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• Green stormwater infrastructure (GSI) is
shown to affect urban greenness patterns.

• Urban greenness is shown to influence a
range of downstreamhydrologic responses.

• Only 9% of watersheds show significant
trends in satellite-measured urban green-
ness.

• Detection of broad, watershed-scale GSI im-
pacts is limited by GSI data completeness.
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Green stormwater infrastructure (GSI), which includes features like rain gardens, constructed wetlands, or urban tree
canopy, is nowwidely recognized as a means to reduce urban runoff impacts andmeetmunicipal water quality permit
requirements. Many co-benefits of GSI are related to increased vegetative cover, which can be measured with satellite
imagery via spectral indices such as the Normalized Difference Vegetation Index (NDVI). In urban landscapes, there
remain critical gaps in understanding how urban greenness and GSI influence hydrology. Here, we quantify these re-
lationships to assess the feasibility of tracking the effectiveness of urban greening for improving downstream hydro-
logic conditions. We combined hydrologic data from the United States Geological Survey (USGS) gauges with an
NDVI time series (1985–2019) derived from Landsat satellite imagery, and synthesis of GSI implementation data
from a set of 372 urbanized watersheds across the United States. We used a multivariate panel modeling approach
to account for spatial and time varying factors (rainfall, temperature, urban cover expansion) in an effort to isolate
the relationships of interest. After accounting for expansion of urban boundaries, only 32watersheds (9%) showed sig-
nificant greenness trends, a majority of which were reductions. Urban greenness had significant influences on down-
stream flow responses, so that on average, a 10% greenness increase showed a corresponding reduction of total flow
(−3.8%), flow variance (−7.7%), peak flows (−4.7%), high flows (−7.6%), flashiness (−2.2%), and high flow fre-
quency (−1.5%); and a corresponding increase in baseflow (4.3%). For a subset of these watersheds for which GSI
data were available (n = 48), the level of GSI implementation showed a significant, but weak influence on urban
greenness with a 20% increase in BMP density corresponding to a greenness increase of 0.9%. The study results
may support valuation and verification of GSI co-benefits in urbanized landscapes at the watershed scale.
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1. Introduction
Increases in stormwater runoff caused by widespread expansion of im-
pervious cover (Nowak and Greenfield, 2020) have detrimental impacts
on water bodies, ranging from hydrologic regime alteration, erosion, and
increased pollutant transport and loading (Arnold and Gibbons, 1996;
Holman-Dodds et al., 2003; Walsh et al., 2005). Nature-based solutions,
such as green stormwater infrastructure (GSI) mitigate the impacts of
urban development on local hydrology and ecosystems, which have been
extensively documented (e.g. Alberti et al., 2007). As a subset of structural
stormwater control measures (SCMs), GSI reduces urban stormwater runoff
and pollutant loading to waterways via processes such as infiltration and
evapotranspiration to reduce, slow down, and clean urban runoff (Clary
et al., 2002; Ebrahimian et al., 2019). GSI includes features such as green
roofs, constructed wetlands, rain gardens, bioswales, and urban tree cano-
pies, that are often widely dispersed throughout the urban landscape and
commonly included as part of low impact development (LID) (Prudencio
and Null, 2018). Urbanization has been shown to lead to shorter runoff
lag times, higher total runoff volumes, and higher runoff peaks (Booth
and Bledsoe, 2009; Shuster et al., 2005). GSI mitigate these hydrologic im-
pacts by managing stormwater runoff close to its source (Berland et al.,
2017) and disconnecting impervious cover (Ebrahimian et al., 2018).
Where traditional “grey infrastructure” uses engineered hard structures,
GSI uses plants, soils, and landscape design to infiltrate runoff and entrain
pollutants to restore the natural hydrologic functioning of urbanized land-
scapes and improve water quality (Davis, 2007). GSI has become increas-
ingly popular as a cost-effective way of reducing urban stormwater
pollution (Wang et al., 2013); providing ecosystem services such as habitat
protection, air quality improvements, and carbon dioxide (CO2) uptake;
and enhancing social well-being via recreational opportunities and en-
hanced community aesthetics (McDonald, 2015). These benefits associated
with GSI implementation are largely vegetation-related and often referred
to collectively as GSI ‘co-benefits’ (e.g., Spahr et al., 2020) to distinguish
them from the traditionally assessed benefits of runoff reduction, pollutant
treatment, and flood risk reduction. Even with widespread policy shifts to-
wards more sustainable urban development (e.g. Gunder and Hillier, 2016;
Fitzgerald and Laufer, 2017), cities still show widely ranging levels of GSI
adoption and diverse implementation trajectories (Hale, 2016), with GSI
performance uncertainty cited as a key barrier to mainstream adoption
(McPhillips andMatsler, 2018). Indeed, an effective shift towards including
more GSI in conjunction with grey stormwater management may depend
on identification of appropriatemetrics to demonstrate the value of GSI im-
plementation over time (Chini et al., 2017).

The efficacy of GSI for runoff reduction and water quality improvement
has been widely documented at the scale of individual BMPs and parcels
(Ackerman and Stein, 2008; Clary et al., 2002; Strecker et al., 2004), but
there is little compelling evidence available of improvements at the scale
of urban watersheds (e.g., 1–1000 km2) (Golden and Hoghooghi, 2018).
While recent studies have begun to build an understanding of the impact
of GSI on watershed-scale hydrology via empirical measurements
(e.g., Ahiablame et al., 2013; Loperfido et al., 2014; Pennino et al., 2016),
most studies rely on modeling experiments (e.g., Avellaneda et al., 2017;
Kong et al., 2017). Results from direct measurements of effectiveness are
mixed (e.g., Jarden et al., 2016); and substantial uncertainty remains for
how implementation may scale up to watershed-scale changes over the
long term (Sarkar et al., 2018; Vogel et al., 2015), largely to the confound-
ing effects of hydrologic variability (Roy et al., 2014). For example, in-
creases to the density and coverage of urban tree canopy reduces
stormwater runoff impacts, along with providing various other ecosystem
services (Selbig et al., 2021; Berland et al., 2017; Carlyle-Moses et al.,
2020). But as with other types of GSI, current understanding of the aggre-
gate, watershed-scale hydrologic changes associated with urban tree plant-
ing leavesmuch room for improvement (Coville et al., 2020). Experimental
designs that provide a robust accounting for watershed factors that contrib-
ute to hydrologic variability have the best chance to draw causal linkages
between GSI and catchment-scale hydrologic changes (Jarden et al.,
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2016). Yet most studies have relied on limited data using a paired water-
sheds approach (e.g., Dietz and Clausen, 2008; Hager et al., 2013; Roy
et al., 2008; Yang and Li, 2013), which can have severe limitations for de-
tecting differences, especially when treatment levels are low and time ex-
tents are short (Loftis et al., 2001). As a result, direct empirical data that
support watershed-scale system responses to GSI remain scant.

