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A B S T R A C T   

With growing understanding of trash impacts on aquatic habitats throughout the world, cities increasingly face 
regulatory requirements to reduce trash inputs to local waterways and the ocean, but they often rely upon 
insufficient monitoring data to prioritize and measure trash reduction effectiveness. We present an approach 
designed to make urban trash monitoring more cost-efficient and align the data collected with critical infor-
mation needs of cities. We quantified urban trash accumulation along roadsides using vehicle mounted cameras 
and a deep convolutional neural network model to identify trash in the imagery captured. We compared the trash 
detection performance of three different models, with the best performing model (Mask R-CNN) achieving 91% 
recall, 83% precision, and 77% accuracy using data collected along 84 road segments in two California Cities. 
Trash detection model outputs were interpreted via a statistical model to relate the proportion of image pixels 
identified as trash to measured trash volumes. The resulting model estimates explained 67% of the variance in 
measured trash volumes collected on roadsides, which is more than double the variance explained by walking 
visual assessments. With vastly more efficient data collection compared to the visual assessments, deep learning- 
based monitoring approaches can provide a stronger basis for understanding urban trash sources, changes over 
time, and cost-effective compliance with stormwater regulatory requirements.   

1. Introduction 

Trash transported from city streets (urban litter) via stormwater 
systems contributes to the degradation of aquatic habitats (Hoellein, 
Rojas, Pink, Gasior, & Kelly, 2014; Sigler, 2014) and the persistent and 
expansive accumulations of trash gyres such as the Great Pacific 
Garbage Patch (Dautel, 2009). In response to this growing environ-
mental threat, several communities throughout the United States, 
including the State of California (State Water Resources Control Board 
(SWRCB), 2015), City of New York (New York State Department of 
Environmental Conservation (NYSDEC), 2015), City of Los Angeles 
(State Water Resources Control Board (SWRCB), 2015), San Francisco 
Bay Area (San Francisco Regional Water Quality Control Board 
(SFRWQCB), 2015), and City and County of Honolulu (Hawaii Depart-
ment of Health, 2012), have implemented water quality regulations 
aimed at reducing trash delivery to aquatic systems. To meet compliance 
with regulatory requirements, stormwater programs typically must 

demonstrate that trash is either being captured in devices serving the 
stormwater drainage system, or it is not accumulated on streets and 
available for transport to municipal stormwater outfalls to receiving 
waters (State Water Resources Control Board (SWRCB), 2015). While 
several field protocols have been developed to estimate trash accumu-
lation on city streets (e.g., US Environmental Protection Agency (EPA), 
2021; Bay Area Stormwater Management Agencies Association (BAS-
MAA), 2014), they are time consuming to conduct at scale, and these 
shortcomings are reflected in the severely limited coverage and sam-
pling frequency requirements (State Water Resources Control Board 
(SWRCB), 2017a, 2017b). Recent work in California indicates that 
prescribed minimum levels of monitoring effort based on an initial 
analysis by Bay Area Stormwater Management Agencies Association 
(BASMAA) (2016) may be inadequate for characterizing trash condi-
tions with high levels of certainty or detecting changes over time 
(Conley, Beck, Riihimaki, & Hoke, 2019). The spatial and temporal 
variances of trash accumulation have been previously identified as 
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potential confounding factors for detecting patterns and changes over 
time in trash monitoring designs (Wheeler & Knight, 2017). These 
challenges highlight the benefits of efficient monitoring approaches that 
allow for more frequent observations, with greater spatial density and 
coverage where needed. 

In addition to helping cities more cost effectively meet regulatory 
requirements, an efficient and reliable means of measuring urban trash 
accumulation can provide better information for quantifying trash im-
pacts on communities (Muñoz-Cadena, Lina-Manjarrez, Estrada, & 
Ramon-Gallegos, 2012), determining trash mitigation effectiveness 
(Marais & Armitage, 2004; Marais, Armitage, & Wise, 2004), and guide 
real-time adaptive responses (e.g., Hossain et al., 2019). As cities 
continue to get smarter, they improve their capacity for more efficient 
data capture and incorporation of rapidly updated data streams to 
augment decision making, improve resiliency, and promote citizen well- 
being (Toli & Murtagh, 2020). Central to this development is the digi-
tization of information flows across spatial and temporal scales to advise 
municipal staff where problems emerge to allow for quick and effective 
responses (Batty et al., 2012). Environmentally targeted technologies 
and monitoring can help smart cities to become sustainable cities 
(Ahvenniemi, Huovila, Pinto-Seppä, & Airaksinen, 2017), given that a 
key reason for making a city “smart” is to mitigate the problems 
generated by the urban population growth and rapid urbanization 
(Chourabi et al., 2012). This evolution of cities has traditionally 
centered on technologies such as Internet of Things (IoT), and infor-
mation communication technology (Silva et al., 2018), but has recently 
begun to incorporate the use of big data and artificial intelligence (AI) to 
inform functions like operations and maintenance of urban roads (e.g., 
Yu et al., 2021). While the combination of drive-by sensing with big 
spatiotemporal data analytics and AI appears to have great potential for 
characterizing urban environments (Anjomshoaa, Santi, Duarte, & Ratti, 
2020; Gunturi & Shekhar, 2017), image-capture based applications have 
been underutilized in this emerging research frontier (Yang, Clarke, 
Shekhar, & Tao, 2020). 

