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Abstract: Use of green stormwater infrastructure (GSI) to mitigate urban runoff impacts has grown
substantially in recent decades, but municipalities often lack an integrated approach to prioritize areas
for implementation, demonstrate compelling evidence of catchment-scale improvements, and com-
municate stormwater program effectiveness. We present a method for quantifying runoff reduction
benefits associated with distributed GSI that is designed to align with the spatial scale of information
required by urban stormwater implementation. The model was driven by a probabilistic representa-
tion of rainfall events to estimate annual runoff and reductions associated with distributed GSI for
various design storm levels. Raster-based calculations provide estimates on a 30-m grid, preserving
unique combinations of drainage factors that drive runoff production, hydrologic storage, and infil-
tration benefits of GSI. The model showed strong correspondence with aggregated continuous runoff
data from a set of urbanized catchments in Salinas, California, USA, over a three-year monitoring
period and output sensitivity to the storm drain network inputs. Because the model runs through
a web browser and the parameterization is based on readily available spatial data, it is suitable for
nonmodeling experts to rapidly update GSI features, compare alternative implementation scenarios,
track progress toward urban runoff reduction goals, and demonstrate regulatory compliance.

Keywords: stormwater modeling; decision support; green stormwater infrastructure; rainfall
runoff; GSI

1. Introduction

The continued expansion of impervious cover disrupts natural hydrologic cycles, in-
creasing runoff from storms [1], which enhances the entrainment and transport of sediment,
nutrients, bacteria, metals, pesticides, and other pollutants [2,3]. Municipalities throughout
the United States are required to implement structural and nonstructural controls, known
as best management practices (BMPs), to reduce runoff and urban pollutant loading to
receiving waters. BMPs are a key component of low impact development and increasingly
include small-scale green stormwater infrastructure (GSI) such as infiltration or bioretention
features widely distributed throughout the urban landscape. Where traditional “grey in-
frastructure” uses engineered hard structures, GSI uses plants, soils, and landscape design
to reduce runoff and pollutant entrainment close to where rain falls to restore the natural
hydrologic functioning of urbanized landscapes. GSI has become increasingly popular as a
cost-effective way of reducing pollution from urban stormwater pollution [4]. The well-
documented co-benefits of GSI include water quality improvements [5], reduction of local
flooding risks [6–8], recharging groundwater [9,10], and climate change impact mitigation
via carbon dioxide uptake [11,12] and reduction of the urban heat island effect [13].

While site-scale effectiveness of individual BMPs has been widely documented [14–17],
there is little compelling evidence available via measurements or modeling of improve-
ments resulting from distributed GSI implementation at urban catchment scales (e.g.,
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1–1000 km2) [18]. While a few recent studies have begun to build this understanding via
field measurements [4,19,20] and modeling [21,22], the effectiveness results are mixed [17]
and substantial uncertainty remains for how implementation may scale up to catchment-
scale changes over the long term [23,24]. The uncertainty is largely because the high
variability associated with storm flows obfuscates the signal of hydrologic or water quality
changes associated with stormwater management activities [25]. Monitoring designs that
minimize sources of variance with long time series and precise measurements in areas with
relatively intensive GSI implementation have the best chance to draw causal linkages be-
tween GSI implementation and catchment-scale hydrologic changes [17], but data resulting
from such efforts are scant.

Given the high costs of monitoring, municipal stormwater programs must often rely
on modeling tools to estimate the levels of GSI implementation needed to reach water
quality milestones [26]. A trade-off between greater resolution in space or time is generally
required and reflected in the chosen model structure, since granular representation of both
is excessively complex and computationally expensive [27,28]. Greater process representa-
tion complexity does not necessarily improve model utility, especially when information
to constrain model behavior is severely limited [29,30]. Recent work illustrates that the
location and spatial distribution of GSI practices can be a key factor in catchment-scale
effectiveness [18,20,25]. Since stormwater planning decisions are often made at the scale
of parcels, high spatial resolution models with simplified processes may provide more
useful outputs compared to models with detailed process representation but lower spatial
resolution. In this study, we present an updated version of the Stormwater Tool to Estimate
Load Reductions (swTELR), previously reported by Beck et al. (2017) [31], which employs a
parsimonious parameterization to align with spatial data sets that are commonly available
to cities. While the previous version of the model made calculations at the urban catchment
scale (approximately 40–100 ha) for quantifying centralized stormwater treatment, this ver-
sion uses 30-m (0.09-ha) grid-scale calculations to facilitate spatially explicit representation
of small-scale GSI BMPs throughout a city. This approach allows a hierarchical drainage
configuration so that reductions from distributed GSI can be nested within drainages
treated by larger centralized BMPs. Thus, it provides an efficient way to scale up runoff
reduction accounting that preserves site-level characteristics, linkages between BMPs, and
connectivity between drainages. The purpose of the model improvements is two-fold:
(1) provide a means for identifying high priority opportunity areas for future GSI imple-
mentation and (2) allow tracking of catchment scale, GSI-driven runoff reductions over
time by nonmodeling experts at multiple scales. The model runs via a web browser and is
implemented using cloud-based raster processing to facilitate use by wider audiences, a
key technical deficiency for current GSI modeling tools [32].