Since GSI implementation can result in localized greening of the urban
landscape, there is the potential to measure those changes at the urban wa-
tershed scale via spectral vegetation indices, such as the Normalized Differ-
ence Vegetation Index (NDVI), and to identify relationships between NDVI
and the hydrologic benefits associated with urban greening. Hydrologic
condition improvements related to GSI include reduction of local flooding
risks (Tao et al., 2017; Venkataramanan et al., 2020; Zellner et al., 2016),
recharging groundwater (Bhaskar et al., 2018; Dussaillant et al., 2005),
and modulation of flashy runoff response (Fahy and Chang, 2019). While
NDVI has been shown to be a useful proxy for other GSI co-benefits (e.g.
Kanniah et al., 2014; Rani et al., 2018; Nieto et al., 2015), questions persist
as to whether the NDVI may be similarly useful as a proxy for hydrologic
condition improvements.

Despite the scale of investment in GSI implementation, only a few stud-
ies to date have quantified relationships between GSI and urban greenness,
between GSI and hydrologic measurements, or have considered all of these
factors together across a wide range of urbanized watersheds. The fact that
the majority of evidence for the influence of GSI on hydrology has come
from modeling scenarios (e.g., Fahy and Chang, 2019; Hoghooghi et al.,
2018), rather than flow measurements, is due in part to a lack of appropri-
ate gaugedwatersheds, and partly due to poor accessibility and harmoniza-
tion of GSI data across the implementing entities. A notable exception is the
study by Pennino et al. (2016), who identified weak but significant effects
of GSI implementation on several downstream hydrologic and water qual-
ity metrics for three U.S. cities. There also does not appear to be strong con-
sensus in the recent literature regarding urban greenness trends. While
Corbane et al. (2020) found that most cities around the world are getting
greener (1990–2014), Spahr et al. (2020) found that greenness was increas-
ing in only two of 10 U.S. cities (1990–2015). Key questions remain sur-
rounding urban greenness trends, the capacity to reliably measure the
hydrologic effects of GSI, and whether the combined effects of increasing
urbanization and urban greening policies may result in offsetting patterns
of urban greenness within the same areas (Gan et al., 2014).

The potential to use NDVI measurements to quantify urban greenness
changes and provide a proxy measurement to track GSI co-benefits are
clear, and other researchers have called for decision makers to incorporate
NDVI data to their planning processes to incentivize urban greening
(e.g., Spahr et al., 2020). A fundamental precursor to development of
urban greenness tracking metrics includes a better understanding of how
well widely available satellite data measures urban greenness, what
changes in land cover or GSI implementation are associated with greenness
changes, and how urban greenness changes affect downstream hydrology.
In this study, we explored changes in urban greenness patterns from 1985
to 2019 within urbanized watersheds across the United States (U.S.) We
employed cloud-based spatial data processing tools and a panel regression
statistical approach that allowed simultaneous exploitation of information
contained in both spatial and temporal patterns of the data. Our objectives
were to 1) identify urban greenness changes over time from satellite remote
sensing data, 2) assess the impact of urban greenness on downstream hy-
drology, and 3) assess the impact of GSI implementation on both urban
greenness and hydrology.

2. Data and methods

The study objectives were addressed via trend testing and regression
modeling, with daily streamflow data used to measure hydrologic re-
sponses, and satellite NDVI data used to quantify urban greenness. Several
watershed attributes and climatic variables were used as explanatory vari-
ables to account for watershed responses unrelated to anthropogenic
changes or the predictor variables of interest (urban greenness and GSI
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implementation). Data development relied heavily on the use of Google
Earth Engine (GEE; Gorelick et al., 2017) for acquisition and processing
of large raster datasets spanning many individual years (1985–2019).

2.1. Study watersheds and attributes

Study watersheds were selected on the basis of USGS streamflow data
availability (GAGES; Falcone et al., 2010) and proportional impervious cov-
erage as defined by the National Land Cover Database (NLCD; Homer et al.,
2020). Potential watersheds were filtered using two criteria: 1) >5% NLCD
impervious coverage in the watershed in 2016, and 2) two-thirds of the
years from 1985 to 2019 having<10%missing streamflow data. For water-
sheds with nested streamflow gauges, we selected the one with the highest
proportionof impervious cover, so that therewere no overlappingwatersheds.
This filtering process resulted in a total of 372 watersheds distributed across
the U.S. (Fig. 1) representing a wide range of hydroclimate conditions and en-
vironmental regulatory regions (see Table S1, supplementary material).

Watershed predictor variables that are understood to strongly influence
the rainfall-streamflow relationship at the annual time stepwere summarized
for each watershed for each year for time-varying attributes. These included
drainage area, precipitation, temperature, potential evapotranspiration,
urban extent, and urban greenness. Precipitation (PPT) totals were calculated
from gridded 24-hour event depths (4-km resolution) provided by the PRISM
Climate Group (Daly et al., 2008) with depths summed for each grid cell
(30 m) and an area-weighted average calculated for each grid cell that
intersected watershed boundaries. Average annual potential evapotranspira-
tion (PET) estimates were summarized fromMODIS, 8-day measurements at
1-km resolution for the study period (Mu et al., 2013, 2011). We calculated
the urban extent for each year based on the global artificial impervious
area (GAIA) data product (Gong et al., 2020) that combines Landsat platform
data with ancillary datasets including nighttime light data and the Sentinel-1
Synthetic Aperture Radar data. These data track the year of transition to
>50% impervious cover for each pixel. The cumulative sum of impervious
pixels each year provides a fine time-resolution measure of the expansion
of urban extents over time. This dataset has the advantage of yearly resolu-
tion, compared to the NLCD impervious cover data products which are
made available on a 5-year schedule.

Compared to other regression approaches, panel regression is more
likely to avoid multicollinearity issues in identifying hydrologic effects of
anthropogenic landscape change through simultaneous use of information
Fig. 1. Studywatershed locations (blue dots), U.S. Environmental Protection Agency (EPA
as quartiles. (For interpretation of the references to color in this figure legend, the read
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across watersheds and over time (Steinschneider et al., 2013). While ex-
ploratory analysis showed moderate to strong correlations between some
predictor variables (e.g., Temperature and PET), the panel modeling ap-
proach substantially reduces the risk that the model will be unable to iden-
tify the effect of an independent variable. Our general approach follows
that of Steinschneider et al., 2013, who showed that the separate attribu-
tion of variability across both space and time dimensions in panel models
can provide superior identification of hydrologic response characteristics
that are generalizable across watersheds, and that panel models could iso-
late heterogeneity between watersheds caused by omitted predictors. Pre-
dictor variables used in the panel regression models are defined along
with the flow response variables, and the urban greenness metric (de-
scribed in Section 2.3) in Table 1.