Artificial intelligence (AI) and machine learning technologies in 
environmental monitoring can be particularly useful where there are 
limited resources for characterizing systems, minimizing risks, and 
prioritizing actions (Ghannam & Techtmann, 2021; Hino, Benami, & 
Brooks, 2018; Pyayt, Mokhov, Lang, Krzhizhanovskaya, & Meijer, 
2011). Environmental applications often involve image capture and 
object identification via feature annotation (Zurowietz, Langenkämper, 
Hosking, Ruhl, & Nattkemper, 2018), with the accuracy of computer 
vision technology sometimes eclipsing the performance of human ex-
perts (He, Zhang, Ren, & Sun, 2015). Image-based classification models 
can support a wide range of environmental decision support, and growth 
of AI applications for this purpose has been fueled by rapid improve-
ments to low-cost environmental sensor networks (Okafor, Alghorani, & 
Delaney, 2020) and cloud-based machine learning platforms and li-
braries (Roy et al., 2019). These advances make it easier than ever for 
novice users across a range of fields to apply AI technologies for cost- 
effective measurements of systems with the potential to provide more 
data and better insights that can lead to improved environmental out-
comes (e.g., Schermer & Hogeweg, 2018). 

The problem of trash identification and classification has been 
recently addressed with deep learning, using Convolutional Neural 
Networks (CNN) with applications for classifying and sorting trash at 
various life cycle points (Salimi, Dewantara, & Wibowo, 2018: Tiyaja-
morn, Lorprasertkul, Assabumrungrat, Poomarin, & Chancharoen, 
2019; Adedeji & Wang, 2019). A CNN is a class of deep neural network 
that resembles processing patterns of the brain with several layers of 
filters that assess attributes such as shapes, colors, and edge detection to 
summarize recognition of features in an input image. Most applications 
reported in the literature are targeted towards trash sorting problems, 
rather than identification of trash as litter in urban environments. 
Notable exceptions are the models reported by Mittal, Yagnik, Garg, and 
Krishnan (2016), who created a CNN-based smartphone app called 

SpotGarbage, and the work of De Carolis, Ladogana, and Macchiarulo 
(2020), who used annotated Google Streetview imagery to train a CNN 
model to detect trash in video streams. Applications of image-based 
trash classification over wide geographical areas have been limited to 
primarily aerial imagery captured by drones (Deidun, Gauci, Lagorio, & 
Galgani, 2018; Hengstmann & Fischer, 2020; Kraft, Piechocki, Ptak, & 
Walas, 2021). Such applications are well suited to shorelines, river 
channels, or coastal herbaceous wetlands (e.g., Moore, Hale, Weisberg, 
Flores, & Kauhanen, 2020; Tharani, Amin, Maaz, & Taj, 2020), where a 
bird’s eye view often provides a good perspective with few obstructions 
for identifying trash. This perspective can be more constraining in urban 
environments, where structures, cars, and trees often obstruct the view, 
particularly near curbsides, where trash tends to collect. In addition, 
many cities have restrictions on allowed areas and flight altitudes of 
drones. For these reasons, vehicle mounted cameras may provide a more 
practical method for capturing imagery to quantify trash accumulation 
on city streets. 

A more efficient method for trash data collection has the potential to 
dramatically reduce ongoing municipal monitoring costs for regulatory 
compliance, while also providing data that are more amenable to 
tracking progress over time and detecting spatial patterns. In this study 
we present an assessment of a newly developed approach for urban trash 
monitoring that relies on vehicle mounted cameras for image capture, a 
deep learning trash detection model for identifying trash, and a 
regression model for estimating trash volumes from the trash detection 
model outputs. The objective of this study was to determine whether 
automated image-based trash monitoring could provide comparable 
information to human visual surveys for characterizing trash conditions 
on city streets. To that end, we compared the performance of three deep 
CNN models to determine the most appropriate one for our application, 
but focus primarily on comparison of model outputs with field data 
measurements to quantify trash volumes, rather than on performance 
differences between models. 

2. Methods and data 

2.1. Study sites and overview 

Urban trash data were collected in the City of Salinas (Monterey 
County, California; population = 156,000) and Anaheim (Orange 
County, California; population = 349,000) during the summer and fall 
of 2020 (Fig. 1). These two cities were selected based on geographic 
proximity, familiarity with their trash mitigation programs and regula-
tory requirements, and representation of two distinct climatic regimes in 
California. Both cities show intensive urban development over most of 
their geographic extent and approximately half of the area for both cities 
are categorized as either ‘disadvantaged’ or ‘severely disadvantaged’ 
based on reported household incomes. (US Census Data (ACS: 
2012–2016 and ACS: 2014-2018), 2018). Traffic conditions in Salinas 
made it easier to spread surveyed segments widely throughout the city, 
while the Anaheim segments where concentrated along a few corridors 
of the city, where each side of the same road were assessed separately 
and treated as unique observations. 

