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A B S T R A C T

Urban stormwater runoff is among the most significant sources of trash delivery to waterways, degrading aquatic
habitats and contributing to oceanic trash gyres across the globe. Municipal water quality permits that require
elimination of trash inputs to stormwater systems employ visual trash assessments on city streets to demonstrate
litter reduction progress. We present a novel method to increase the utility of these assessments by quantifying
their degree of certainty at a granular spatial scale via Bayesian credibility intervals. Using data collected in the
City of Salinas, California, we illustrate how the outputs can be used to determine effective trash controls and
prioritize areas for management actions. Spatial dependence was incorporated to the uncertainty estimates
within individual stormwater drainages and results were interpolated to adjacent parcels. After 3–6 observation
periods over 20months, we found approximately 30% of the city area showed minimal litter accumulation at an
80% certainty level. The outputs provide a practical alternative for cities to determine compliance with
stormwater trash regulations, update understanding of trash accumulation patterns, and iteratively adjust
sampling designs in response to new observations. The methods described have been implemented as a web-
based geospatial decision support tool to help stormwater managers target implementation actions and report
progress to regulators.

1. Introduction

1.1. Urban stormwater trash regulations and management knowledge needs

With growing understanding of the magnitude of trash delivery to
oceans, the need for action to prevent further aquatic habitat de-
gradation is now widely recognized (Day, Shaw, & Ignell, 1989;
Hammer, Kraak, & Parsons, 2012; Law et al., 2010; Moore, 2008).
Urban trash (alternatively termed anthropogenic litter) is a water pol-
lutant that impairs beneficial uses, degrades aquatic habitats and causes
entanglement, death from ingestion, and transport of invasive species
(Sigler, 2014). While the relative contributions of various sources to
ocean trash gyres like the Great Pacific Garbage Patch (Dautel, 2009)
are not fully understood, urban stormwater contributes to the overall
marine debris problem (EPA, 2011; Wheeler & Knight, 2017). Many
communities throughout the United States, including City of New York
(NYSDEC, 2015), City of Los Angeles (SWRCB, 2015a), San Francisco
Bay Area (SFRWQCB, 2015), and the City and County of Honolulu
(Hawaii Department of Health, 2012), have implemented water quality
permit regulations to reduce or eliminate trash from urban stormwater.

Recent amendments to the California Ocean Plan (SWRCB, 2015a) and
the Water Quality Control Plan for Inland Surface Waters, Enclosed
Bays, and Estuaries of California (SWRCB, 2015b) require California
cities to reduce trash inputs to storm drain systems by 2030 to levels
that do not adversely impact aquatic habitats.

Stormwater programs require a means to prioritize locations for
mitigation actions, quantify urban trash reduction effectiveness, and
provide meaningful reporting of annual progress to regulators.
California cities have two options to meet National Pollutant Discharge
Elimination System (NPDES) permit compliance: 1) install trash ‘full
capture systems’ that separate or prevent downstream movement of all
trash particles> 5mm in diameter or 2) implement a combination of
institutional controls (e.g. street sweeping, trash pickups, education and
outreach) to eliminate trash sources to the stormwater system. Areas
not served by full capture systems require monitoring to demonstrate
that they are clean enough to achieve ‘full capture equivalency’ with
minimal trash available for transport into the storm drain system
(SWRCB, 2015a).
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1.2. Quantifying urban trash conditions

Measuring the effectiveness of urban trash mitigation measures re-
quires a reliable means to characterize patterns of trash accumulation
within a city (e.g. Marais & Armitage, 2004; Marais, Armitage, & Wise,
2004). Various qualitative and quantitative field protocols have been
used to characterize trash accumulation and impacts in waterways,
with methods oriented to different study objectives such as under-
standing trash sources and types (Rosevelt, Los Huertos, Garza, &
Nevins, 2013), transport dynamics and delivery to receiving waters
(Moore, Cover, & Senter, 2007; Moore, Sutula, Bitner, Lattin, & Schiff,
2016; San Diego Bay Debris Study Work Group, 2016), habitat impacts
(Hoellein, Rojas, Pink, Gasior, & Kelly, 2014), and community impacts
(Muñoz-Cadena, Lina-Manjarrez, Estrada, & Ramon-Gallegos, 2012).
Methods employed have included stream bank surveys (City of Los
Angeles, 2016; SFRWQCB, 2004; Moore et al., 2007), flux estimates in
rivers (BASMAA, 2016b), repeated roadway surveys (City of Los
Angeles, 2017), and drone-based imagery analysis (Deidun, Gauci,
Lagorio, & Galgani, 2018; Hengstmann, Gräwe, Tamminga, & Fischer,
2017). Since the amount of trash entering the stormwater system is
dependent on the levels of trash that accumulate on streets, sidewalks,
and other impervious surfaces (Wheeler & Knight, 2017) and other
factors that influence transport (Moore et al., 2007), a measure of trash
accumulation can provide an appropriate metric to estimate loading to
receiving waters.