In this paper, we present the cloud-based implementation of the analytic framework
and describe the web interface that allows stormwater program managers to run simu-
lations and update inputs, such as GSI projects and BMP specifications, as stormwater
programs adjust practices over time. We present the model formulation along with results
of initial catchment-scale baseline condition verification experiments and discuss how
ongoing use with monitoring data can provide a strong basis for testing catchment-scale
GSI effectiveness for reducing stormwater runoff and pollutant loading.

2. Methods and Data
2.1. Model Scales of Representation

Typically, stormwater runoff is modeled using one of two approaches: using discrete
storm events or continuous simulation. Event-based approaches are programmatically
simple but were originally designed to simulate runoff for a single storm event size. With
swTELR, we employed a hybrid event-based approach that combines a set of events
drawn from a long-term precipitation distribution to bracket the range of rainfall and
runoff responses probabilistically (as opposed to explicitly with continuous simulation).
The efficiency of this method allows a distributed spatial approach where runoff, loading,



Water 2021, 13, 255 3 of 19

and BMP reduction calculations are discretized on a 30-m grid so that site-specific runoff
generation and pollutant loading characteristics specific to the BMP drainages are explicitly
represented. This also allows derivation of the model parameterization from widely
available spatial data sets, rather than a calibration process that requires flow data that
are typically unavailable at urban catchment scales. Since GSI runoff reductions typically
occur very close to the runoff generation source, flow timing across grid cells along with
hydraulic factors are assumed to be nominal and not represented in the model.

2.2. Rainfall Calculations

Stormwater TELR calculates various 24-h precipitation depths and the average annual
number of days with measurable precipitation to represent the overall distribution and
total average annual depths. We calculated d, the average number of rain days per water
year when daily rainfall exceeds 0.25 cm, and P(x), various 24-h event frequency estimates,
where P is the 24-h rainfall depth for the xth percentile event. On a water-year basis,
we selected 24-h event rainfall frequencies to approximate the 24-h event cumulative
distribution function, such that these events can be summed to obtain long-term average
24-h runoff volumes for days when it rains:∫ 100

0
P(x) dx ≈ 1

2 ∑N
k=1(xk+1 − xk)(P(xk+1) + P(xk)) (1)

where x is a number between 0 and 100 and k is number in the sequence of total, N,
percentile events used to estimate the integral. With this formulation, long-term average
annual rainfall depth, P365, is the product of the integrated 24-h rainfall depth and the
number of rain days per year, d:

P365 = (d)P(x)dx. (2)

This approach to characterizing the long-term precipitation distributions was com-
pared with several other approaches by Beck et al. (2017) [31]. Runoff and decentralized
BMP reductions are calculated using the individual percentile rainfall events that cor-
respond with common water quality permit requirements and structural BMP design
criteria (85th and 95th percentile storm events), which also include the median and the
lower quartile.