The study workflow is presented in Fig. 2, consisting of three primary 
steps: collecting trash field observations as a basis for model training and 
comparison, training and evaluation trash detection models, and spec-
ification of a statistical model for relating the machine learning model 
outputs to trash volumes. In the sections that follow, we present the 
candidate trash detection model structures, performance testing metrics, 
the regression modeling approach, and workflows for data collected in 
Salinas and Anaheim. 

2.2. Trash data collection 

For each road segment, three different trash data types were 
collected by two trash surveyors: visual assessments, trash volume 

G. Conley et al.                                                                                                                                                                                                                                  



Computers, Environment and Urban Systems 93 (2022) 101752

3

Fig. 1. Study locations in the cities of Salinas and Anaheim, California, USA as defined by their stormwater regulatory boundaries.  

Fig. 2. Study workflow block diagram with field observation types, deep learning models. and translation of model outputs to trash volumes. The models evaluated: 
Mask R-CNN, SOLO, and YOLOv6, along with each component shown in the diagram are described in the methods sections that follow. 

G. Conley et al.                                                                                                                                                                                                                                  



Computers, Environment and Urban Systems 93 (2022) 101752

4

measurements, and roadside imagery. First, the surveyors drove the 
road segment to capture a set of images with the vehicle mounted 
camera. Next, they parked the vehicle and walked the segment to 
visually interpret the level of trash accumulation. Finally, the trash 
surveyors collected the trash along the road segment using a graduated 
bucket to measure the total trash volume. Data collection areas included 
the road shoulder, sidewalk, and any areas immediately adjacent to the 
sidewalk that was within the camera’s field of view. To increase the 
likelihood of trash accumulation in the streets, surveys were conducted 
one-two days before street sweeping occurred and no sooner than three 
days following a storm event. A total of 14 km of road length was sur-
veyed, with 40 segments in Salinas and 44 segments in Anaheim. Indi-
vidual segment lengths varied from approximately 180 m to 380 m long 
as broken by city block intersections. Road segments were chosen based 
on access to the roadside, lack of obstruction by cars, prior knowledge of 
trash accumulation, and the ability to safely drive slowly enough to 
capture usable imagery. 

2.2.1. Visual trash assessments 
Visual assessments of trash along roadways are a qualitative method 

to measure the accumulated trash available for transport into the storm 
drain system within a specific area. These assessments are the primary 
way that California municipalities demonstrate compliance with regu-
latory requirements per local National Pollutant Discharge Elimination 
System (NPDES) Permits for areas that are not served by devices to fully 
capture trash delivered from roadways (State Water Resources Control 
Board (SWRCB), 2015). For this study, we employed a previously 
developed visual assessment field protocol, termed the On-Land Visual 
Trash Assessment (OVTA) (Bay Area Stormwater Management Agencies 
Association (BASMAA), 2014), which has been accepted by the Cali-
fornia State Water Resources Control Board (SWRCB) to comply with 
water quality permit requirements to reduce trash inputs to storm drain 
systems (State Water Resources Control Board (SWRCB), 2018) and 
recently integrated to the US Environmental Protection Agency’s 
Escaped Trash Assessment Protocol (US Environmental Protection 
Agency (EPA), 2021). The OVTA protocol is similar to the qualitative 
elements of protocols previously developed by the California Surface 
Water Ambient monitoring program for evaluating riparian corridors 
(Moore, Cover, & Senter, 2007), both of which have shown empirical 
association with downstream trash accumulation. Per the OVTA proto-
col, road segments are assigned one of four trash condition categories 
(low, moderate, high, very high) based on observed trash accumulation 
on the road shoulder, gutter, and sidewalk. Category assignment is 
dictated by comparison of the observed trash with a set of reference 
images and narrative descriptions of trash abundance associated with 
each of the trash condition categories. Data quality was insured with 
audits of the assessments by field personnel who had been trained in the 
OVTA field protocol and performed several hundred visual trash as-
sessments prior to initiation of the current study. 

2.2.2. Trash volume measurements 
As a direct measure of trash accumulation, we collected all the 

observable trash on each road segment and measured the trash volumes 
with graduated buckets. Since this study is concerned primarily with 
mobile trash that can be transported by wind or water into local storm 
drains, large items such as furniture or appliances were not included as 
trash in the volume measurements. This exclusion criterion also aligns 
with the BASMAA OVTA visual assessment protocol. Trash was loaded 
into the graduated buckets, moderately compressed, and volume 
recorded according to the fill level and number of buckets needed to 
collect all trash along the segment. Four of the road segments in Salinas 
had areas of trash accumulation that were visible from the roadside but 
were not able accessible for collection. In these instances, we estimated 
the trash volumes visually. 