Visual assessments of trash accumulation on roadways are a rapid,
qualitative method to measure the accumulated trash available for
transport into the storm drain system within a certain area, which we
refer to hereafter as trash condition. For this study, we employ a varia-
tion of a previously developed visual assessment protocol, termed the
On-Land Visual Trash Assessment (OVTA), which has shown empirical
association with measured trash loads (volume/area) (BASMAA, 2014),
and has been accepted by the California State Water Resources Control
Board (SWRCB) as a means to comply with water quality permit re-
quirements (SWRCB, 2018). Compliance is achieved via OVTA results
by demonstration that areas are in the ‘Low’ OVTA trash condition
category (SWRCB, 2015a). The Low trash condition category is de-
scribed as having a maximum of “a few small pieces of trash” within a
city block length and has been estimated to have equivalent trash
loading to the stormwater system as installation of full capture systems
(BASMAA, 2014).

While the field protocol for OVTA is well-developed, sampling re-
commendations from (SWRCB, 2017) are based on very limited data
and analysis (BASMAA, 2016a). Temporal and spatial variability of
trash conditions create a substantial challenge for cities to determine
appropriate frequency and spatial density of observations to achieve
adequate levels of confidence or power for detecting changes. While
important considerations for sampling design and spatial analysis have
been addressed (Wheeler & Knight, 2017), they have not been in-
corporated to monitoring requirements from SWRCB. Moreover, sam-
pling recommendations provided by a post-hoc sample size and power
analysis are not responsive to new information as monitoring data are
acquired. Since the variance of trash condition estimates may be non-
stationary over both time and space (Lippiatt, Opfer, & Arthur, 2013;
Moore et al., 2016; Ryan, Moore, Van Franeker, & Moloney, 2009),
patterns of uncertainty are likely to shift as more data are collected.
Since the implementation period for cities to achieve trash compliance
will span at least a decade (SWRCB, 2015a), a dynamic approach to the
problem can help cities efficiently allocate monitoring and im-
plementation resources as their understanding of municipal trash pat-
terns improves.

1.3. Bayesian uncertainty estimation

Uncertainty should be a fundamental dimension of quantifying the
status of environmental conditions to support resource management

decision making, since it has direct bearing on our capacity to use data
and models to test hypotheses about patterns or changes (e,g. Beven,
2001; Beck, 1982). While use of models, both numeric and statistical,
can facilitate wise decisions, dealing with uncertainty in the outputs is
among the greatest challenges facing practitioners (Barton et al., 2012).
Understanding of the applicability of Bayesian methods to environ-
mental decision-making has grown in recent years (Barton et al., 2012;
Ellison, 1996; Wikle, 2003), partly driven by development of new
computational tools that make them available to a wider audience of
researchers and development of more efficient implementation
methods (e.g. Blangiardo, Cameletti, Baio, & Rue, 2013; Brown, 2015;
Lunn, Spiegelhalter, Thomas, & Best, 2009). Bayesian methods have
been widely applied to the problems of measuring uncertainty in en-
vironmental variables (Clark & Gelfand, 2006; Cressie, Calder, Clark,
Ver Hoef, & Wikle, 2009; Pulkkinen, 2015) and been shown to have
several advantages over frequentist counterparts for experimental de-
sign elements such as sample size determination (De Santis, 2007;
Joseph, Du Berger, & Bélisle, 1997; Sahu & Smith, 2006).