2.3. Rainfall–Runoff Transformation

For a given storm magnitude, the runoff generation module defines the fraction of flow
that infiltrates over pervious surfaces and the fraction of overland runoff that is eventually
discharged to the receiving waters or existing stormwater infrastructure. Stormwater TELR
relies on the Natural Resources Conservation Service (NRCS) curve number (CN) method
and the approach detailed in Technical Release 55 (TR-55) to estimate runoff from small
urban catchments [33]. The NRCS runoff equation is:

Q =
(P − Ia)

2

(P − Ia) + S
(3)

where Q is the runoff depth, P is the 24-h rainfall depth, S is the potential maximum
retention after runoff begins, and Ia is the initial abstraction depth, which incorporates
all losses before runoff begins, including water retained in surface depressions, water
intercepted by vegetation, evaporation, and infiltration. Runoff does not begin until the
initial abstraction has been met. Ia is variable across the landscape but is highly correlated
to the curve number. The initial abstraction is 20% of the storage,

Ia = 0.2S (4)
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and
S0.20 =

1000
CN

− 10. (5)

More recent data suggest that 0.20*S might be too high and that 0.05*S is more
appropriate [34–36] especially for soils with lower infiltration rates [37]. If 5%, rather
than 20%, is used, S must also be modified. The relationship between S0.05 and S0.20
obtained from model fitting results is [35,38]

S0.05 = 1.33S0.20
1.15. (6)

We used the adjusted initial abstraction ratio (Equation (6)) and by substituting Equa-
tion (4), modified for 5% of storage, into Equation (3), we obtained:

Q =
(P − 0.05S0.05)

2

P + 0.95S0.05
. (7)

Thus, the model was parameterized by specifying the curve number, which ranged
from 30 to 98, with lower numbers indicating low potential runoff and higher numbers
indicate increasing runoff potential. The major factors that determine NRCS curve numbers
are the soil type, the land use (specifically, the percent impervious of the land use), the
hydrologic condition, and soil infiltration capability. To simply account for variations in
soil permeability and infiltration, the NRCS has classified soils into four hydrologic soil
groups denoted by the letters A, B, C, and D. A curve number for a given land use with
impervious area can be estimated by the following [33]:

CN = CNp +
Pimp

100
(
98 − CNp

)
(8)

where CN is the runoff curve number for the entire land use, CNp is the pervious runoff
curve number, and Pimp is the percent of imperviousness. The pervious curve numbers
used were those defined for open space in poor condition (grass cover < 50%) [33], since
urban soils are often disturbed or compacted, and are listed in Table 1.

Table 1. Urban pervious curve numbers used in the Stormwater Tool to Estimate Load Reductions
(swTELR) derived from United Stated Department of Agriculture (USDA, 1986) [33].

Soil Type A B C D

Starting Curve Number 68 79 86 89

2.4. Runoff Reduction Accounting

Decentralized BMP runoff reductions are calculated based on their design storm
specifications and spatial factors affecting runoff generation within the BMP drainage. All
runoff generated up to the design storm depth infiltrates into the ground or evaporates,
while flows generated above the design capacity are bypassed and routed downstream.
For example, if a BMP is designed to the 85th percentile rainfall event, all runoff generated
from events up to and including the 85th percentile event will be infiltrated. Similar to the
rainfall approximation, integration of total flow reductions from decentralized BMPs are
calculated via a Riemann sum of the flows generated by each rainfall event up to the xth

percentile using the trapezoid rule from each, per Equation (9):∫ 100

0
Q(x) dx ≈ 1

2 ∑N
k=1(xk+1 − xk)(Q(xk+1) + Q(xk)) (9)

where Q is the treated runoff volume for the xth percentile design storm, x is a number
between 0 and 100, and k is a number in the sequence of total, N, percentile events used
to estimate the integral. Flows from rainfall events larger than the xth percentile storm
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are partially treated, up to the xth percentile depth. Annual flow reductions (Q365) are
estimated as the product of the integrated 24-h flows and the number of annual rain days, d.

Q365 = (d)
∫

Q(x)dx (10)

The total runoff volume treated is estimated as the sum of the direct runoff generated
from each 30-m grid cell within a decentralized BMP’s drainage area,

Q365d = Q1 + Q2 . . . + Qi (11)

This provides a computationally efficient way to account for reductions from thou-
sands of BMPs throughout a city, which is independent of specific BMP design characteris-
tics, as long as their design-storm depth specification is reliable. Such specifications are
usually explicit in municipal National Pollutant Discharge Elimination System (NPDES)
permits, along with standardized sizing guidance for different BMP types that rely on
infiltration as the primary means of stormwater treatment, rather than filtration or particle
settling. The resulting outputs are estimates of average annual runoff volume that can be
summarized at multiple scales from the gridded data.