2.2.3. Trash imagery 
Imagery was captured using a 25-megapixel digital camera mounted 

to the hood of a vehicle at a height of 1.3 m, and driving at constant 
speed of approximately 30 km/h. The camera was pointed at the road-
side perpendicular to the vehicle. Geospatial data for the segments 
assessed was recorded via a phone app (ArcGIS Collector) and a GPS 
device synced to the camera. The focal length of the camera lens was 28 
mm, and the shutter speed was set at 1/500th of a second to minimize 
motion blur but still allow an adequate level of sensor sensitivity (ISO) in 
shadowy areas. The capture rate was set at one image per second, which 
provided minimal overlap or gaps between the images captured with the 
vehicle moving at 30 km/h. The distance maintained from the curb was 
approximately three meters, and care was taken to maintain the same 
distance from the curbside during image capture so that the elements 
within the field of view was similar for all road segments. 

2.3. Trash detection models 

We compared three CNN-based computer vision models: Mask R- 
CNN, SOLO, and YOLOv6, which are each described in the following 
sections. From this comparison, we selected the model with best trash 
detection performance for use in the subsequent steps to quantify trash 
volumes in a regression model with the field measured trash volume 
data. Below, we provide a brief description of each model tested along 
with conceptual schematics depicting the simplified architecture of each 
(Fig. 3). 

Fig. 3. Trash detection model schematics for Mask R-CNN (after He et al., 
2017), SOLO (after Wang, Kong, et al., 2020, Wang, Zhang, et al., 2020), and 
YOLOv6 (after Redmon et al., 2016). Architecture components differ across 
models including backbone networks, convolutional layers, region proposal 
network (RPN), use of region of interest align (RoI), and construction of fully 
connected (FC) layers. 
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2.3.1. Mask R-CNN 
Mask R-CNN (He, Gkioxari, Dollár, & Girshick, 2017) is an extension 

of the Fast/Faster R-CNN approaches (Girshick, 2015; Ren, He, Girshick, 
& Sun, 2015), and uses a set of filters (feature detectors) through mul-
tiple convolutions to output feature maps (convolutional layers) from an 
image (see Fig. 3). The Mask R-CNN architecture uses instance seg-
mentation, which combines object detection with semantic segmenta-
tion to classify each pixel into a fixed set of categories, with 
differentiation of unique object instances (He et al., 2017). Object 
detection uses a fixed set of object categories and draws a bounding box 
each time an object appears in the image. Semantic segmentation assigns 
a class label to each image pixel. With the instance segmentation used in 
Mask R-CNN, instead of bounding boxes, the model identifies which 
pixels within the bounding boxes belong to each object. In contrast to 
semantic segmentation, a separate mask is drawn for each instance 
detected in the image. It is distinguished from previous efforts by the 
parallel prediction of masks and class labels, wherein segmentation 
masks are predicted for each Region of Interest (RoI) at the same time as 
classification bounding box regressions are performed (Fig. 3). RoI Align 
(He et al., 2017) is used for pooling the feature maps and building the 
fully connected layers from the convolutional layers. The Mask R-CNN 
approach allows pixel by pixel instance segmentation that fully pre-
serves the exact spatial location of detected objects. 

2.3.2. SOLO 
Segmenting objects by locations (SOLO) takes a unique approach to 

instance segmentation, with reliance on the concept of ‘instance cate-
gories’ introduced by Wang et al. (2019) and a feature pyramid network 
(FPN) to distinguish instances with different object sizes (Lin et al., 
2017). This approach assigns instance categories to pixels based on the 
location and size of the instance within the image, in effect changing the 
mask segmentation problem into a classification problem (Fig. 3). In this 
way, SOLO avoids to the multiple steps of identifying regions of interest 
and generating feature maps within each of those bounding boxes. 
Instance segmentation is performed via two subtasks: category predic-
tion and instance mask generation across a uniform grid overlaid on the 
image. Wang et al. (2019) point out that this is a simpler, more direct 
approach compared to those which rely on first separating objects by 
drawing bounding boxes around them. A key assumption embedded 
within this approach is that most instances in the same image have 
either different locations or are of different sizes. Recent work has shown 
comparable accuracy of SOLO with Mask R-CNN using the COCO dataset 
(Wang et al., 2019) and recent enhancements have shown it out-
performing several algorithms which rely upon regional proposal net-
works (Wang, Kong, Shen, Jiang, & Li, 2020; Wang, Zhang, Kong, Li, & 
Shen, 2020). 

2.3.3. YOLOv6 
You only look once (YOLO) is a rapidly evolving approach which can 

detect objects in real time, only needing the algorithm to propagate 
through an image one time (Redmon, Divvala, Girshick, & Farhadi, 
2016). As such, a primary advantage of YOLO above other methods is 
speed for use in video. An image is divided up into grid cells and 
bounding boxes are predicted for each object in an image with each grid 
cell predicting objects within itself and calculating confidence scores. 
Each grid cell predicts class probabilities to estimate the class of an 
object (see Fig. 3). The algorithm has been iteratively improved since its 
inception with new versions emerging at a swift pace (Redmon & Far-
hadi, 2016; Farhadi & Redmon, 2018; Bochkovskiy, Wang, & Liao, 
2020; Shao et al., 2021). The most recent addition, YOLOv5-v6, has been 
employed for this study. Object detection performance has been shown 
to be comparable to other CNN-based algorithms (Redmon et al., 2016), 
with both speed and accuracy improvements with progressive versions 
of the algorithm (Bochkovskiy et al., 2020). 