2.2. Streamflow data

Mean daily discharge data were downloaded from the U.S. Geological
Survey, quality checked, and processed using the R statistical programming
software (De Cicco et al., 2018; R Core Team, 2018) for the period
1985–2019. For each station, a set of hydrologic metrics were calculated
to represent various elements of streamflow regimes that may be affected
by urban greenness changes or GSI. Flow metrics were calculated for each
watershed for each year and included total flow, baseflow, flow variance,
high flows, high flow frequency, peak flows, peak flow duration, and flash-
iness (Table 2). These metrics are similar to those used by Pennino et al.
(2016), who found them responsive to GSI implementation. Baseflow was
calculated using the Lynne-Hollick filter method through the hydrostats R
package (Bond, 2015; Lyne andHollick, 1979),while other hydrologicmet-
rics were calculated manually as described in Table 1.

Daily flow data were used because the instantaneous flow data (15-min
intervals) were only available for a subset of the study watersheds. To eval-
uate the impact of using the daily (rather than 15 min) data on the calcu-
lated flow metrics, we calculated the metrics for three watersheds located
each of the three ecoregions representing the range of watershed sizes.
Total runoff, baseflow, flow variance, and high flow days had strong rela-
tionships between the 15 min and the daily data (R-squared 0.75–0.99),
while flashiness, peak flows, and peak flow duration showed moderately
strong relationships with the 15-minute data (R-squared 0.41–0.54). For
all metrics, there was <20% bias in the relationships indicating that the
danger of introducing systematic offsets due to sub-daily flow variation
) regions, and climate regions based on aridity index (Cherlet et al., 2018), classified
er is referred to the web version of this article.)



Table 1
Watershed response and predictor variables. Each variable is calculated for eachwa-
tershed for each year in the time series (1985–2019).

Variable Notation Description Units

Response variables
Total runoff Q Total runoff m3

Baseflow Qb Mean daily baseflow m3/s
Flow variance Qcv Coefficient of variation for daily flows %
High flows Qhi Mean flow > 3× monthly median flow

(full time series 1985–2019)
m3/s

High flow frequency QhiDays Count of high flow days > 3× monthly
median flow (full time series 1985–2019)

days

Peak flows Qpeak Mean flow > 15-day median flow
(current year)

m3/s

Peak duration QpeakDur Mean number of consecutive
days > 15-day median flow (current
year)

days

Flashiness QpeakRatio Peak flow/15-day median flow %

Predictor variables
Drainage area A Watershed drainage area km2

Precipitation PPT Total precipitation mm
Temperature T Mean temperature °C
Potential
evapotranspiration

PET Total potential evapotranspiration mm

Urban extent UrbExt Impervious pixel count km2

Urban greenness UrbGrn 90th percentile NDVI value (current
year)

NDVI
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was low. Since the 15-minute data would have substantially reduced the
number of watersheds that could be included in the study, using the daily
flow data was the preferable alternative.

2.3. Urban greenness data processing

Greenness of the study watersheds was characterized using NDVI,
which is widely used to estimate surface vegetation greenness and is calcu-
lated as a ratio of the red (RED), near-infrared (NIR) reflectance ratio
[NDVI = (NIR − RED)/(NIR + RED)]. NDVI values thus range from −1
to +1, where negative values correspond to an absence of vegetation
(Myneni et al., 1995). We used a combination of the Landsat data archives
(USGS, 2020) and processing and analysis methods available via GEE
(Gorelick et al., 2017). We created an NDVI time series using Tier 1 Surface
Reflectance data from Landsat 5 Thematic Mapper (TM), Landsat 7 En-
hanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land
Imager (OLI) sensors for years 1985–2011, 2012, and 2013–2019, respec-
tively. Standard cloud and shadow masking procedures were used to pre-
pare the Landsat imagery for analysis (Zhu et al., 2015). Water, snow,
crop and pastureland cover types, classified by the 2016 NLCD land cover
database (Homer et al., 2020), were also masked out of the imagery to re-
move effects attributed to agricultural practices or associatedwithwater re-
flectance, although these land cover types wereminimal within themodern
urban boundaries. We used the prepared surface reflectance composites to
calculate the 90th percentile value of the NDVI for each year (1985–2019)
so that each pixel location retained only the 90th percentile value. The an-
nual 90th percentile NDVI value was used to measure greenness levels,
Table 2
Streamflow response panel model results. Urban greenness coefficients, F-statistics, and
response variables (see Table 1).

Response variable R-sqrd Adj R-sqrd F-statistic Model p-value

Total flow 0.178 0.150 471 <0.001
Baseflow 0.078 0.046 183 <0.001
Flow variance 0.018 0.016 40 <0.001
High flows 0.053 0.019 117 <0.001
High flow frequency 0.123 0.093 305 <0.001
Peak flows 0.221 0.194 611 <0.001
Peak flow duration 0.116 0.085 282 <0.001
Flashiness 0.044 0.010 98 <0.001
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while avoiding data errors associated with the using the maximum NDVI
value (e.g., striping errors that could not be removed with masking and
other reflectance anomalies) and minimizing cloud cover effects that
were not removed in the cloud masking process.

Annual 90th percentile NDVI raster outputs were averaged by area for
themodern urban boundary of each studywatershed producing a single ag-
gregate urban greenness value for each watershed and each year. The mod-
ern urban boundary within each study watershed was defined from the
2016 NLCD impervious coverage data 1) with a 900-m focal median filter
applied to impervious pixels to ensure that the defined urban footprint in-
cluded open spaces within cities but did not extend into wildlands sur-
rounding cities and 2) with any pixel > 0% impervious surface cover. In
comparisons with the data from census blocks, municipal boundary
datasets, or the global human settlement layer (Melchiorri et al., 2018),
thismethod provided a better representation of the current urban footprints
for the purpose of this study and also allowed inclusion of highways, which
may also undergo designed greening (Li, 2015). To examine patterns of
greenness change over the study period, we created an NDVI change
layer, in which we calculated the difference between the average 90th per-
centile NDVI pixel values of the first three years of the time series
(1985–1987) and the average pixel values of the last three years of the
time series (2017–2019).

Improvements to the OLI sensor array over the previous TM/ETM+
sensors result in differences in spectral response, with the OLI showing con-
sistently higher NDVI values than ETM+, requiring sensor intercalibration
(Chastain et al., 2019; Mancino et al., 2020). Since NDVI emphasizes the
difference between the red and near infrared bands, small differences in
these bands may result in much larger differences in the NDVI, particularly
in low vegetation areas (Miura et al., 2000). To mitigate this effect, we ap-
plied the widely used empirical regression equations reported in Roy et al.
(2016) for OLI and TM/ETM+, but still saw clear evidence of a sensor-
based NDVI offsets when examining data from ETM+ and OLI for overlap-
ping years (2013–2019). We used the overlapping time period from 2013
to 2019 for ETM+ and OLI to create an empirical relationship based on
the aggregate NDVI data (area-averaged annual 90th percentile NDVI by
watershed). The resulting regression equation used to harmonize the
NDVI data across the sensors was ETM+ = 0.049 + 0.978 ∗ OLI.

