The ESCC is the most prevalent histological subtype of Esophageal Cancer in the world, developing nations such as India reports the majority of the ESCC cases (Figure-1). On the contrary, EAC is majorly diagnosed in the population of developed nations like the USA, UK (Joel H. Rubenstein & Nicolas J. Shaheen).

subtype

Transcriptomic Analysis of histological subtypes in Esophageal Carcinoma

Dhruv Mehra, Dr. Harpreet Kaur, Elia Brodsky , Dr. Mohit Mazumder

Figure 1: Global differences in the incidence of histological subtypes of esophageal cancer , cited: Joel H. Rubenstein & Nicolas J. Shaheen

OMICS RESEARCH

SYMPOSIUM

Methods

DATASET

For this study, The Cancer Genome Atlas Esophageal Carcinoma (ESCA) RNA-seq dataset (retrieved from firebrowse) was used. Among the 198 samples analysed, there were 97 ESCC tumour samples, 88 EAC tumour samples and 13 Normal samples (Fig-2).

CLUSTERING AND CLASSIFICATION

Principal Component Analysis was performed on the dataset using the T-Bioinfo server. The expression RPKM values table (Quantile normalized and log2 transformed) was uploaded on the server and the PCA Pipeline was performed on the data to see clustering based on the subtype.

DIFFERENTIAL GENE EXPRESSION ANALYSIS AND PATHWAY ENRICHMENT ANALYSIS

The data was analysed using the T-bioinfo Server. The Differential Gene expression analysis was performed using the DEseq2 algorithm on the T-bioinfo server, for the pathway enrichment, GSEA enrichment and Pathway Enrichment algorithms on the T-bioinfo were used (streamlined with DEseq2).

The three different analyses were performed for understanding diverse affairs involved in the subtypes: - Differential Gene Expression Analysis was performed between the 88 EAC samples and 97 ESCC samples. For the analysis, raw read counts were used.

- Differential Gene Expression Analysis and Pathway Enrichment analysis was done between two groups: o 13 Normal samples and 88 EAC samples 13 Normal samples and 97 ESCC samples

subtype

Figure 4 : Analysis Flow Chart

Conclusions

A number of differentially expressed genes were discovered between the two subtypes. It was seen that a number of differentially expressed long non-coding RNA genes and miRNAs were discovered. Both lncRNA and miRNA plays an important role in Gene regulation thus, making them a new class of targets for drug discovery (Matsui M and Corey DR).

HOTAIR or HOX Transcript Antisense Intergenic RNA, an important lncRNA found in cancer usually involved in cancer progression and drug resistance, was found up-regulated in be Esophageal to adenocarcinoma (Rajagopal T et al). HOTTIP OR HOXA transcript at the distal tip, an important prognostic marker in various cancers was up-regulated in EAC (Fig-13).

A number of long intergenic non coding RNAs were found to be up-regulated in ESCC including LINC01549 which is an important lncRNA in Hepatocellular carcinoma (Ye J et al) (Fig-12).

As we discovered a number of lncRNAs and miRNA differentially expressed between the two histological subtypes, we can work towards the path of Precision Medicine based on the histology.

The Pathway enrichment revealed some of the similarities between EAC and ESCC. While both shared up-regulated pathways related to DNA confirmation change, Cell cycle regulation, Signalling pathway, the Lipid metabolism related pathways were activated