2.3.4. Model training, calibration, and validation testing 
The training procedure and imagery was the same for all three 

models. In all cases, we labeled trash in 1000 images collected in cities 
throughout Orange County, California to train the network for auto-
matic trash identification, with the imagery split into training and 
validation datasets, 80% being used for training and 20% for validation 
testing. Training was performed over 60 epochs, with each epoch 
passing over all the training images, which included 400 steps in each 
epoch. Precision was quantified as the number of correct trash de-
tections divided by total trash detections, which describes the ability of 
the model to correctly identify trash versus other objects within the 
image. Recall was calculated as the number of correct trash detections 
divided by the number of actual pieces of trash in the image and de-
scribes the model’s trash detection sensitivity. Accuracy was calculated 
as the number of correct predictions divided by the total number of 
predictions. These metrics were calculated with manual identification of 
trash in each image for comparison against the model predictions. 

Since the primary purpose of the model is to quantify the amounts of 
trash available for transport into the stormwater system, the models 
were trained for trash detection (presence/absence) rather than specific 
object type identification (e.g., cup, straw, etc.) as would be done in a 
classification problem. Thus, objects identified as trash included very 
small items such as cigarette butts, medium sized ones such as soda 
bottles and cans, and large items such as cardboard boxes. Using the 
broad object category of ‘trash’ reduced the number of training itera-
tions and the amount of image annotation that would have otherwise 
been required for more detailed object identification. A total of 22 
training runs were completed to arrive at the final model hyper-
parameter values which achieved acceptable precision and recall per-
formance on the training data. 

While there are as many as 50 hyperparameters in the models, only 
four were changed during model training. We modified learning rate 
(how much the model changes the weights at each update), the rpn 
(regional proposal network), anchor size (size of the boxes the region 
proposal network chooses), and the training schedule (which layers are 
trained). Training schedule options included: all layers, Resnet stage 3+, 
Resnet stage 4+, Resnet stage 3+, and heads (RPN, classifier, and mask 
heads of the network). For the model backbones, Mask R-CNN used 
resnet101, SOLO used resnet50, and YOLOv6 used YOLOv5. 

2.4. Quantifying trash volumes 

Outputs from the trained models were processed to quantify number 
of pixels identified as the class ‘trash’. For each image, the pixels 
constituting objects detected as trash were summed to determine the 
ratio of trash pixels to non-trash pixels in the image. Since objects closer 
to the camera occupy more pixel space, we adjusted the image trash 
pixel ratio (R) based on distance of objects from the camera using the y 
coordinate at the center of each mask (Eq. (1)), 

R =
y
h

4 p (1)  

where y is vertical location of the mask in the image, h is the height of 
the image, and p is the total number of pixels detected as trash in the 
image. A constant multiplier of four is used based on initial trials which 
indicated that given the 28-mm lens field of view, and our distance from 
the roadside, the same object at the bottom of the image took up 
approximately four-times more pixels compared to one at the top of the 
image. With this formulation, trash object pixel ratios are normalized 
relative to the pixel area they would occupy if they were all at the front 
(bottom) of the image. Images that yielded trash pixel ratios greater than 
0.5% were reviewed to determine if non-trash objects had been incor-
rectly identified as trash, which occurred in approximately 12% of im-
ages. These images were manually annotated before additional training 
runs of the model were performed. 

For each road segment observed, we averaged the trash pixel ratio 
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outputs from all images captured within each segment. Since road seg-
ments varied in length, measured trash volumes were normalized to 
volumes collected per 200 m of roadway. The measured trash volumes 
were used as the independent variable in a linear regression model to 
estimate trash volumes from the trash pixel ratio outputs for each road 
segment. Model coefficients were estimated via ordinary least squares 
and regression residuals were tested for normality (Anderson-Darling 
test). We also compared results from the visual surveys that used the 
OVTA trash accumulation categories to both the measured volumes and 
the trash detection model outputs via a one-way analysis of variance 
(ANOVA). 

3. Results 

3.1. Trash data collection 

A total of 84 road segments were assessed in Salinas and Anaheim, 
with measured trash volumes, visual assessments (OVTA), and photo-
graphic imagery collected for each city (approximately 3800 images 
total). The road segment locations and measured trash volumes are 
shown for each city in Fig. 4. Data collection was focused mostly along 
two corridors in Anaheim and was widely distributed throughout the 
City of Salinas. Average collection times for each data type per 200 m 
road segment were as follows: trash volume measurements (avg. = 42 
min, SD = 16 min); visual assessments (avg. = 20 min, SD = 7 min); 
image capture (avg. = 21 s, SD = 11 s). These estimates only include the 
time taken to perform each assessment, so that they include parking and 
walking road segments for visual assessments. Notwithstanding time 
differences associated with setup and data management, they show that 
image capture is 57-fold less time consuming when compared to walking 
visual assessments. Trash volumes ranged widely across road segments 
in Salinas, spanning three orders of magnitude, resulting in a strong 
positive skew to the data distributions with greater observation fre-
quency at the low end of the data range (see Fig. 4). Overall, the Ana-
heim roads had much less trash than Salinas, with approximately 20% of 
segments in Anaheim having almost no observable trash present. 