2.4. GSI data

A total of 204 stormwater programs with National Pollutant Discharge
Elimination System (NPDES) permits within the study watersheds were
contacted to request access to data on SCMs, which resulted in a total 44
programs providing data for the study. From these data, we could verify
total watershed data coverage for 48 of the 372 study watersheds, drawn
from 17 stormwater programs (see Table S2), with most jurisdictions span-
ning multiple watersheds. Restricting the analysis to those watersheds with
full-area SCM data coverage facilitatedmeaningful comparison of the levels
of implementation across these 48 watersheds. The level of detail and com-
pleteness associated with these data ranged widely, with the critical data
fields required for our analysis being SCM type (e.g. dry basin,
bioretention), location, implementation date, and drainage area. Datasets
were rejected if the documented SCMs did not specify types, specific
p-values are estimated for each flow response model with coefficients in units of the

Significant predictors (p < 0.05) UrbGrn coefficient UrbGrn p-value

PPT, UrbGrn −49,055,634 0.024
PPT, UrbGrn 0.60 0.003
PPT, PET, Temp, UrbExt, UrbGrn −250 <0.001
PPT, PET, Temp, UrbExt, UrbGrn −10.9 <0.001
PPT, PET, UrbGrn −12.5 0.001
PPT, PET, UrbExt, UrbGrn −5.59 0.002
PPT, PET, Temp, UrbExt −0.15 0.33
PPT, PET, UrbExt, UrbGrn −0.12 <0.001
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locations (coordinates), or have at least two-thirds of the implementation
dates recorded. To facilitate the regression analysis, missing dates within
the non-rejected datasets were imputed by assigning a random implemen-
tation date within the study period. This approach assumed linear imple-
mentation of SCMs over the study period which reflected the aggregate
implementation trajectory of all SCMs with dates reported. SCM types
were harmonized based on the data records and ancillary documentation
to clarify SCM typology. All SCMs were categorized in terms of whether
or not they were expected to influence runoff volumes and whether or
not they were vegetated, with GSI as a subset of all runoff-reducing SCMs
with a vegetated component. Categorization of SCMs was based on their
specified types (e.g. detention basins, treatment vaults, media filters, per-
meable pavement) and other documentation when available, with most
of the SCMs (74%) coded as GSI (e.g. bioretentions, bioswales, wet basins,
dry basins). Only a few of the SCM datasets provided by cities included
urban tree planting inventories, and so they were excluded from our GSI
dataset for consistency across watersheds. Since most of the data did not
have drainage areas recorded for SCM features, implementation levels
were quantified as the number of features per area of urban extent within
each watershed. While the SCM data used in this study are unpublished
and not available online in most cases, they may be available directly
from the municipal stormwater programs, which are listed in supplemental
materials (Table S2, supplementary materials).

2.5. Data analysis

2.5.1. Testing for urban greenness trends
We tested for urban greenness trends over the study period

(1985–2019) using the non-parametric Partial Mann-Kendall (PMK) test
(Libiseller and Grimvall, 2002), implemented in R via the ‘trend’ package
(Pohlert et al., 2016). This approach allows direct incorporation of covari-
ates to the trend test to improve trend detection power (Bromssen and
Grimvall, 2002). Trend magnitude was quantified using the Sen slope esti-
mator (Sen, 1968). Removal of the climatic signal of greenness variation is
an essential first step towards measuring greenness change is associated
with anthropogenic factors. More than 50% of the study watersheds had
significant trends in either precipitation or temperature or both. Explor-
atory data analysis showed that watersheds located in the West and South-
west areas of the U.S. had the lowest average urban greenness, and also had
the strongest positive correlations with precipitation, which aligns with the
relationships reported in the literature (Burrell et al., 2017). Temperature
had an overall negative correlation with urban greenness, also reflecting
the strong influence of the warm, arid and semi-arid regions. To account
for these factors, we tested trends on the residuals from a linear model
that used urban greenness as the response and precipitation and tempera-
ture as explanatory variables. The PMK trend tests used yearly urban ex-
tents as covariates, so that the greenness trend tests accounted for the
growth of urban footprints over time, similar to the approach employed
by Corbane et al. (2020), so that the greenness trends reflected greenness
changes per unit area of urbanized watershed.

2.5.2. Panel regression modeling
To quantify the influence of urban greenness on downstreamhydrology,

weused a panel regression approach, implemented in R, using the plm pack-
age (Croissant and Millo, 2008). Panel regression has been widely used in
econometrics, and while the estimated models can be more informative
and improve capacity for detecting the effects of anthropogenic changes,
this method has rarely been applied to hydrologic studies. Previous work
has shown that panel regression may be a more appropriate method com-
pared to cross-sectional or time series analyses for describing relationships
between landscape changes and hydrologic responses, and that response
detection is strongly dependent on the data dimensions andmodel structure
(Steinschneider et al., 2013). By pooling multidimensional data across wa-
tersheds and through time, panel regression can identify response charac-
teristics unique to individual watersheds and those common across
watersheds. It draws on the strengths of the two most common approaches
5

for hydrologic studies, longitudinal and cross-sectional analysis, combining
them both into a single regression framework. Panel regression can provide
more efficient model parameter estimates with the increased degrees of
freedom that comes from concurrent consideration of all data through
time and across watersheds; simultaneous accounting of confounding vari-
ables that vary over time and strongly influence hydrologic responses, such
as climate variables; and ameans to account for unobservable (or poorly ob-
served) heterogeneity across watersheds (Steinschneider et al., 2013). In
this study, the panel regression approach is used to describe relationships
between urban greenness, hydrology, and GSI via the modeling experi-
ments described in the following sections.

2.5.3. Effect of urban greenness on hydrology
To build the panel regressionmodel to assess the impact of urban green-

ness on downstream hydrology, we used the entire dataset of 372 water-
sheds with the eight hydrologic metrics (described in Section 2.2) and
each predictor variable averaged for each urban boundary, for each year
of record over the study period. The hydrologic metrics were used as the re-
sponseQi,t, which were assumed to be random variables, and observed over
the study period T at each annual time step (t) for each watershed (i). The
set of predictors (K) are urban greenness, rainfall totals, temperature,
PET, drainage area, and urban extents, and are assumed to be fixed in ran-
dom sampling, represented asXi,t={x1i,t, x2i,t…, xki,t}. Thus the general for-
mulation of the panel model can be expressed as in Eq. (1).

Qi,t ¼ β0 þ μi þ∑K
k¼1βk � xki,t þ ɛi,t (1)

where βk is an unknown response coefficient that quantifies the influence of
the xki,t predictor on the flow response variable Qi,t in the ith watershed at
time t, β0 is the mean intercept for all watersheds, μi is the watershed spe-
cific time-averaged differences in the flow variable between watersheds,
and ɛi,t is the random error term with constant variance and an expected
value of 0. The predictor variables are used to account for variability in hy-
drologic responses within a watershed over time, as well as the variability
between time-averaged hydrologic responses. Since we have selected our
study watersheds on the basis of urbanization, there may be unobservable
factors that cause heterogeneity across watersheds to be correlated with
other variables in the design matrix. In this situation, while the fitted pa-
rameter estimates of a random effect model may be inconsistent due to cor-
relation with components of the design matrix, a fixed effects model is
expected to produce consistent estimators (Steinschneider et al., 2013). Ap-
propriateness of the fixed effects model specification was verified via a
Hausman test (Hausman, 1978) calculated within the plm R package. We
tested for spatial correlation in the model residuals using Moran's I test
for residual spatial autocorrelation included in the spdep package, also writ-
ten in R (Bivand and Wong, 2018).

