To see the figures and text more clearly, please zoom in on the view tab on ppt, zoom in on browser or manually enlarge the figures. Or please go to this link to see a google doc with all the enlarged versions: https://docs.google.com/document/d/1wl3uk4dFSeQBlamX1KReQayXHgqPmvzOmaPBUUpxAlfew/edit?usp=sharing

Introduction

OMICS RESEARCH SYMPOSIUM

>oding an App In R using scRNA-se( fetal brain

samples for the identification of potential
autism risk genes

/Step 1: At the 18-24 month checkup
~ physicians will check for any sign of

Andrew Lee

Expression matrix input

'hDAO:week 10 hDAO:week 9

b. Heatmap, PCA and
Hierarchical clustering

Hierarchical Clustering Analysis

C. List of known and
possible

Autism S_peqtrum Disc_Jr_der is a neurological cc_)ndition that causes Iimitat_i(_)ns in _spcial _ _ neurological disorders in children DDX41L1 0.0  0.22944216 autism genes +
communication, repetitive and compulsive actions, and declines in cognitive ability appearing L Datasets 1 + —
early in childhood. There is a high prevalence of autism with approximately 1% of the total &80 2: Barent of persch with appareh WASH7P_p1 ~ 0.3836881 | 0.0 L’J known genes
PEPUIEHENEIZEIER |2y 112 EISTE: [ neurological disorder completes a Arisk scRNA-seq dataset (Chen et al., 2020) LINC01002 _loc4 0.0 0.0 ﬁ ﬂh
\ screening, information gathered about ' T it
The current method of diagnosis is through clinical evaluation. However, the similar clinical N\ patient family history The dataset was composed of two groups: one was of human fetal brain sample expression LOC100133331_loc1 0.18377306 | 0.0 e s HGNC conditions
symptomatology of various neu_rolqglga_l dlsqrders leads to common mlsdlagn05|s,_wh|ch isa readings between 6-11 weeks of age, while the second was from prefrontal cortex sample LOC100132287 loc2 0.0 . 0.0 - o B —— ADNP SPARK risk
barrier for the creation of effective individualized treatment regimens. Inaccurate diagnosis - . ‘ = i
) . : : : . expression readings between 8-26 weeks. LOC101928626 0.0 0.09586797 == e
gl ESUl I SLopilitel SOUEENE Ee eEDUZELEE] Tsrelpy [ ents el INEEgiue : > S ' The datasets were integrated to create an expression matrix (expression levels at distinct time : T T - AMNKZ2 SPARK.risk
medication prescriptions or adverse effects. Delayed diagnosis has signficant consequences, /" Step 3:Clinical staff Step 4: Doctor looks at patier oints) with 95 total fea?ures P P MIR6723 0.67272115  0.15172525 - o = :
as early intervention may be more effective and durable as brain plasticity is more reviews the sympfamg on © ennﬁrmthesymptoms P . o : i B T ANKRD11 SPARK risk
pronounced at the early stages of childhood fﬁé'édééﬁihg'fno{ according to the DSM-V Preprocessing and exclusion criteria: cell clusters 210 cells were removed LOC100133331_loc2 0.0 | 0.0 rer= |
’ N A e Al . guide]ines e e = —
' 7 - TR : : LOC100288069 p1 0.0 0.09586797 = - e ARID1B SPARK. risk
Current Methods of Diagnosis: DSM-V and Genetic Testing IF SIUIEERIRN @ (el CHEI MElES Clees ! E—— e
LINCO0115 0.068216935 0.0 .
DSM-V : A heatmap and principal component analysis (PCA) with the Arisk dataset was performed. LINCO1128 0.3038853 [ 0.14457226 l . ASHIL SPARK.risk
Several plots were created for single gene user inputs. g | : : ® a4 ASKL3 SPARK risk
The Diagnostic and Statistical Manual of Mental Disorders fifth edition (DSM-V), the gold- ﬁ;ﬁh gr?éss Wﬁ;ﬁ:&?;:;ﬁg:? 2r(;2 ﬁsg (ta: 'i:\fésgogg Tﬁeﬁiﬁi}:e(rji?tagﬁssgi I;r:]?jvg]Cazuit:]sm st il : i 'l .}% o :
standard diagnostic criteria used by physicians, is the main method of diagnosis. The DSM-V S (v J ’ : grap g g SAMD11 0.0 0.0 o1 . BAZZ2B SPARK.risk
) o . o . .  Confirmed " Negative relation to the autism genes o .
diagnostic criteria also is thought to oversimplify the disorder phenotypes with overly broad E=s s S e e ' I 1 41 A a¥s
: o . : o : : _ Diagnosis . Diagnosis NOC2L 0.11181325 | 0.34196487 -
explanations for both cognitive ability and behavioral criteria. As the DSM-V is not optimal and Heatman: The heatman was colored red for the SPARK risk genes. and blue for : | IR
clinical evaluation is particularly difficult for young children, genetic testing may enhance - P : . . T1SK genes, anc : . | o
diagnostic acouracy v the contrpI.LGD genes for the potential autism risk genes with hierarchical clustering, while - —
' % \ the functional scores are color coded on the actual plot.