2.5. Model Structure and User Interface

The basic model structure is shown in Figure 1, with elements of the user interface,
spatial data layer inputs and outputs, and calculation nodes. Runoff moves sequentially
from areas of GSI treatment to centralized treatment if such BMPs are implemented so
that spatial drivers of runoff reductions are reflected explicitly in the final outputs. Several
raster layers that correspond to percentile values along the cumulative rainfall and runoff
distributions are retained throughout the calculations, so that each process handles several
events. The discrete events are combined via Riemann sums to produce interim and final
output runoff layers. The web-based user interface provides a means for nonmodeling
experts (e.g., a typical city stormwater manager) to update the model with new information
on BMP installation as it becomes available, where users specify BMP locations, types,
sizing, performance condition, and drainage areas. Users define the precise drainage area
for each BMP, adding additional BMPs as they are implemented over time. Mobile apps
allow field verification of BMP inventories and performance, with the data synced directly
to the cloud. Raster calculations used for baseline runoff and reductions’ calculations
employ scripts built in R and Python, while the user interface and input data handling
employ PHP, GeoServer, PostgreSQL, and PostGIS. The open source stack has provided a
cost-effective and flexible development environment for deployment to cities, and cloud-
based analytics provide ready access to data and outputs from any location.
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Figure 1. Structural overview for the grid based swTELR model with raster processing workflow. Green Stormwater
Infrastructure (GSI) elements are described in this study and centralized treatment algorithms were reported in Beck et al.,
2017 [31].

2.6. Input Data

Raster-based rainfall estimates from the PRISM Climate Group (2004) [39] at Oregon
State University were used to describe the distribution of 24-h event depths to drive runoff
generation. A script written in R using functions in the raster package [40,41] was used to
acquire daily rainfall raster layers for the years 1981–2016 for the study area and perform
the series of processing steps outlined in Section 2.3. The 35-year daily sequence (12,775
raster layers, 800-m2 cells) was used to create a raster coverage of rainfall percentile values
and average annual days of rain for each grid cell. Soils’ data from NRCS was used to
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specify soil types throughout Municipal Separate Sewer System (MS4) boundaries, used
in their rasterized form, downscaled to 30-m pixels. The NRCS Soil Survey Geographic
(SSURGO) database was used as the primary data source, and the State Soil Geographic
(STATSGO2) database (which provides coarser resolution) was used to fill in spatial gaps
in coverage that occur in the SSURGO data. Impervious cover was specified using the most
recent data from the National Land Cover Dataset, which was provided at 30-m grid cell
resolution [42].

2.7. Study Catchments

A set of three urban catchments within the City of Salinas, CA, were instrumented
with continuous stage recorders at their outlets for comparisons with the swTELR model
(Figure 2) over a three-year period for water years (WY) 2018–2020. Located on the Central
Coast of California, Salinas has a Mediterranean climate with nearly all of the precipitation
delivered during winter months during a typical year (October–April). The catchments
range in size from 0.74 km2 to 1.4 km2, are intensively developed, and are comprised of
single-family residential, multi-family residential, commercial, and industrial land uses.
Catchments were defined by surface drainage and the storm drain network, which had
been mapped by Salinas municipal staff, which ensured that the area of runoff generation
estimated in the model matched the contributing area of the catchment outlets. The Salinas
storm drain infrastructure is separate from the sewer system, so that discharge measured
at the outlets only reflects runoff from city streets and other urban landscape surfaces.
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2.8. Comparison with the Catchment-Scale swTELR

We compared outputs from the grid-based version of the model with the catchment-
based version previously reported by Beck et al. (2017) [31]. The primary difference
between these two models is the scale at which they handle inputs and perform calculations:
lumped at approximately 40 ha in the catchment-based model and 30 m in the grid-based
model. Local rainfall gauge data were used in the catchment-based model, while the
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PRISM data were used for the grid-based model, with outputs aggregated to catchment
level for the comparisons.

2.9. Monitoring Data and Model Comparisons

While there has been very little GSI to date in these areas of Salinas, they have been
identified as priorities for intensive GSI implementation and, as such, provide a prime
opportunity for understanding the measurable effects of GSI on runoff generation at this
scale. At each catchment outlet, continuous stage was recorded at 10-min intervals and the
data were regularly downloaded and converted to discharge estimates (Q) via Manning’s
Equation [43]:

Q =
1
n

AR2/3S1/2 (12)

with hydraulic radius (R), slope (S) specified from field measurements and the roughness
coefficient (n) specified from table values for the appropriate pipe material. Manual stage
measurements were taken periodically at the outlet for calibration and quality assurance of
the continuous measurements. Discharge volume was measured several times during the
first year of monitoring to verify accuracy of the volume estimation method. Since there
is not a permanent weir installed at these outfalls, these verification measurements could
only be safely completed during low and moderate flow conditions.