The problem of ongoing trash condition assessment lends itself to an
iterative sampling design that can incorporate new information as it
becomes available. Bayes Theorem provides a formal method to update
prior knowledge with new evidence wherein a prior expectation (pre-
vious belief) is combined with a likelihood function (new data) re-
sulting in a posterior distribution (updated belief) that is used for sta-
tistical inference. The less information available in any given year to
define trash conditions, the more influence the prior expectation has on
the updated belief, and as more data are collected, the importance of
the prior belief is diminished. The Bayesian approach allows use of
diverse information types in the form of the prior and can be used to
make probabilistic statements about trash conditions for specific
years—which is important for regulatory compliance, and discrete lo-
cations—which is useful for targeting trash management actions and
evaluating the effectiveness of those actions. A primary advantage is
that it provides a direct accounting of uncertainty associated with
parameter values (e.g. mean trash condition) owing to the fact that
these parameters are treated as probability distributions rather than
point values as they are in a frequentist framework. Accessibility to
Bayesian methods has been facilitated by tools built in the R pro-
gramming language to sample the posterior distributions via Markov
Chain Monte-Carlo (MCMC) or estimate them via Integrated Nested
Laplacian Approximations (INLA) (Blangiardo & Cameletti, 2015;
Martins, Simpson, Lindgren, & Rue, 2013). In this study we provide a
new application of Bayesian methods to quantify uncertainty associated
with visual trash assessment data for the purpose of iteratively in-
forming regulatory compliance, sampling design, and management
actions.

2. Data and methods

2.1. Visual trash assessments

Visual trash assessment data were collected throughout the City of
Salinas from spring 2017 to winter 2018 to estimate trash condition on
city streets and sidewalks. Salinas is located on California's Central
Coast with a population of 160,000 and an area of approximately
60 km2 (Fig. 1). The City is mostly surrounded by agricultural fields and
stormwater flow to receiving waters is governed by eight sub-drainages
primarily defined by the stormwater infrastructure. Three of the
streams flowing through the City are listed as having impaired bene-
ficial uses by the State Water Resource Control Board (SWRCB, 2016)
and persistent trash is evident on roadways and alongside urban stream
channels adjacent to commercial, industrial, and high-density re-
sidential areas. Trash condition assessments were made 3–6 times
throughout the entire city, with observations spaced at least 30 days
apart, using the OVTA field protocol. The OVTA approximates an ex-
ponential relationship between the trash condition categories and the
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median value of measured trash volumes within that category
(BASMAA, 2014) (Fig. 2).

Rather than surveying discrete sites, field teams conducted assess-
ments via a continuous streaming of condition categories while moving
along road segments with data recorded via a smartphone mobile app
built using Collector for ArcGIS from Environmental Systems Research
Institute (ESRI). This allowed rapid coverage of large areas and reduced
effort required to translate data from field data sheets to a GIS. Data
were collected by field teams of two driving slowly in a vehicle with the
passenger assigning the trash category to the road segment. When vi-
sion of the road shoulder or curbside was substantially obstructed,
usually due to parked cars, field teams would park and complete the
road segment survey while walking. In this way, field teams surveyed
nearly the entire road network of Salinas at least 3 times on each side of
the road during the study period (20months). Since field personnel
changed the trash condition category while moving, and several surveys

were conducted on each road, the resulting data set were line segments
of different lengths, collected on different dates for various areas of
Salinas. Assessments were conducted at least 48 h after substantial
rainfall events and at midpoints between regular street sweeping in-
tervals, both of which have strong potential to affect observed trash
conditions.

2.2. Spatial data processing and analysis

Trash condition data were summarized using a 30-m grid with each
cell value calculated as the length-weighted average of the lines that
occurred within each cell for each assessment period. For each assess-
ment, the trash condition score for a grid cell (sg) was calculated as the
sum of the products of each assessment segment length (L1…Li) and the
segment trash condition score (s1…si).

= ∗ + ∗ …+ ∗s s L s L s Lg i i1 1 2 2 (1)

While each observation was assigned the median value of the trash
condition category (Fig. 2), combining observations of different lengths
made at different times within each grid cell resulted in values on a
continuous scale with possible scores ranging from 23 to 935 L/ha for
(Fig. 3). For each grid cell, the mean condition was calculated for all of
the assessment periods along with observation count and variance,
which both serve as inputs to the uncertainty analysis. A nearest-
neighbor interpolation was performed in ArcGIS using a maximum
distance of 2 grid cells (60m) to estimate values for cells with no data,
which made up approximately 5% of remaining road length. The road
network was used to subset the interpolation so that grid cells were
filled in only along roads.