2.5.4. Effects of GSI on urban greenness and hydrology
In addition tomeasuring the effect of urban greenness on hydrology, we

were also concerned with causes of urban greening and whether GSI (and
SCMs in general) have a direct measurable effect on watershed streamflow.
This portion of the study was constrained to the subset of 48 watersheds
with a complete SCM dataset to allow meaningful comparisons across wa-
tersheds. The first analysis consisted of 2 sets of estimated panel models
to identify the effect of SCM or GSI implementation on the eight hydrologic
response variables (16 models total). SCMs and GSI were each specified as
separate independent variables in their own sets of models, since GSI is a
subset of all runoff-reducing SCMswith a vegetated component. The second
analysis required estimation of only a single panel model to identify the in-
fluence of GSI implementation on urban greenness, since urban greenness
was the only response variable considered. For both sets of analyses,
other predictor variables included precipitation, PET, drainage area, and
urban extent. Like the previously described panel models, we specified
fixed effects models with the general form described in Eq. (1).
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3. Results

3.1. Urban greenness trends

Residuals from the linear model with precipitation and temperature
used as independent variables represent the climate-adjusted urban
greenness values, which are shown across the study period in Fig. 2A.
Most watersheds showed significant urban greenness trends using the
climate-adjusted urban greenness (271of 372 watersheds), the majority
of which were negative (167). The negative NDVI trends were likely re-
lated to the expansion of the urban footprints within the study water-
sheds over time. Given that there were also 104 positive trends, an
aggregate trend across watersheds is not discernable in Fig. 2A.
Fig. 2B shows the aggregate trend in the growth of urban extents over
time. Because the trend test uses the climate-adjusted urban greenness
values within the modern urban boundary, these negative trends at
least partially reflect the progressive filling up of that boundary by
urban cover that can reduce the average greenness of pixels. Thus, by ac-
counting for the annual change in urban extents over time, this green-
ness trends analysis reflects greenness changes per unit area of
urbanized watershed, irrespective of how much cities have expanded
across the study period.

Stage-wise regression procedures can be less powerful and misleading
when covariates are linearly dependent on time, since part of the human
Fig. 2. Box plots of urban greenness (A) and urban extent (B) over the study period (1
interquartile range, whiskers show 1.5× the interquartile range, and dots are outlying
Vegetation Index (NDVI) value for each year, averaged for each urban boundary.
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induced trend may be attributed to changes in the covariates (Smith and
Rose, 1991). Libiseller and Grimvall (2002) report that the PMK test
(which includes a single covariate) is most useful when there are either
time-delayed effects or when an influencing variable exhibits a long-term
trend. Since the urban extent showed the strongest aggregate trend over
time (compared to precipitation and temperature) and a consistent positive
trend direction across watersheds, this variable was incorporated directly
into the PMK trend test as a covariate that is partialled out (directly ac-
counted for) in the test for trend.

After accounting for the influence of precipitation, temperature, and
urban extent, we identified significant urban greenness trends in 32 out
of 372 urbanized watersheds (9%). Significant results (p < 0.05) are
mapped in Fig. 3, with color indicating direction and magnitude via the
Sen slope estimator. Ten watersheds showed increasing urban greenness
over the study period (1985–2019), while 22 showed decreasing urban
greenness. Trend magnitudes ranged from −0.0021 NDVI/year to
0.0019 NDVI/year, which translates to a change of approximately ±0.07
NDVI over the 35-year study period, which is similar in magnitude to an-
nual seasonal shifts in the NDVI within the urban boundaries. Most of the
significant trends are in the eastern part of the U.S., which reflects the
greater number of study watersheds in that region (see Fig. 1). We detected
both increasing and decreasing trends across climate regions with no con-
sistent correspondence between trend magnitude or direction and climate
region, watershed size, or urban extent.
985–2019) for all study watersheds (n = 372). Boxes show median values and the
points. Urban greenness is defined by the 90th percentile Normalized Difference
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Visual inspection of urban boundaries with significant trends indicated
that the land cover changes were largely located in outlying areas of cities,
indicating that the significant trends may be associated with new develop-
ment, rather than redevelopment and replacement of existing impervious
coverage within the central core of cities. Fig. 4A illustrates an example of
a watershed outside of Minneapolis, MN with increasing greenness,
which appears to be largely due to the maturation of tree canopies during
the study period. Greening in the ten watersheds with increasing trends
was typically associated with tree canopy maturation in the outlying
urban areas. Inspection of several watersheds indicated that changes to
the urban extents were accurately reflected in the urban extent variable,
meaning that the expansion was accounted for as a covariate in the PMK
trend test. This means that a positive trend indicates that these areas are
greener per new area of urbanized watershed, which in some watersheds
is likely driven by less dense residential developments at the perimeters
of cities. Several of these neighborhood-scale changes contribute to the
more clustered appearance of the positive trending urban greenness change
map (Fig. 4A) compared to watersheds with an overall negative greenness
trend (Fig. 4B). In the typical watershed example with a negative urban
greenness trend, pixels showing change represent development of small
open spaces that persisted within the urban boundary for some span of
the study period, such as the fallow field shown in Fig. 4B that was con-
verted to a parking lot after 1994.

3.2. Effects of urban greenness on hydrology

Panel modeling results that included 372 watersheds across the study
period (1985–2019) are provided in Table 2. Each of thesemodels included
the drainage area, precipitation, temperature, potential evapotranspiration,
urban extent, and urban greenness as explanatory variables. All models
were significant at the 99.9% confidence level (p < 0.001), except for the
peak duration model, and explained approximately 1–19% of variance in
the flow response variables per the adjusted R-squared value (Table 2).
Urban greenness had a significant effect (p < 0.05) in seven of the hydro-
logic response models, with total flow, flow variance, high flows, high
flow frequency, peak flows, and flashiness all being reduced with increas-
ing greenness; and baseflow showing an increase with greater urban green-
ness. While there are likely hydrologically relevant variables unaccounted
for in these models contributing to the high unexplained variance (e.g. wa-
tershed slope, aspect, permeability, flow regulation), R-squared values are
generally low in cross sectional data compared to time series due to greater
Fig. 3. Rates of urban greenness change for watersheds showing significant trends (p < 0
slope estimator (Sen, 1968). Urban greenness is defined by the 90th percentile Normaliz
boundary.
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heterogeneity of factors over cross-sections (watersheds). Even though the
R-squared values reported in Table 2 are low, all of the regression slope co-
efficients are significantly different from 0 (p < 0.05), indicating that these
models have statistically significant explanatory power for the flow re-
sponses. Since the intent of the model is to be explanatory rather than pre-
dictive, the significance and estimated coefficients for the urban greenness
predictors contain the most relevant information for our purposes. With
seven of the eight hydrologic response models showing significant urban
greenness coefficients, the direction of the coefficient signs indicate that
urban greenness attenuates some of the hydrologic impacts typically associ-
ated with urbanization.