We compared average annual discharge estimated from the continuous measurements
and from swTELR for each of the study catchments to assess model accuracy. Discharge
estimates from swTELR were calculated as the product of the runoff depths estimated in
Equation (7) and total grid cell area within each catchment. To facilitate comparisons with
observed flows, the distributional metrics that drive runoff generation in swTELR were
generated from each individual year of precipitation data, rather than the 35-year sequence
that would normally be used. The R-squared was used to quantify random error between
observed and measured runoff and the percent bias was used to quantify systematic offset
between them.

3. Results
3.1. Comparison with the Catchment-Scale swTELR

Runoff outputs from the grid-based version of swTELR showed strong correspondence
with the catchment-based model, with an R2 of 0.94 (Figure 3), which was expected, given
that the two models share methods for curve number specification and runoff generation.
The scale at which the calculations were performed was largely responsible for both the
scatter in the relationship and a moderate negative bias (−13.7%) that reflected lower
runoff predictions in the gridded version of the model. Most of this bias can be attributed
to the large catchments located around the perimeter of Salinas with low impervious cover
and a majority coverage of hydrologic soil group C, but with substantial proportions of
more inflatable soils (groups A and B). While the catchment model assigned soil group
C to the entire catchment, the grid model also represented the areas with more inflatable
soils, resulting in less runoff production.
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3.2. Flow Monitoring Data

Relative to the historical average annual rainfall in Salinas (37 cm), 2018 and 2020 water
years (October–September) were dry, with 13.5 cm and 21.7 cm of rainfall, respectively,
while 2019 was close to the average wetness (36.6 cm). Hydrographs for each catchment
(Figure 4) over the course of the study period illustrate the similar runoff response for
all three catchments, with the height of the peaks reflecting difference in drainage sizes.
A summary of the monitoring data for each catchment in Table 2 highlights differences in
annual runoff response between the catchments, with Alisal showing the highest runoff
ratio and with Downtown showing the lowest runoff ratio. The runoff ratios across
years varied by 22%, 15%, and 12% in Acosta, Alisal, and Downtown, respectively. The
consistently lower runoff ratios measured in the Downtown catchment were unexpected,
since it has the highest degree of impervious cover with little disconnection of hard surfaces
from the storm drain network.

Table 2. Outfall monitoring results’ summary for each water year.

Acosta Alisal Downtown

Water Year Number of Events > 1 cm P (cm) Q
(ML/year)

Runoff
Ratio Q (ML/year) Runoff

Ratio Q (ML/year) RUNOFF
RATIO

2018 38 18.5 76.5 0.30 64.1 0.36 29.8 0.22 *
2019 69 36.6 193.6 0.38 130.3 0.37 80.3 0.27
2020 42 21.7 156.3 0.52 106.0 0.51 55.6 0.34

* Adjusted for delayed installation of flow meter in water year 2018.
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was delayed in the Downtown catchment until January 2018.

3.3. Runoff Estimates and Model Evaluation

Gridded outputs in Figure 5 shows the pattern of runoff generation throughout the city
of Salinas for the water years 2017–2019, with the greatest runoff generation in areas with
the highest impervious cover and the least inflatable soils (NRCS soil group D). With two
very dry years included in this sequence, the average annual runoff depth over this period
for all of Salinas was only 6.6 cm/year, corresponding to a runoff ratio of 0.26. As we would
expect, areas with relatively high impervious cover, which correspond with the downtown,
commercial, and industrial areas of the city, generally show higher annual runoff generation
estimates, while large areas along the eastern outskirts of the city Municipal Separate Storm
Sewer System (MS4) boundary, mostly occupied by cultivated crops and open space, have
substantially lower runoff values compared to the area occupied by the study catchments.
Thus, these model outputs provide a clear connection, at granular spatial scale, between
the input data and runoff outputs that align with conceptual understanding of runoff
generation drivers.
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Figure 5. The swTELR average annual runoff depth estimates for City of Salinas for water years
2018–2020.