Whenever spatial autocorrelation is present, trash condition de-
pends on the covariance structure of the data (e.g. Aubry & Debouzie,
2000). We conducted a spatial analysis to quantify patterns of trash
condition and spatial dependence using the R package geoR (Cressie,
1993; https://www.r-project.org/) and the spatial statistics toolbox in
ArcGIS, and the outputs were used to inform the uncertainty analysis.
Since the spatial processes that result in autocorrelation may exhibit

Fig. 1. City of Salinas and stormwater drainages.

Fig. 2. Trash condition score category relationship to measured mean trash
loads (volume/area) adapted from BASMAA (2014).
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non-stationarity across the City, the range and strength of spatial de-
pendence can also vary by location (Risser, 2016; Smith, Higdon, Swall,
& Kern, 2000). To accommodate such spatial effects that may operate at
scales finer than the entire City, we subset the trash data using the 8
stormwater drainages shown in Fig. 1 to perform an incremental au-
tocorrelation analysis (Global Moran's I) within each of these drainages.
This analysis was done in an area-discrete manner so that locations
were only influenced by other locations within their own drainage,
since these drainages are often separated by physical barriers on the
surface (e.g. railroad tracks, highways), topography, or the subsurface
stormwater infrastructure. To assess the potential influence of more
granular spatial patterns, we also used a local indicator of spatial as-
sociation (LISA): Anselin Local Moran's I (Anselin, 2017).

Since there are only 3–6 observations available for each road seg-
ment, we explored ways to pool mean trash condition variance by
quantifying autocorrelation at various distances. The incremental au-
tocorrelation analysis calculates the Global Moran's I for a series of
increasing distances (see Getis & Ord, 1992) and associated z-scores
that reflect the intensity of spatial clustering. Since stormwater

infrastructure is an important vector for trash transport, these drainages
provide a physically meaningful unit of analysis to quantify the spatial
dependence. The outputs of this analysis indicated distances of the most
pronounced autocorrelation effects within each drainage, providing an
appropriate distance at which to pool these variance estimates, which
are a key input to the uncertainty calculation.

2.3. Quantifying trash condition uncertainty

Using a Bayesian approach, uncertainty is quantified as the width of
a specified interval over the posterior distribution, often referred to as a
‘credibility interval.’ To quantify uncertainty, we used Bayesian func-
tions written in R by (Joseph et al., 1997; Joseph & Belisle, 2015) to
calculate the number of additional observations required to reach
various posterior credibility interval coverage probabilities for a normal
mean (e.g. 0.95). The number of additional observations (m) required is
calculated using the R function mu.varknown, for a specified length (L)
and coverage probability level (p) for the posterior credible interval for
the unknown mean as

Fig. 3. Mean trash condition for observations made from 2017 to 2018 as OVTA categories.
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where n0 is the number of previous observations and σ2 is the variance.
The R package ‘raster’ (Hijmans, van Etten, et al., 2018) was used to call
the function mu.varknown to apply to each grid cell where trash con-
dition data had been collected, using the number of prior observations
(n0) and variance (σ2) calculated for each grid cell as inputs to calculate
m. The length over the posterior distribution (L) was kept fixed at ap-
proximately 10% of the range of the trash condition data. The posterior
credibility interval coverage was varied between from 0.50 to 0.99 at
intervals of 0.05, resulting in gridded outputs of additional observations
required to achieve various levels of certainty as reflected by the
credibility interval coverage. The number of additional observations
required at each location reflects the measurement uncertainty given
each combination of trash condition variance and number of previous
observations. These raster layers were combined to create a map of
certainty with each cell value reflecting the highest credibly interval
coverage level that required no additional observations.

2.4. Output mapping

Since cities require an area-based metric to demonstrate trash
condition compliance guidelines (SWRCB, 2017), we explored two
methods for interpolating the trash condition data collected on roads to
adjacent parcels, Nearest Neighbors (NN) and Empirical Bayesian Kri-
ging (EBK) (Krivoruchko & Gribov, 2014). For the NN approach, grid
cells were buffered to intersect parcels adjacent to road segments and
the parcels were assigned the trash condition of that grid cell or an area-
weighted average of grid cells that intersected the parcel. EBK is a
geostatistical approach that was implemented in ESRI's Geostatistical
Analyst wherein the interpolation is not constrained to the roads, so
that data values influence grid cells in all directions. The parcel layer
was clipped to the EBK and NN outputs to classify parcels as the area-
weighted average of the grid cells within each parcel.