Though the trash volumes were low, the Anaheim data often showed 
substantially different levels of trash accumulation on opposite sides of 
the road. Salinas showed a much broader range of trash accumulation 
than Anaheim, with many clean and middling road segments, and 
several where hundreds of liters of trash had accumulated. The heaviest 
trash accumulation observed in Salinas was along a few road segments 
adjacent to industrial areas located in the southeast quadrant of the city 
(Fig. 4). 

3.2. Trash detection model performance comparison 

Results of the trash detection model performance are provided in 
Table 2 for training and validation image sets for each model. The Mask 
R-CNN model outperformed both SOLO and YOLOv6 in terms of recall, 
precision, and accuracy by substantial margins. 

Calibration performance showed SOLO and YOLOv6 were within 3% 
of one another for all metrics on the training data, but the models 
diverged in validation testing. YOLOv6 achieved better precision and 
accuracy results than SOLO, but SOLO had the better validation recall 
performance. Compared to the closest competitor (SOLO), Mask R-CNN 
achieved accuracy values that were 21% better on the training data and 
25% better on the validation data. Since Mask R-CNN also showed su-
perior performance for recall and precision (Table 2), this model was 
selected for our application to quantify trash volumes and compare with 
the field-based approaches. For simplicity, we therefore focus further 
performance examination on the Mask R-CNN model exclusively. 

For the selected Mask R-CNN trash detection model, training per-
formance improved steadily throughout the training iterations to yield a 
result of 92% precision and 95% recall. Training progress relative to the 
overall loss function values are shown in Fig. 5 for both calibration and 
validation image datasets across all training epochs. The overall loss 
function for this model was an additive linear combination of loss 
functions that describe performance of individual components: the re-
gion proposal network (RPN) separation of background from objects, the 
RPN localization of objects, Mask R-CNN localization of objects, Mask R- 
CNN recognition each class of objects, and Mask R-CNN segmentation of 

Fig. 4. Trash volume measurements for Salinas and Anaheim. Note difference in data scales for each city which reflects much less trash on the roads in Anaheim.  
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objects. Leveling of the overall loss function slope in the second half of 
the validation data set indicates stabilization of the model’s predictive 
ability across the 24,000 iterations through the entire dataset (60 
epochs, 400 steps each). Validation testing showed a moderate perfor-
mance decreased to 83% precision and 91% recall. The majority of false 
positives included vegetation or paint marks on a curb mistaken for trash 
by the model. Examples of model outputs are illustrated in Fig. 6, with 
successful trash detections along curbsides, a manhole cover incorrectly 
identified as trash (false positive detection), and several items embedded 
in vegetation that were not identified as trash (false negative detection). 
The manhole cover illustrates one of the few examples of a large object 
false detection, which can result in overestimation of trash volume 
accumulation. Although 17% of detections were false positives, most of 
these objects occupied less than 0.02% of the image pixels, so they had a 
minimal impact on the overall image pixel ratios and subsequently 
estimated trash volumes. 

3.3. Comparison of the Mask R-CNN trash detection model outputs to 
visual assessments 

Without exception, the segment averaged proportion of image pixels 
identified as trash was very small – always below 1% of the total image 
segment pixels, with individual images always below 5%. This provides 
a challenge for the trash detection model in that there is only a small 
amount of information in each image to quantify trash objects relative to 
the background image variation. The model output ratio of trash pixels 
to overall image pixels (trash pixel ratio) aligned approximately with the 
visual assessment categories, as shown in Fig. 7. There was, however, 
substantial overlap in the trash pixel ratios across the OVTA categories, 
particularly between the moderate and high categories. In terms of 
comparison with measured trash volumes, a one-way ANOVA showed 
that the trash survey (OVTA) scores explained 31% of the variance in 
measured trash volumes (p-value <0.01). This result partly reflects the 
way that the OVTA trash categories have been defined with wide ranges, 
especially at the high end of the scale where the ‘very high’ category has 
a range of 227–681 l of trash (see Bay Area Stormwater Management 
Agencies Association (BASMAA), 2014). 

3.4. Estimating trash volumes from the trash detection model outputs 

Comparison of the Mask R-CNN trash detection model outputs with 
the measured trash volumes is a direct measure of the model’s ability to 
quantify trash on the road that is available for transport into the storm 
drain system, which corresponds with the volume-based metrics used for 
regulatory compliance (State Water Resources Control Board (SWRCB), 
2015). We used a linear regression analysis to quantify the degree to 
which trash pixel ratios output from the Mask R-CNN model could 
explain the measured trash volumes, with each data point representing 
an individual road segment (Fig. 8). The model prediction interval spans 
several orders of magnitude, owing to the non-linear nature of the trash 
volume data in relationship to the two-dimensional trash pixel data. The 
model performance statistics and coefficients are listed in Table 1, 

Fig. 5. Mask R-CNN training and validation loss for training epochs, each of 
which each included 400 steps. 