SYMBOL	GENENAME	SYMBOL	GENENAME	
CCDC140	CCDC140 long non-coding RNA	MIR1231	microRNA 1231	
CCDC26	CCDC26 long non-coding RNA	MIR1260A	microRNA 1260a	
LINC00051	long intergenic non-protein coding RNA 51	MIR1908	microRNA 1908	Figure 12: miRNAs and
LINC00052	long intergenic non-protein coding RNA 52	MIR1910	microRNA 1910	Inconia uproduitated in ECCC
LINC00161	long intergenic non-protein coding RNA 161	MIR203A	microRNA 203a	INCRNAS UPIEGUIALEU IN ESCC
LINC00163	long intergenic non-protein coding RNA 163	MIR203B	microRNA 203b	subtype
LINC00173	long intergenic non-protein coding RNA 173	MIR205HG	MIR205 host gene	
LINC00184	long intergenic non-protein coding RNA 184	MIR2117	microRNA 2117	
LINC00240	long intergenic non-protein coding RNA 240	MIR2355	microRNA 2355	
LINC00269	long intergenic non-protein coding RNA 269	MIR31	microRNA 31	
LINC00303	long intergenic non-protein coding RNA 303	MIR31HG	MIR31 host gene	
LINC00320	long intergenic non-protein coding RNA 320	MIR3660	microRNA 3660	
LINC00347	long intergenic non-protein coding RNA 347	MIR3666	microRNA 3666	
LINC00461	long intergenic non-protein coding RNA 461	MIR4252	microRNA 4252	
LINC00486	long intergenic non-protein coding RNA 486	MIR4497	microRNA 4497	
LINC00592	long intergenic non-protein coding RNA 592	MIR4671	microRNA 4671	
LINC00606	long intergenic non-protein coding RNA 606	MIR4675	microRNA 4675	
LINC00615	long intergenic non-protein coding RNA 615	MIR497	microRNA 497	
LINC00696	long intergenic non-protein coding RNA 696	MIR548K	microRNA 548k	
LINC01363	long intergenic non-protein coding RNA 1363	MIR575	microRNA 575	
LINC01549	long intergenic non-protein coding RNA 1549	MIR708	microRNA 708	
LINC01565	long intergenic non-protein coding RNA 1565	MIR936	microRNA 936	
LINC02872	long intergenic non-protein coding RNA 2872	MIR944	microRNA 944	
CV/M AD OIL	CENENAME	CVM 4D OI	CENENIANAE	
SYMBOL	GENENAME	SYIVIBOL	GENENAME	
HOTAIR	HOX transcript antisense RNA	MIR1236	microRNA 1236	Figure 13. miRNAs and
HOTTIP	HOXA distal transcript antisense RNA	MIR1257	microRNA 1257	
LINC00114	long intergenic non-protein coding RNA 114	MIR126	microRNA 126	<i>lncRNAs upregulated in EAC</i>
LINC00261	long intergenic non-protein coding RNA 261	MIR1293	microRNA 1293	subtune
LINC00323	long intergenic non-protein coding RNA 323	MIR135A1	microRNA 135a-1	Bubeype
	long intergenie non-protein coding RNA 325	MIP192	microPNA 192	
LINCOUSSO	long intergenic non-protein coding RNA 550	IVIIN192	THICIORINA 192	
LINC00473	long intergenic non-protein coding RNA 4/3	MIR196A1	microRNA 196a-1	
LINC00482	long intergenic non-protein coding RNA 482	MIR2276	microRNA 2276	
LINC00494	long intergenic non-protein coding RNA 494	MIR3131	microRNA 3131	
LINC00511	long intergenic non-protein coding RNA 511	MIR3185	microRNA 3185	
LINC00574	long intergenic non-protein coding RNA 574	MIR3189	microRNA 3189	
LINC00619	long intergenic non-protein coding PNA 619	MIR2107	microRNA 3197	
	long intergenic non-protein coding KNA 015	MIN3137	micronivA 5157	
LINC01555	iong intergenic non-protein coding KNA 1555	MIR326	microkina 326	
LINC01558	long intergenic non-protein coding RNA 1558	MIR3621	microRNA 3621	
LINC01559	long intergenic non-protein coding RNA 1559	MIR3646	microRNA 3646	

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021 Feb 4. Napier KJ, Scheerer M, Misra S. Esophageal cancer: A Review of epidemiology, pathogenesis, staging workup and treatment modalities. World J Gastrointest Oncol 2014;6:112-20 Joel H. Rubenstein & Nicolas J. Shaheen, Epidemiology, Diagnosis and Management of Wsophageal Adenocarcinoma, Gasteroenterology, vol 149, issue 2 Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov. 2017;16(3):167-179. doi:10.1038/nrd.2016.117 Rajagopal T, Talluri S, Akshaya RL, Dunna NR. HOTAIR LncRNA: A novel oncogenic propellant in human cancer. Clin Chim Acta. 2020 Apr; 503:1-18. doi: 10.1016/j.cca.2019.12.028. Epub 2019 Dec 31. PMID: 31901481. Ye J, Li H, Wei J, Luo Y, Liu H, Zhang J, Luo X. Risk Scoring System based on lncRNA Expression for Predicting Survival in Hepatocellular Carcinoma with Cirrhosis. Asian Pac J Cancer Prev. 2020 Jun

1;21(6):1787-1795. doi: 10.31557/APJCP.2020.21.6.1787. PMID: 32592379; PMCID: PMC7568908.