Since the panel model includes no higher order terms or interaction
terms, the urban greenness coefficients can be interpreted directly in
terms of unit changes in the response variables. Mean changes in the flow
metrics are shown in Fig. 5 for a range of urban greenness change incre-
ments. Six of the eight flow response variables showed negative changes
with increasing urban greenness. On average, we would expect a 10%
greenness increase to be associated with reductions to total flow
(−3.8%), flow variance (−7.7%), peak flow volumes (−4.7%), high
flows (−7.6%), flashiness (−2.2%), high flow frequency (−1.5%); and a
corresponding increase in baseflow (4.3%).

The strongest effects of urban greenness within the panel models were
the high flows and the flow variability. Reductions in these and other
flowmetrics match our conceptual interpretation of the role that vegetation
increases have onwatershed hydrologic processes: reducing runoff volumes
and slowing runoff timing through increased interception and storage, and
greater evapotranspirative losses. Only baseflow levels showed an increase
with increasing urban greenness (Table 2), reflecting a greater proportion
of runoff delivered more slowly rather than via hydrograph peaks. The
baseflow increase represents the mirror effect of the flashiness reduction
in response to increased greenness – a flattening of the streamflow
hydrographs, with less annual runoff volume contained in the hydrograph
peaks. The increase in baseflow with increasing urban greenness observed
in these results is consistent with findings by Tan et al. (2020), who identi-
fied the same dynamic for more than 1000 watersheds across the globe lo-
cated in both arid/semi-arid and humid/sub-humid regions.

3.3. Effects of SCM on hydrology and GSI on greenness

The compiled SCMdatasets for 48 of the study watersheds covered nine
states and six of the ten EPA regions in the U.S. Missouri had the highest
.05) over the study period (1985–2019), with rates of change estimated via the Sen
ed Difference Vegetation Index (NDVI) value for each year, averaged for each urban



Fig. 4. Normalized Difference Vegetation Index (NDVI) change maps showing examples of an increasing greenness trend site near Minneapolis, MN (A) and a decreasing
greenness trend site in Los Angeles, CA (B). Inset photographs show the same site at two different times in real-color (top of each pair) for the present and black-and-
white (bottom of each pair) for the 1990s.

Fig. 5.Mean change in flow metrics per unit changes in urban greenness across all urban watersheds calculated using coefficients from the flow response panel models.
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concentration of watersheds with SCM data, due to robust SCM tracking by
the Metropolitan St. Louis Sewer District and a high density of gauged
urban watersheds in that region. Present-day implementation densities of
SCMs with runoff reduction benefits ranged from 0.66 features per km2 to
74.53 features per km2with amean of 6.77 features per km2within individ-
ual watersheds. Across hydroclimatic regions, average GSI counts were 0.6
features per km2 in arid areas, 15.1 features per km2 in humid areas, 6.2
features per km2 in semi-arid areas, and 4.1 features per km2 in sub-
humid areas Densities of the GSI SCMs were on average 17% lower than
non-vegetated SCMs. GSI implementation trajectories over time showed
nearly constant rates of implementation for many watersheds, though sev-
eral watersheds had an acceleration of implementation levels beginning
around the year 2000.

Of the 16 panel models estimated to investigate the influence of GSI/
SCMs on the streamflow variables, none showed either GSI or SCMs to be
significant predictors of hydrologic responses, so that the F-statistics for
GSI and SCM variables both had p-values > 0.05. Since these models in-
cluded the same covariates as the previous analysis (with the exception of
urban extent), all of the models explained a significant, albeit low, propor-
tion of variance in the hydrologic responses (results not shown). Thus, con-
trary to our expectations based on previous work (e.g., Pennino et al.,
2016), our results do not provide direct evidence of the influence of
stormwatermanagementmeasures (excluding tree canopy cover) on down-
stream hydrology.

The final analysis explored the influence of GSI implementation on
urban greenness using a panel model using urban greenness as the response
variable, with the results presented in Table 3. The model terms PPT, PET,
and GSI showed significance at the 99.9% confidence level, while Temp
was below the 95% confidence level. GSI implementation showed a small
but highly significant influence on urban greenness (p < 0.001). Signs of
the model coefficients are oriented as we would expect from the previous
trends analysis – positive for PPT, negative for PET; and in alignment
with the greening effects of GSI. Like most of the models estimated for hy-
drologic responses, the urban greenness response model showed poor pre-
dictive performance, with an adjusted R-squared value of 0.16. Urban
extent was not included as a separate factor in this model because it is the
denominator used for calculating the GSI density predictor variable. We
can interpret the significant GSI predictor with a positive coefficient to
mean that within the domain of these data, watersheds/time periods with
higher density of GSI implementation relative to their urban coverage
tend to be greener than those with lower densities of GSI implementation.
The model coefficients (Table 3) indicated a weak GSI effect on urban
greenness, so that on average, a 20% increase in GSI feature density
corresponded with an urban greenness increase of only 0.9%, which none-
theless represents a stronger effect than the other two terms in the model
(PPT and PET).

4. Discussion

4.1. Urban greenness trends

Our rate of detection of significant greenness trends (9%) is lower than
some recent studies. For example, Spahr et al. (2020) found significant
greenness trends in six out of ten U.S. cities, with four negative and two pos-
itive trends (1990–2015). However, before our correction for the changing
Table 3
Panel model outputs to explain watershed greenness response. Test statistics and p-
values denote significance of each predictor and coefficient values indicate effect di-
rection and size.