Fig. 6. Mask R-CNN trash detection model examples from the Anaheim imagery. Images 1. and 2. are accurate trash detections, 3. shows a false positive detection 
during initial training; and 4. shows false negative detections. 
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showing a regression slope significant in exceedance of the 99% confi-
dence level (p < 0.001), and approximately 67% of variance explained 
in the observed trash volume data across the road segments from both 
cities, with a standard error (S) value of 0.72 l. Model errors showed a 
normal distribution with constant variance across the range of the data. 
The regression analysis outputs show that the trash detection model 
outputs have moderate explanatory power for quantifying trash vol-
umes. Performance of this statistical model would benefit from addi-
tional data collection in other cities with a better representation across 
the range of trash conditions since the current data spread shows most 
observations concentrated near the middle of the range. 

4. Discussion 

4.1. Trash model performance 

Several factors combine to make trash identification in urban envi-
ronments a challenging problem for object detection, largely due to 
variation of background settings, interaction between trash and other 
objects, and the low number of trash pixels relative to background 
pixels. Trash detection performance in this study (see Table 2) was 
comparable and in some cases superior to that achieved in similar ap-
plications in the urban environments. Using YOLOv3 De Carolis et al. 
(2020) showed an average recall performance of 69%, and a precision of 

Fig. 7. Trash pixel ratio distribution and relationship between trash model pixel ratio and OVTA visual assessment categories with box plots of trash pixel ratios. 
Boxes represent the interquartile range of the trash pixel ratios, whiskers are the largest values that are not outliers, and stars are outliers. 

Fig. 8. Regression model to predict trash volumes in Salinas and Anaheim from trash pixel ratios (n = 84) with regression slope 95% confidence interval (red dashed 
lines) and prediction interval (blue dashed curves). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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68%. While our results using YOLOv6 were somewhat improved from 
that effort (70% recall, 79% precision), the Mask R-CNN results were 
substantially better at 91% recall, 83% precision. Mittal et al. (2016) 
reported 83% recall, 90% precision, with an accuracy of 88%, which is 
better than the accuracy reached by the Mask R-CNN on our dataset 
(77%). Both previous applications were concerned with real-time trash 
identification, where speed of operation is of greater importance than 
the current study. Overall, our results add to the evidence provided by 
these and other researchers that object detection models for in-situ trash 
identification can achieve good performance that is only slightly inferior 
to that achieved in trash sorting applications, which do not typically 
need to contend with such a wide array of object contexts. Melinte, 
Travediu, and Dumitriu (2020), for example, achieved 95.6% object 
detection accuracy with 97.6 precision using a Fast CNN model by 
classifying trash into material types. Like the present study, their model 
used feature extraction and box predictor modules for classification, but 
the training data were single items with uniform backgrounds. Similarly, 
while the model reported by Hossain et al. (2019) is intended for use on 
city streets, the accuracy of 96% was achieved using images that had 
uniform backgrounds much like the training images. We would expect 
better model performance in these cases compared to trash identifica-
tion urban environments, where background and lighting conditions are 
variable; and trash is often clustered together or bound up with vege-
tation or other objects. 

Another central challenge is that what we label ‘trash’ is a diverse 
array of objects ranging widely in size, shape, color, and texture. Initial 
trials regularly misidentified several non-trash objects as trash including 
electrical access covers on sidewalks, construction gravel bags, man-
holes and spray paint on sidewalks. Model performance is often limited 
by the number of different types of objects that can be manually anno-
tated in for the training dataset, and additional training imagery to 
overcome similar model errors would almost certainly improve perfor-
mance. Many applications reported in the literature rely upon pre- 
annotated imagery databases, such as TrashNet (Thung, 2020), which 
contains many thousands of single object images with uniform back-
grounds. Further development of databases such as the Garbage in Im-
ages (GINI) dataset (Mittal et al., 2016), which contains imagery of in- 
situ trash in a wide variety of settings, should help to provide a rich 
training dataset for future application development and make the model 
training much more efficient. 

4.2. Trash volume estimates 

The trash CNN model outputs explained the majority of variance in 
trash volumes (Adj R2 = 0.67), but an important contributor to the 
unexplained variance is likely the limited information contained in 2- 
dimensional images for estimating trash volumes (See Table 3.). While 
we accounted for trash distance from the camera, the calculation was 
based on limited number of trials with only a few object types and could 
be refined with additional experimentation. The other important 
element for determining the proportional number of trash pixels in an 
image is the orientation of the object, but accounting for orientation in 
images would pose a greater challenge than characterizing object loca-
tions. An alternative approach that avoids these problems would be to 
identify specific trash objects as separate classes and estimate trash 
volume based on object type. However, this would likely require sub-
stantially more image annotations to achieve comparable performance 
and given the variance of object sizes of the same class, we currently 
have no intuition as to whether such an approach would improve the 
accuracy of trash volume estimates. 