Correspondence between the modeled and observed annual runoff data is shown in
Figure 6, with an R2 of 0.88 with a linear fit for all three catchments. While all catchments
had at least one year with errors greater than 25% (see Table 3), overall swTELR overes-
timated runoff by 4.2%. The largest errors were in 2020, with the model overestimating
runoff by approximately 29% in both Alisal and Acosta. While the Downtown catchment
performed worse than both Alisal and Acosta in 2018 and 2019, it showed the best perfor-
mance in 2020 with an underestimate of only 0.4%. There was no consistent error pattern
relative to annual rainfall totals, with over and under or over predictions occurring in both
average and dry years for one or more of the catchments.

Table 3. Comparison of observed and modeled annual runoff for each catchment. Negative errors
indicate runoff under prediction by swTELR.

Observed (ML/year) swTELR (ML/year) Error

Acosta

2018 76.5 74 −3.3%
2019 193.6 202.1 4.4%
2020 127.1 89.8 −29.3%

Alisal

2018 64.1 50.3 −21.5%
2019 130.3 137.5 5.5%
2020 86.8 61 −29.2%

Downtown

2018 29.8 37 24.2%
2019 80.3 101.8 26.8%
2020 45.2 45 −0.4%

Totals 833.1 798.5 4.2%
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3.4. GSI Benefits Tracking

An example application of swTELR within the Salinas study catchments was com-
pleted to illustrate the utility of the model structure for tracking GSI runoff reductions
over time. Parcels selected for implementation were delineated using a web browser-based
geospatial application that stores these data for input to the swTELR GSI module (Figure 7).
These parcels were clipped to the swTELR 30-m grid for calculating reductions associated
with GSI treatment of the runoff generated within those areas. Since we wished to repre-
sent long-term runoff reductions, we used a rainfall sequence of 35 years (1981–2016) to
drive runoff for these estimates, so that the baseline runoff available for infiltration was
substantially greater than that shown in Figure 5. For this example, we assumed a design
standard of 85th percentile storm depth capture for all BMPs, as is commonly specified in
NPDES permits (e.g., California State Water Resources Control Board, 2013 [44]).

Examples of GSI implementation sites within the study catchments are shown in
Figure 8, along with long-term annual runoff reductions. Even though a common design
standard was applied for all sites, there was a range of annual runoff capture potential be-
tween 1–19 cm, depending on location, with differences primarily reflecting heterogeneity
of soils and impervious cover. The mean annual runoff capture within potential imple-
mentation sites was 8–10 cm/year for all three catchments. These catchments are close
together in the same city with flat terrain, so they use the same rainfall inputs, but cities
or counties with large elevation or aspect changes within their NPDES permit boundaries
would likely see greater variation in estimated runoff capture compared to these examples.
Note that these estimates used a much longer rainfall time series (1981–2016) compared
to that used in the baseline runoff validation experiments (2018–2020), since longer time
series will tend to improve the precision of the percentile rainfall estimates. For example,
when we ran the model using values from only those recent years to drive the model, since
two of the three years were dryer than average, the result was less runoff production and
less overall runoff infiltration, with a mean of 4.9–5.5 cm/year for all three catchments
(results not shown). This is a substantially smaller annual runoff reduction than we would
expect on average over the long-term lifespan of GSI features, which typically have design
specifications dictated by long-term rainfall time series.
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4. Discussion
4.1. Model Baseline Performance

While the modeled catchments showed good overall performance relative to the
measured runoff data with little systematic bias in the outputs, individual catchments
and years showed errors of up to 29%. Since performance adequacy thresholds have little
meaning outside the context of the model use or a benchmark for comparison [45], the R2
value of 0.88 for the three catchments is difficult to interpret. One basis for comparison are
simple empirical models, such as that used by Brezonik and Stadelmann (2002) [46], who
found good performance for urban catchments in Minnesota, USA, achieving a maximum
R2 value of 0.78. The swTELR provides a moderate improvement and above such estimates,
but also may provide more reliable and transportable long-term estimates above regression
model with coefficients that have been calibrated to a specific data set. Because the rainfall
metrics were generated from individual rainfall years, this probably muted errors that
would result from relying on the 35-year rainfall sequence that would normally drive
swTELR baseline predictions and were used to estimate the GSI reductions. As additional
catchment flow data are collected in subsequent years, they will provide a better basis
for comparison of model outputs driven by long-term rainfall data. While errors are
uncorrelated with the rainfall data, there does appear to be some correspondence between
annual runoff ratios and model performance, with better model performance at higher
runoff ratios. The exception to this rule was the Downtown catchment, which showed the
best performance in 2020, with the lowest calculated runoff ratio observed (0.22).