T Genetic Testing. Coded app in R, analyzed possible autism genes using t-SNE i i i
CEnEs Vestig Jssibility ofd & W - Sevgral genes were selected for single gene pIot_anaIysis to determine if the gene sh'ares' d ioli | ?p id ’ lot fy ] p_l ) 9 t t E ’ e. Fma_l revised _“St of
Genetic testing depends on the screening of autism risk genes to diagnose the disoder. © rare diseas YES Highly Setermining it simliar expression pattern sot the known autism risk genes based on their close relationship VI(.) IITI P O , Ffidge plottor simiar expressmq pa e_rns O Known, pOSSIb|e candidate
Recent studies estimate that a thousand or more genes cause autism when mutated, but " dependent casiens::other (DG LI TS SRS eI (PO I C i 1D eliminating genes that are not expressed in similar cell types genes + known
there have been only around 100 genes that have been identified and confirmed to date. .. ) uehor : ’ , -

@, | discovery \_ disease App Creation enes that cause
: e . I ¢ Chrorpgsgmal ) of new The app was coded in R using the Shiny and Shiny dashboard packages. Some of the code .
Current research has attampted to identify individual genes that have mutations contributing AN GEHEICE Testing ASD g ) . . . o autism
to autism. Advances in whole exome and genome sequencing in the last decade have created " No additional | ftesting(ex. | P was modified from the OmicsLogic/BioTech Transcriptomics course, while several of the plots Introduction
the groundwork for data science analysis _ genetic testing |  fragile X and € Eome risk were created using the Seurat and associated packages. e
» Wwilkins testing),  sequencing 9‘2’;‘*5 s HGNC conditions
Network based appaorches have included gene interaction networks, cell specific gene - - scrosh . . . . BRI ST ' .
expression profiles and human brain region expression patterns. o S Further analysis of genes using single gene plots in app e R ADNP SPARK.risk
Referral to early Drug Hictri : . ] ) ' e ;
Machine learning is a more recent approach that is used to efficiently identify genes that have intervention intervention t dlstrlbuteq St(.)ChaSt'.C IENE) 71907 empeddlng el plpt. Gl hiEtire e @ piessse "wep ‘ ANKZ SPARK.risk
similar expression profiles to already discovered autism genes. This method Senfices and perscriptions for gene are highlighted in blue depending on the expression levels. : i
. : . ) ' education severe cases Violin Plots. This plot uses the single gene input to immediately generate. Expression levels SR, ANKRD11 SPARK.risk
incorporates previous gene expression analysis. programs for the .
gene name input are mapped among more than 20 cell types/clusters. H
PUIDOSE Ridge Plot: This was an alternative to the single gene t-SNE. . ARID1B SPARK.risk
P Continuous Developmental Datasets ASH1L SPARK risk
Monitoring for all cases to ensure no i - i i isti g r
This project's aim is two fold. First | seek to identify genes of interest from an unsupervised » disorder develops or new symptoms «— SEZ?;?:Z:Z ,ﬁ;lé th;rr]fj z?rk()joc\:/; g)rk;scv;/sree annotated through the metadata file with distinct cell
analysis approach. Then there can be a single gene approach to identify genes that have emerge that need additional ' s - ASXL3 SPARK risk
similar expression profiling among distinct cell clusters. This twofold approach will reduce realment . o L gt s
some of the coincidental connections created through the unsupervised methods Express_lon Ievgl; were compared fo those of kpown. gutlsm risk genes. G_enes Wlth St lar g BAZZEB SPARK.risk
' expression profiling in identical cell types were identified as possible candidate autism risk e e st -

The next purpose is to identify the functional characteristics of the isolated genes in terms of
their molecular functions and biological processes linked to the genes.