To facilitate reporting and trash action prioritization, we used the
data interpolated from the on-road grid cells to create parcel-scale maps
that reflect compliance with trash regulations or indicate trash miti-
gation priority areas. Compliance results were mapped using the trash
condition category of Low (see Fig. 2) and the calculated certainty le-
vels. Similarly, trash priority areas were mapped for parcels that fell
into trash condition categories other than Low by combining their mean
scores (s ) with the certainty estimates (c) to calculate the priority area
score (f) as

= − − ∗f s c s(1 ) (3)

which were mapped as quartile categories defined for the entire City of
Salinas.

3. Results

3.1. Urban trash condition and certainty patterns

Mean trash condition for the study period ranged from 2.5 to 935 L/
ha. and the mean trash condition for all of Salinas was 70 L/ha, which
falls near the median of the Moderate trash condition category. The
majority of the 30-m grid cell values were in either the Low (42%) or
Moderate (44%) categories and were low in the High (12%) and Very
High (2%) categories (Fig. 3). Areas of the city with the most trash
(High and Very High trash condition) were concentrated in commercial
areas of the city center, large industrial parcels near the city center,
along the reclamation ditch waterway, and shopping centers near main
arterial roads, especially where they approach the perimeter of the City.

Results of the autocorrelation analysis for trash condition variance
at 90-m increments shows moderate differences between stormwater
drainages (Fig. 4). Because the Moran's I index is dependent on the

calculated spatial weights, these index values cannot be interpreted
directly and must be evaluated within the context of the null hypothesis
as a z-score (e.g. Getis & Ord, 1992). The z-scores on the y-axis indicate
the intensity of spatial clustering; z-scores> 1.96 represent significant
positive spatial clustering with a 90% level of confidence. The peaks in
each plot represent the strongest spatial autocorrelation within each
stormwater drainage. All drainages exhibit similar patterns of a decline
of spatial autocorrelation towards insignificant levels beyond 2 km for
most of the drainages, though the trajectory and steepness of the falloff
vary. The peak autocorrelation distance ranged from 120m in Alisal
Creek to 460m in the Gabilan Creek drainage (highlighted points in
Fig. 4). These peak distances were used as the radius for calculating
pooled variance estimates for each stormwater drainage for input to the
uncertainty analysis. In this way, the uncertainty estimates in-
corporated heterogeneity of the covariance structure that arises from
differences in spatial processes operating within each stormwater
drainage.

The LISA analysis showed that most areas within the city (84% of
grid cells) showed no significant local clustering of trash condition
variance (Table 1). Few areas (< 1% of grid cells) showed High-Low or
Low-High outliers that indicate high spatial frequency variance het-
erogeneity. Local clustering, primarily Low value clusters, were iden-
tified throughout the city, and together with High value clusters ac-
counted for 15% of grid cells. Often, these clusters had at least one axis
that was similar in length to the strongest autocorrelation distance
calculated using the Global Moran's I. Since the Global metric appeared
to largely represent the dominant mode of autocorrelation and was also
easier to automate, we used the results from the incremental auto-
correlation analysis (Global Moran's I) as the basis for pooling variance
estimates over space.

The spatial pattern of trash condition certainty calculated using Eq.
1 for each road grid cell are shown in Fig. 5. Lighter areas that indicate
lower certainty (high uncertainty) in trash condition have either fewer
observations and/or have greater time-variance in those observations.
High certainty areas tended to be cleaner areas of the City away from
the city center and main arterial roads, consisting largely of single-fa-
mily residential areas. These areas receive less vehicle and pedestrian
traffic and employ parking ordinances that allow street sweepers to
reach most curb and gutter areas where trash often accumulates. Most
of the areas with high certainty have a Low or Moderate mean trash
condition, while areas with low certainty (< 70%) are particularly
prevalent in High and sometimes Moderate trash condition areas
(Figs. 3 and 5). This is partly due to the exponential nature of the trash
condition – trash loading rate relationship (Fig. 2), wherein High and
Very High values disproportionately increase variance used in the un-
certainty analysis. In areas that have High or Very High trash conditions
episodically, more observations may be needed to increase certainty of
mean trash condition estimates.