Predictor
variable

Coefficient Std. error t-value p-value R-squared Adj.
R-squared

PPT 2.39E−05 2.48E−06 9.63 <0.001 0.20 0.16
Temp −2.27E−04 1.07E−03 −0.21 0.83
PET −5.72E−06 1.24E−06 −4.60 <0.001
GSI 6.34E−04 1.64E−04 3.87 <0.001
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urban extents in the PMK analysis, our findings are remarkably similar to
those of Spahr et al. (2020), with negative trends detected in 45% of water-
sheds and positive trends detected in 28%ofwatersheds. The difference be-
tween the two results seems to be in our accounting for change in urban
extents over time, which Spahr et al. (2020) did not account for in their
analysis, which reduces the number of both negative and positive trends.
The two approaches address two subtly different questions – with the cur-
rent study attempting to isolate the effect of how cities are expanding or
redeveloping (e.g., greener or greyer) in proportion to the growth of
urban cover within watersheds. Corbane et al. (2020) performed a similar
accounting of urban footprint expansion over time using the GHS-BUILT
dataset (Pesaresi et al., 2016) in a global study which found that most cities
were getting greener from 1990 to 2016. This may have to do with a global
greening trend attributed to CO2 fertilization (Zhu et al., 2016), or it may be
partly related to inter-sensor Landsat calibration. We found that the equa-
tions developed by Roy et al. (2016) to correct Landsat bands between
TM/ETM+ and the OLI sensor (also used by Corbane et al., 2020) did
not adequately correct for the reflectance differences in red and near infra-
red bands in urbanized watersheds. Even with the Roy et al. (2016) correc-
tion applied, we observed a clearly discernible jump in the NDVI with the
onset of the OLI sensor, which prompted us to use an additional empirical
correction derived from the aggregate NDVI datasets, similar to the ap-
proach used by Spahr et al. (2020). In terms of the spatial patterns of green-
ness changes, our findings correspond with those of Czekajlo et al. (2020),
who identified losses in greenness for 16% of study areas concentrated in
the high-density urban centers, with greenness increases (14%) prevalent
in outlying, lower density areas.

4.2. Relationships between urban greenness, hydrology, and GSI

Hydrologic effects of anthropogenic change can be extremely difficult
to isolate given natural variability commonly observed in hydrologic data
(Price, 2011). Our intent with the use of panel models in this analysis was
to maximize capacity to differentiate between climate and anthropogenic
signals with simultaneous consideration of variations over time and across
watersheds, which has been effectively demonstrated by others (Blum
et al., 2020; Steinschneider et al., 2013). The consistency of urban green-
ness as a significant predictor in the panel models, across an array of hydro-
logic responses, and alignment of the coefficient signs with our conceptual
understanding of the hydrologic role of vegetation abundance in water-
sheds provides strong evidence of the influence of urban greenness on
downstream hydrology. Similar to the panel model coefficient interpreta-
tion approach used by Blum et al. (2020), who found a 3.3% increase in
floods for each percentage point increase in impervious cover, our panel
model outputs illustrated the range of effects for various hydrologic re-
sponses per incremental change to urban greenness (NDVI). This result pro-
vides a good starting point for understanding how to value increased urban
greenness in terms of restoring natural hydrologic regimes in urbanizedwa-
tersheds that have undergone substantial alteration (O'Driscoll et al., 2010).

Panel models provide an advantage for dealing with both multicollin-
earity of predictor variables in hydrologic systems and difficult to observe
factors that contribute to watershed heterogeneity such as aspect, shape,
slope, subsurface geology, macroflow paths, soil hydrologic properties, im-
pervious connectivity, stormwater infrastructure systems, and water re-
source management (Steinschneider et al., 2013). The levels of
unexplained variance in the models relating urban greenness to hydrology
indicate that in addition to urban greenness and the other explanatory var-
iables quantified, one or more of these factors are important drivers of hy-
drologic responses at the scales explored in this analysis. Another factor
contributing to that unexplained variance for some of the hydrologic re-
sponses may be related the use of daily streamflow data, which were the
only data available for all study watersheds. Such impacts would have
been exacerbated in smaller watersheds, where hydrographs may last
fewer than 24 h. Omitted predictors may have also played a role in the sig-
nificant effect of GSI implementation on urban greenness. Work by Spahr
et al. (2020) indicates that areas adjacent to GSI installation, along with
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the lag between installation dates and vegetation maturity, play key
roles in determining the greenness contributions of GSI. Factors that co-
vary with GSI implementation over time or space, such as coincident
maturing tree canopies, which seemed to strongly influence the green-
ness trends, may have also influenced the GSI-urban greenness relation-
ship. However, stepwise model building showed that an interaction
term between the urban extent and GSI implementation variables was
not significant, indicating that GSI had a consistent influence across dif-
ferent levels of urban extent, and that significance of the GSI term is not
solely a function of growing urban extents.

While the analysis showed clear evidence of both the association between
urban watershed greenness and between GSI implementation and urban
greenness, the direct connection between GSI implementation and hydro-
logic changes was not evident given the data and methods employed in this
study. This may be either because the hydrologic influence of these features
is very small relative to other unaccounted for sources of variation, or because
the measurement of GSI implementation levels contains levels of uncertainty
that confound the analysis. While most of the datasets did not have drainage
areas associatedwithGSI features, those that did showed amedianwatershed
coverage of only 8.7%. Given that hydrologic responses to watershed urban-
ization tend to be thresholded, rather than linear (e.g., Beighley and Moglen,
2002), the lack of significant effect for GSI influence on hydrologic responses
may have been a manifestation of this effect–wherein a threshold of GSI im-
plementation must be reached before any heterogeneity of implementation
across watersheds or over time has any meaningful impact on watershed-
scale hydrologic responses. In addition, the distribution of GSI implementa-
tion within watersheds, which we did not quantify, can affect hydrologic re-
sponse to these features (Perez-Pedini et al., 2005). Our results on this topic
do indeed appear to contrary to both modeling evidence (e.g., Fahy and
Chang, 2019), and empirical measurements (e.g., Pennino et al., 2016) that
demonstrate the efficacy of GSI to change downstreamhydrologic conditions.
The apparent conflict may be related to a poor capacity to consistently mea-
sure GSI implementation across many cities.

The quality of the GSI data likely had a greater impact on the outcome
compared to the reduced number of watersheds (48) available for con-
structing the GSI models. A post-hoc power analysis performed using the
G*Power tool (Faul et al., 2007) indicated that given the 1680 observations
available to thesemodels (each year-watershed combination representing a
unique case), an alpha level of 0.05, and a small effect size (Cohen's f2 =
0.01) (Cohen, 1988), the power for detecting a significant effect of the
GSI coefficient is greater than 90%. In comparison, Pennino et al. (2016)
found significant hydrologic effects, examining only four cities, but these
cities were in relatively small watersheds (0.5–34 km2) compared to the
current study, and they were selected partly based on their abundance
and quality of GSI implementation data.

4.3. GSI data synthesis challenges and opportunities

The lack of a significant effect of GSI implementation levels on hydro-
logic condition improvements for the models estimated in this study was
at least partially attributable to the variable quality and completeness of
the available GSI data. To our knowledge, the current study represents
the most comprehensive synthesis of SCM/GSI data yet reported in the sci-
entific literature and highlights the limitations on the utility of these data
for analysis at regional or national scales.With only 13%of the studywater-
sheds able tomeet theminimumdata standardswe required for inclusion in
the analysis, primary challenges includedmissing or incomplete GSI inven-
tories, inconsistencies in GSI typologies and data standards, and lack of cen-
tralized and publicly available data repositories. Such issues are consistent
with those identified in recent prior efforts (McPhillips and Matsler, 2018).
Many city stormwater programs contacted for this synthesis effort did not
have systems in place for tracking implementation, did not store associated
spatial data, or did not have access to data or measures implemented by
other city departments or on private property. The lack of consistent data
standards resulted in a wide range of data formats and completeness,
which required considerable effort to harmonize into a coherent dataset.
10
Inconsistent and contradictory naming conventions across cities added un-
certainty to the analysis, as did the common absence of key data fields such
as treated area, volumetric capacity, footprint or construction date. It is
clear from this effort that any analysis with the potential to provide compel-
ling evidence of watershed-scale GSI effectiveness would benefit from con-
certed effort to adopt a nationally recognized SCM data standard. Previous
efforts along these lines (e.g., Maestre and Pitt, 2005) will need to be
redoubled in a way that is closely alignedwith the objectives, datamanage-
ment capacity, and tracking needs of municipal stormwater programs.