Additionally, I will faciliate my reesarch and the research of others by creating a publicly
available app with a user friendly interface such that the input of the name of a gene of
interest results in clear expression levels in more than 20 types of human cells.
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Fig 1. Steps to diagnose autism spectrum disorder.
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Fig 3: Single gene plots in shiny app generated using A-risk dataset option. t-SNE, Ridgeplot and Violin Plot were coded with the seurat package with CHD4 as the example gene input. Graphs display 26 distinct cell clusters. a) Violin Plot b) t-SNE plot with CHD4
cells colored in blue c) Ridge Plot

Single gene plots were created for the genes that were clustered next to autism risk genes from the heatmap and the Principal Component Analysis.
Genes that have similar expression patterns based on the expression level across the color coded cell clusters were identified as potential autism risk genes. The plots
above show what the expression profile for a single gene using CHD4 as an example would look like. This process was repeated for each of the genes from the heatmap

and PCA.
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Fig 4: Additional plots that were used purely for visualization, not related to autism gene discovery. UMAP plot as an alternative to the t-SNE on the right, the
complete gene t-SNE is shown on the right

These are additional plots that were created in the app with some additional modifications from the Omics Logic course. Note the plots are added for visualization of data
and do not have a direct link to the discovery of autism risk genes. There are clear clusters based on cell type, indicating that the genes are expressed in 26 distinct cell

After removing genes that are not highly expressed or
are not expressed in autism related cell types in the

brain, 5 genes were identified as potential autism
genes and will be further studied.

types. The UMAP is another alternative to the t-SNE plot.
genes HGNC conditions group labels
PDS5A PDS5A control.LGD | Potential autism risk gene
IARS IARS control.LGD | Potential autism risk gene
SLIT1 SLIT1 control.LGD | Potential autism risk gene
APPBP2 APPBP2 control.LGD | Potential autism risk gene
SNAP91 SNAP91 control.LGDi Potential autism risk gene

These genes share similar expression profiling and are
highly expressed in the brain samples.121 other genes
were also highly expressed in the dataset, but these
were already confirmed autism genes.

Fig 2. Schematic of the stpes in this project. Input: gene matrix. Data undergoes initial analysis on complete data to isolate individual genes. Second
set is done manually using the gene input name into the app that was coded in R to find similar expression patterns with autism genes

Research Conclusions

The coded app provides ease of use with automatic plot rendering and image downloads
so that the user can visualize the single gene expression data across multiple cell types.
The user interface only requires the input of the name of a single brain-specific gene.
The app is useful for other researchers seeking to correlate genes of interest from their
own studies to multiple cell clusters and cell types.

In this study, the application was used to search for genes correlated with autism.

On the heatmap and Principal Component Analysis, there was apparent clustering of
autism risk genes into distinct regions of the PC1 and on the hierarchical heatmap
clustering.

Five genes were identified as potential autism genes that may be markers of autism or
directly cause autism when mutated.

Impact

The discovery of autism risk genes can improve the genetic testing available for autism,
which in turn provides more accurate and clear diagnosis. Early intervention is one of the
benefits of genetic testing diagnosis, as among the benefits are more accurate learning
program designation and better drug treatment options.

Genetic testing has been limited by the lack of autism risk gene discovery and the
amount of datasets available, but this study has provided several genes for further study

Limitations

Determination of autism genes based on gene expression clustering and unsupervised
methods has its pitfalls.

In some cases, brain expression similarities can be coincidental, and functional analysis
Is needed to verify any of the genes identified. Supervised machine learning approaches
and neural networks may be better for gene discovery to reduce the risk of false
positives.

Future Research

This study has proved useful in identifying five candidate autism genes for further study
regarding their biological and molecular functions.

Extensions to this project involve continuing adding more recent and larger datasets to
use in the unsupervised machine learning methods and in the app.

Lastly, improving the user interface of the app such as adding new interactive data tables
and multiple gene file inputs would allow for other researchers to visualize the single and
multiple gene expression profiles for their own studies in more detail.
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