3.2. Mapping compliance and identifying priorities

Outputs of the interpolated mean trash condition from roads to
parcels using each of the two methods, nearest neighbor (NN) and
Empirical Bayesian Kriging (EBK), are shown in Fig. 6. Given the em-
pirically estimated parameters for EBK (nugget, slope, power) with a
power semivariogram model, EBK provides greater coverage
throughout the city compared to NN which leaves substantially more
area unclassified. Correspondence between EBK and NN for the trash
condition categories are summarized in Table 2, with the Low and
Moderate condition categories showing< 10% deviation and the High
trash category showing a 30% difference. Near the center of the City
(Fig. 6), a large agricultural parcel is classed as High using EBK (panel
B) but is left unclassified using NN (panel A) because it is surrounded by
other agricultural fields not roads. Another example is in the southeast
portion of the city, where the Airport was classified in the Moderate
category using NN (panel A) but in the High category with EBK (panel
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B).
While EBK provides somewhat greater coverage and has the ad-

vantage of accounting for the error in the underlying semivariogram
parameters, we selected the NN interpolation for its simplicity of ap-
plication and interpretation. As we would expect, areas that exhibit the
highest standard error using EBK are often left unclassified with NN due
to a lack of proximal data (Fig. 6, panel C). Another consideration is
that with EBK, the road network does not provide the same degree of
constraint for the interpolation as it does for the NN. This is an im-
portant consideration given that car traffic, pedestrians, and storm-
water flows on roads all move trash more freely than they may across
large parcels. Outputs from NN are also easier to explain than those
from EBK to users not familiar with spatial interpolation methods,

Fig. 4. Incremental spatial autocorrelation for Salinas stormwater drainages. Highlighted points indicate distances selected for pooling variance.

Table 1
Anselin Local Moran's I (Ii) analysis results summary. A
95% confidence level was used for determining sig-
nificant clusters and outliers.

Grid cells (%)

Not significant 84
Low cluster 13
High cluster 2
Low-high outlier 1
High-low outlier 0.03
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which can provide cities with a clearer understanding of the link be-
tween the trash data collected and analytical outputs.

The result of combining the uncertainty outputs with the trash
condition data using the NN interpolation are shown in Fig. 7 to illus-
trate areas of compliance (top map) and trash priority areas (bottom
map) at the parcel scale for part of the Reclamation Ditch West
stormwater drainage (Fig. 1). Green parcels are within the range of the
Low trash condition category and have> 70% certainty of their cal-
culated mean value, with darker shades representing increasing degrees
of certainty. Using a certainty threshold of 80%, the two darkest green
categories illustrate parcel area in compliance. Given this example

Fig. 5. Trash condition certainty scores on roads throughout the City of Salinas.

Fig. 6. Interpolated outputs using Nearest Neighbor (A) and Empirical Bayesian Kriging (B), and the Standard Error for EBK estimates.

Table 2
Summary of results from Empirical Bayesian Kriging (EBK) and nearest
neighbor (NN) interpolation.

Trash condition area (ha)

NN EBK % Difference

Low 1836 1961 −6
Moderate 1835 1696 8
High 964 1301 −30
Very high 68 67 1
Unclassified 359 38 162
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compliance threshold, approximately 30% of the parcel area in Salinas
was in compliance during the 20-month study period. Areas that have
relatively poor trash condition and high certainty are good candidates
for areas to prioritize for management actions.

4. Discussion

The method presented employs a simple Bayesian approach to
quantifying the certainty in trash condition estimates, which is intended
to align with resources available to make such tools widely available to
cities. Understanding patterns of trash condition uncertainty is critical
for decision making since there is often little initially known about the
variance of trash over space or time and the cost of ongoing assessments
limits data collection. While spatial autocorrelation patterns of trash
condition variance differed somewhat between stormwater drainages,
they mostly had significant influence within a range of 2 km, indicating
that full coverage assessments of Salinas are probably unnecessary in
the long term. Areas that are consistently trash free will tend to have
high certainty and be candidates for reduction of monitoring frequency
in upcoming years. By focusing ongoing assessment resources more
heavily in areas that have demonstrated severe trash issues to a high
degree of certainty, the effectiveness of specific trash mitigation stra-
tegies in different areas can be investigated. This can provide storm-
water managers with better information to identify effective strategies
and to isolate factors that contribute to success or failure in different
areas of their cities.