Field investigations in the Downtown catchment during the end of a large storm in
April 2019 uncovered evidence that some small areas mapped to the Downtown catchment
outlet were actually routed to an adjacent, ungauged outlet. Also observed within the
Downtown catchment were large areas of localized flooding caused by clogged storm
drain inlets, which did not occur at other catchments. Both of these factors may have
contributed to the over prediction of flows by swTELR in 2018 and 2019 and also relatively
low measured runoff ratios that appear contradictory to the high impervious cover in
this catchment. One explanation for the variable performance in all catchments from
year to year is the lack of accounting for antecedent moisture conditions and the relevant
dynamics in swTELR. For example, differences in rainfall characteristics during the three
winters may have determined whether or not the observed storage differences from local
flooding in the Downtown catchment affected the flow measured at the outlet. The flashy
runoff response of these small, urbanized catchments is likely sensitive to the sequencing
pattern of storms, which varies from year to year. Over longer periods, however, we would
expect the relative stability of urban landscape characteristics, such as impervious cover,
to be consistently influential drivers of runoff production. While a continuous simulation
approach would provide an explicit accounting of rainfall patterns, the disadvantage is that
spatial lumping or nonspatial methods typically used to characterize heterogeneity (e.g.,
Hydrologic Response Units [47]) may also reduce model utility for identifying parcel-scale
GSI opportunities and benefits.

4.2. Application to GSI Tracking

Since there is no timing of flows included in the approach presented for tracking
runoff reductions, it is only applicable to practices commonly associated with low impact
development, where runoff is infiltrated close to where it is generated. The swTELR
model handles larger, centralized treatment via a separate set of algorithms, which does
incorporate flow timing based on drainage characteristics, which was reported by Beck et al.
(2017) [31]. While the centralized treatment uses BMP design specifications to calculate
infiltrated, treated, and bypassed flows explicitly, the GSI BMPs are assumed to infiltrate
runoff up to their specified design storm. So, there is strong reliance on the assumption of
adherence to BMP sizing standards. Given that there may be hundreds or thousands of
GSI BMPs distributed throughout a city, these simplifications allow computation entirely
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with raster-based algorithms, so that it is fast enough to be run via a web browser, allowing
users to run various heuristic implementation scenarios.

Probabilistic treatment of the rainfall inputs in swTELR simplifies computation in
favor of spatially explicit representation of GSI locations. Consequently, swTELR model
outputs depend more strongly on inputs such as impervious cover, which can be reliably
measured from imagery, rather than parameter values derived from fitting observed flows.
While such fitting can provide more accurate short-term predictions, parameter estimates
are often difficult to associate with physical catchment characteristics and typically unverifi-
able at meaningful spatial scales [48,49]. Since there is often no hydrologic data available to
characterize urban drainages, stormwater planning model applications often rely on much
larger drainage areas with relatively little urban coverage for calibration or regionalization
of parameters from neighboring watersheds (e.g., San Mateo Countywide Water Pollution
Prevention Program, 2018 [50]). Simpler process representation avoids tying model out-
puts to short time periods for calibration, which may create strong dependence on those
calibration data [51] or areas with runoff responses largely driven by non-urban areas.
It also facilitates better use of geographic and remotely sensed data, previously called for
in a review of GSI models by Jayasooriya and Ng (2014) [32], allowing for spatially explicit
characterization of site-level conditions, which may play a critical role in GSI benefits
calculations [17], as illustrated by swTELR outputs in Figure 8. The approach presented
also allows specification of individual BMP performance condition changes over time,
which can be field verified and can be a key factor in overall GSI performance [52–55].