Conversion of trash pixel ratios to trash volumes brings the model 
outputs into alignment with stormwater management information 
needs: quantifying patterns of trash loading to stormwater systems, 
prioritizing problem areas, and measuring progress to satisfy regulatory 
requirements. The results of this study provide encouragement that with 
additional data collection the relationship between trash pixel ratios 
from the trash CNN model and measured trash accumulation volumes 
may be generalizable to other cities. With 67% of the observable trash 
variance explained by the trash detection model outputs, this more than 
double the predictive capacity of the BASMAA OVTA visual assessment 
method, which explained 31% of the observable trash volumes. In the 
development of the OVTA method, there was no consistent relationship 
found between visual assessment scores and trash accumulated on 
sidewalks Bay Area Stormwater Management Agencies Association 
(BASMAA) (2016), which may partly account for the relatively poor 
performance for predicting trash volumes. 

4.3. Deep learning-based trash monitoring challenges and opportunities 

The opportunity to bring deep learning tools to reduce the cost of 
monitoring and regulatory compliance for municipal stormwater ap-
plications is clear and additional research can help to surmount 
remaining logistical and technical barriers. The recent proliferation of 
deep learning tools, datasets, and trash identification algorithms can 
help cities bridge the gap between sustainability frameworks and smart 
technologies leading to ‘smart sustainable cities’ of the sort described by 

Table 1 
Trash detection model parameter ranges, and final values selected during the model training.    

Final Values 

Model Parameter Range Mask R-CNN SOLO YOLOv6 

base learning rate 0.01–0.0001 0.001 0.01 0.01 
rpn anchor scales 4–256 16, 32, 64, 128, 256 4,8,16,32,64 N/A 
training schedule  heads heads heads 
backbone  Resnet101 Resnet50 YOLOv5  

Table 2 
Trash detection model performance comparison for Mask R-CNN, SOLO, and 
YOLOv6 on training and validation imagery sets.    

Recall Precision Accuracy 

Training 
Mask R-CNN 95% 92% 87% 
SOLO 78% 82% 66% 
YOLOv6 75% 80% 65% 

Validation 
Mask R-CNN 91% 83% 77% 
SOLO 81% 60% 52% 
YOLOv6 70% 79% 59%  

Table 3 
Regression model performance and coefficients.  

Model Coefficient Std. 
Error 

p-value F R2 Adj 
R2 

S 

Constant 2.759 
0.72 

<0.001 
159.4 0.68 0.67 0.72 Pixel 

Ratio 
2.503 <0.001  
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Ahvenniemi et al. (2017). Cost trade-offs associated with different 
experimental monitoring designs should be explored determine ap-
proaches that can best inform management questions (e.g., Wheeler & 
Knight, 2017). The greater frequency and spatial coverage of observa-
tions afforded by imagery interpreted the trash detection model is likely 
to result in greater statistical power for detecting changes over time and 
spatial patterns (Conley et al., 2019), but this should be tested explicitly. 
Future research should also include testing additional trash detection 
models across a wider array of urban environments, including the 
impact of parked cars, which obstruct trash from view of the camera. 
Automation of the image capture and processing workflows will need to 
be developed to realize the full cost savings of machine learning based 
trash detection systems, which reflects the growing need for cities to use 
more data more effectively (Yang et al., 2020). 

5. Conclusions 

We have presented the results from a monitoring approach designed 
to make urban trash monitoring more cost-efficient and align the data 
collected with critical information needs of cities and water quality 
regulatory agencies. This approach relies on vehicle-based image cap-
ture, automated detection of trash via a deep learning trash detection 
model, and a statistical model to relate within-image trash pixel ratios to 
measured trash volumes. In a comparison of three deep learning-based 
object detection algorithms, Mask R-CNN emerged as the best per-
forming alternative. When incorporated to a log-linear regression 
model, the outputs from the Mask R-CNN trash detection model (image 
trash pixel ratios) explained 67% of the variance in the trash collected on 
road segments. This is more than double the variance explained by vi-
sual survey methods currently accepted by the California regulatory 
agencies to support regulatory compliance tracking, with data collection 
that is nearly 60-fold more efficient. 

An improved basis of information for decision making can help cities 
move towards more sustainable solutions to urban trash impacts on 
waterways. While the initial setup, model training, and data handling 
requires substantial time, such an investment may indeed prove 
worthwhile in the long term. A more cost-effective monitoring approach 
can facilitate more efficient regulatory compliance and also ensure that 
the monitoring data support rigorous hypothesis testing to directly 
address stormwater trash management questions. As water quality 
regulations related to trash continue to become more common, data 
collection systems driven by AI can provide better insights at lower 
costs. With the appropriate analytical tools in place, these data can help 
cities respond to problems more quicky, identify where to focus efforts, 
and understand trash control measure effectiveness. 

Software availability 

The trash detection model and training dataset created as part of this 
study is available via an online repository and can be accessed by con-
tacting the authors. 
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