Areas with highly variable trash conditions may require an ex-
ceedingly high number of observations to reach an acceptable level of
certainty given the trash volume scale used in the OVTA assessments.
For example, in an area that showed trash conditions with both Very
High and Low conditions at different survey times,> 100 observations
may be required to reach a level of certainty above 80% given the level
of precision specified in this analysis (10%). Of course, some of the
variance must be attributed to errors in trash category scoring itself,
which would probably happen most often in discerning between the
Low and Moderate trash categories since these two categories have the
smallest separation. As observations increase, variance will tend to
decrease, particularly if new observations show greater consistency and
cleaner conditions. Areas that continue to show relatively high varia-
bility of trash conditions should require continued observations, since
the data would indicate that they are both poorly characterized and
represent an ongoing risk of trash delivery to receiving waters.
Application of the method presented will require careful consider of
tolerances for precision and certainty that would be acceptable within
the regulatory frameworks of individual cities.

In this application, spatial effects were not explicitly incorporated in
the uncertainty estimates by way of the inference model structure, but
via the input data by pooling variance within a radius based on a
stratified spatial analysis (e.g. Higdon et al., 1999). Likewise, temporal
effects are only accounted for by way of setting a time window over
which observations are used to inform prior distributions. Specification
of a Bayesian spatio-temporal hierarchical model would allow for more

Fig. 7. Parcel-based trash compliance and priority areas for a subset of parcels near the Reclamation Ditch West stormwater drainage. Priority areas that do not have
a mean condition within the Low category range are shown in the lower map as quartiles.
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detailed accounting of patterns such as spatial autocorrelation oper-
ating at different scales, as well as accounting for interactions between
spatial and temporal factors not included in this study (e.g. Barber &
Gelfand, 2007; DiMaggio, 2012; Kruschke & Vanpaemel, 2015; Sain &
Cressie, 2007; Wikle, 2015). However, such complex hierarchical
models can suffer parameter identifiability issues, and such an ap-
proach would also increase the computational burden given the need to
sample from the posterior distribution (e.g. Wang & Gelfand, 2002),
particularly so with large raster data sets that cover entire cities. Cressie
et al., 2009, explores several other limitations associated with Bayesian
Hierarchical models (along with their benefits) related to the com-
plexity of such models and their practical implementation. Perhaps
most importantly, use of more sophisticated models also presents the
problem of having more complex relationships between inputs and
outputs, which may pose a challenge for practical use by stormwater
managers and regulators, who are typically not experts in statistical
modeling.

An important constraint on Bayesian inference is the need to specify
parameters of a prior distribution, which always involves a degree of
subjectivity, similar to specification of other model components in-
cluding data models, process models and parameter models (Cressie
et al., 2009). A typical approach in the context of a sample size problem
is to use a non-informative prior, but this can sometime result in un-
reasonably small or large sample sizes to reach a desired credibility
interval (Sahu & Smith, 2006). In this case we parameterized the prior
via the variance of trash condition estimates already collected near the
same location within a 20-month time window. Another approach to
specifying the prior would have been to use data collected throughout
the city to specify the prior. However, this would ignore the observed
heterogeneity in the covariance structure of the trash data between
stormwater drainages. Perhaps most importantly, this approach would
not provide location-specific estimates of uncertainty that can be
readily updated as additional observations are made to inform com-
pliance and spatial targeting of management actions.

5. Conclusions

Given the growing understanding of urban trash impacts and related
water quality regulations, there is a critical need for cities to efficiently
determine compliance and prioritize actions. This study demonstrated a
methodology in the City of Salinas that is responsive to regulatory re-
quirements and includes spatially distributed uncertainty estimates that
provide valuable context for stormwater visual trash assessment results.
Low levels of certainty were mostly prevalent in trashy areas, but some
of these trashy areas also showed high certainty, indicating that they
are good places to focus trash mitigation actions. A measure of certainty
increases transparency of the compliance process for determining
which areas should count towards intermittent progress in annual re-
porting or whether the data dictate a shift in course for a stormwater
program. As with many other environmental data collection problems,
determination of adequate number of observations to test hypotheses is
dependent upon characteristics of the data. A Bayesian approach allows
new data to be incorporated to iteratively inform the sampling design
so that monitoring schedules can be adjusted over time for more effi-
cient resource allocation. While results were presented within the
context of regulatory requirements of California, USA, the methods
used are generally applicable in any city with stormwater trash re-
duction requirements. To make this approach more widely available, it
has been automated and integrated to a web-based stormwater platform
(www.2nform.com), now used by several cities working towards the
goal of eliminating trash in stormwater.
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