4.4. Tracking urban greenness changes and GSI co-benefits

Accounting for vegetation-related benefits will require identification of
the most appropriate measurement scales (both temporal and spatial) for
tracking urban greenness changes and assigning credit for various practices.
Aggregate, city-wide greenness changes may prove to be less informative
compared to more localized changes that can be quantified by hot spot anal-
ysis (e.g., Spahr et al., 2020). Likewise, the 30 m pixel size of the Landsat
NDVI is likely to be too coarse to reliably capture changes associated with
many small-scale greening changes associated with GSI implementation as
this resolution has even been shown to underestimate urban tree canopy cov-
erage (Nowak and Greenfield, 2010). Other datasets, such as the U.S. Depart-
ment of Agriculture's National Agricultural Imagery Program (NAIP; 1 m
resolution), which provides at a resolution of 60 cm to 1 m (depending on
image capture year), or European SpaceAgency's Sentinelmissions (10m res-
olution) may prove more useful for detailed tracking going forward. Given
that increases to urban greenness are likely the result of a mixture of sizes
and types of vegetation (Rugel et al., 2017) and context dependent (Spahr
et al., 2020), precise assignment of the sources of greenness changes may re-
quire higher resolution data such as the NAIP imagery. However, the limited
coverage, temporal extents, frequency, and/or band coverage of the NAIP
and Sentinel datasets will be less useful for the type of historical analysis per-
formed in this study. The NAIP imagery, for example, is acquired on three- or
five-year cycles for the years 2003–2015, with NIR band only acquired 2007
and only for some US states. Another promising option recently explored by
Czekajlo et al. (2020) for decerning urban greenness changes at higher levels
of resolution over long-time frames is to apply spectral mixture modeling to
disaggregate greenness fractions of the 30 m Landsat pixels.

Tracking long-term urban greenness changes can provide a way to mea-
sure progress towards improving the overall health and resiliency of urban
landscapes (Ahern et al., 2014), the positive impacts of those changes on com-
munities, and identify persistent patterns of racial/social inequitywithin cities
(McDonald et al., 2021; Venter et al., 2020; Casey et al., 2017). While this
studyhas focusedon the role of urbangreening forwatershed-scale hydrologic
improvements, a meaningful accounting of the value of increasing urban
greenness should include a broad spectrum of environmental improvements
(McDonald, 2015) and social welfare benefits (Wolf et al., 2020). Bell et al.
(2019) describe the broad array of co-benefits associated with SCMs (hydro-
logic, environmental, and social well-being) and their relationships to both
stormwater management processes and vegetation. In this context, the NDVI
(or other satellite-derived vegetation indices) can be used to set urban green-
ness targets and verify progress to incentivize vegetated solutions via assign-
ment of credit based on their contributions to these co-benefits. Reliable
quantitative relationships between urban greenness changes and environmen-
tal co-benefits can provide a convenient means to track the value of GSI and
integrate that accounting into stormwater planning. For example, Spahr
et al. (2021) propose a framework for evaluating the value of SCM features in-
clusive of benefits such as improved air quality, CO2 sequestration, urban
cooling, neighborhood aesthetics, and recreational opportunities. These au-
thors outline options for integration of GSI co-benefits valuation with model-
ing tools to estimate runoff reductions, water quality treatment, and flood
riskmitigation. Such holistic decision support tools can provide amoremean-
ingful accounting of the value of urban greening to communities and facilitate
the assessment of cost trade-offs with traditional grey infrastructure solutions.
Coupling co-benefit accounting systems with remote sensing-based greenness
measurements can provide ameans to verify progress towards urban greening
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goals and perhaps provide proxy measurements for GSI co-benefit quantifica-
tion. As suggested by Spahr et al. (2021), this can allow cities to distinguish
contributions to various co-benefits by different types and sizes of urban
greening. Implementation of these concepts as a spatial decision support tool
can help cities with project siting, assessing local logistical constraints and
trade-offs, and identifying where greening projects can do the greatest good
in historically underserved areas of cities.

5. Conclusions

After accounting for climate variables and the expansion of urban ex-
tents over time, 9% of our study watersheds showed significant trends
over the study period (1985–2019), with approximately 3% showing in-
creasing greenness trends. While this means that most cities have not un-
dergone aggregate greenness changes relative to their size that are
measurable from the Landsat data, it does not preclude localized changes
to greenness patterns. Further work is warranted to identify the optimal
spatial scales for tracking greenness changes in cities, as greenness changes
atfiner scales likely contributed to the reliable influence of urban greenness
on watershed hydrologic responses. We detected the influence of urban
greenness on downstream hydrology for seven out of eight flow metrics,
providing strong evidence that greener urban settings have the potential
to mitigate watershed-scale hydrologic impacts commonly associated
with urbanization. The panel regression model coefficients provided a
means for estimating expected hydrologic changes per unit of greenness
change, illustrating how greater vegetation abundance affects hydrologic
processes within an urbanized watershed - reducing the magnitude and
quickness of flow responses to rainfall. These results provide an example
of how urban greenness changes can be valued in terms of their measurable
benefits for mitigating urban runoff impacts.

Building quantitative relationships between GSI implementation and
ecosystem service co-benefits can improve the ability to account for and
communicate the overall value of GSI implantation. Success will depend
on identifying the most appropriate spatial scales for greenness tracking
and upon accurate accounting of GSI implementation over time. GSI was
a significant (although weak) factor for explaining urban greenness in the
panel models. We were not able to detect the influence of GSI on down-
stream hydrology, but the approach was severely limited by a lack of com-
plete and consistent GSI data across watersheds. Uncertainty associated
with quantifying GSI implementation levels is partly due to the lack of a na-
tionwide SCM/GSI data standard, which will likely continue to confound
hypothesis testing related to the watershed-scale efficacy of these measures
at regional or national scales. As the usage of GSI continues to grow, track-
ing the value of these investments ismore critical than ever to justify expen-
ditures, plan for the future, and overcome barriers to adoption. Futurework
will focus on how to fill key GSI data gaps, identifying the optimal remote
sensing data for urban greenness tracking, and developing a practical ap-
proach for cities to use greenness metrics for a detailed accounting of the
co-benefits associated with urban greening and GSI.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.152723.
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