Given the coarse time resolution employed by swTELR, estimated changes over time
will rely on aggregate measures, such as runoff ratios and annual runoff volumes, rather
than individual hydrograph characteristics such as peak flow height or time to peak. Match-
ing runoff changes associated with GSI implementation will likely be more difficult than
matching baseline flows since such changes will need to be outside the envelope of model
error and also will need to be detectable above the natural hydrologic variation in the
catchment runoff. Another confounding factor is that GSI is most effective at mitigating
lower intensity events [56] and may have a more muted effect on the larger events that
drive much of the aggregate runoff volume response. Such detection of changes will
probably be limited to relatively small catchments with intensive GSI implementation.
In the Salinas study catchments, currently planned implementation will treat up to 40% of
the impervious surface coverage with GSI by 2030. Such an intensive GSI campaign may
indeed produce measurable hydrologic changes in the aggregate hydrologic metrics that
align with the swTELR outputs. This would provide a practical method for scaling GSI
reduction estimates as outlined by Golden and Hoghooghi (2018) [18], who highlighted the
need to address the challenge of aggregating fine-scale process heterogeneity up to catch-
ment scales for meaningful demonstration of GSI effectiveness. As monitoring continues at
the Salinas study catchments, and GSI implementation proceeds, future work will include
analysis to detect changes in the hydrologic time series and ongoing comparisons with the
model estimates.

Modeling tools that are more dynamic and directly verifiable can better serve the
evolving needs of stormwater managers. As priorities, opportunities, and technology
shift over time, models that can incorporate new information as it becomes available and
provide outputs on timeframes and spatial scales that match those of decision making are
more useful for prioritization and long-term tracking. There is a risk that the trade-offs
chosen to optimize a model structure for these purposes compromise the accuracy of
outputs to an unacceptable degree, but this risk can be minimized by collecting monitoring
data at the appropriate scale, as we have demonstrated in Salinas. Long-term urban
catchment monitoring provides a mechanism for interim verification of model inputs
and assumptions to help build the technical foundation for transparent quantification of
expected GSI hydrologic benefits. A transparent stormwater accounting system is a key
technical gap for newly emerging stormwater program funding structures, such as public
private partnerships, that can help to accelerate the pace of GSI implementation for cities but
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require science-based means for demonstrating progress toward milestones. When paired
with asset management systems to track the locations, types, and condition of GSI features,
outputs from models such as swTELR can provide stormwater managers with a dynamic
source of information from which to make decisions regarding new implementation,
maintenance, and program effectiveness.

5. Conclusions

We introduced a novel method for tracking the runoff reduction benefits of GSI with a
design optimized to the meet the needs of stormwater managers that uses probabilistic rain-
fall inputs, raster-based cloud computation, and web-based tools for delineating individual
drainages. Where the previous version of swTELR lumped attributes at the catchment
scale (40 ha) to estimate centralized stormwater treatment benefits, this version provides
a spatially explicit accounting of GSI at the sub-parcel level. Baseline runoff estimates
correspond with outputs from the previous catchment-based version of the model, but
the inputs and outputs of the current version align much better with the spatial scale of
GSI planning and implementation. The revised structure allows sequencing of runoff
reductions with user-defined GSI drainages nested within centralized treatment drainages
to ensure internal consistency of calculated runoff reductions. Municipal users access the
model via a web portal that allows them to enter GSI projects, delineate BMP drainages,
verify BMP performance, and generate updated estimates of runoff reductions associated
with both GSI and centralized runoff treatment.

Baseline runoff verification experiments within the City of Salinas, CA, USA, showed
very good overall correspondence between swTELR and measured annual flows, with
large errors in one of the catchments at least partially attributable to inaccurate catchment
delineation and storm drain network failure. The model shows good potential as a tracking
and decision support tool, particularly when preserving site-specific attributes for GSI
runoff reduction estimates and input data updatability is important, such as for ongoing
municipal NPDES permit reporting. A critical trade-off for the detailed spatial represen-
tation and wide coverage of runoff reduction estimates is the lack of ability to simulate
changes in individual storm hydrographs that may be attributable to GSI implementation.
The Salinas examples illustrate how planned parcel-level GSI reductions can be efficiently
scaled up to urban catchments and provide outputs that are amenable to catchment-scale
verification, shortening the information feedback interval from modeling to monitoring.
As GSI implementation proceeds, the Salinas study catchments should provide a strong
basis for detecting aggregate catchment-scale hydrologic changes and also provide an
opportunity for comparison with modeled runoff reductions.

6. Patents

Systems and Methods for Event-based Modeling of Runoff and Pollutant Benefits of
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