Accelerated Outdoor Weathering Testing

Principles, Challenges and Case Studies

Andy Francis – Marketing Director

Bill Tobin – Senior Technical Marketing Specialist

Dave Duecker – Technical Marketing Specialist

Sean Fowler – Senior Technical Director

Q-Lab Corporation

Click here to view the morning presentation.

Click <u>here</u> to view the afternoon presentation.

Housekeeping

You'll receive a follow-up email from info@email.q-lab.com with links to a survey, registration for future webinars, and to download the slides

- Our ongoing webinar series can be found at: q-lab.com/webinarseries
- Our archived webinars are hosted at: q-lab.com/webinars
- Use the **Q&A feature in Zoom** to ask us questions today!

Thank you for attending our webinar!

We hope you found our webinar on Accelerated Outdoor Weathering Testing to be helpful and insightful. The link below will give you access to the slides and recorded webinar

You can help us continue to provide valuable and high quality content by completing our 3-question survey about your webinar experience. Every piece of feedback is carefully reviewed by a member of

We consistently hold seminars and webinars about weathering, corrosion, standards and more. The best way to keep up with news and events is by following us on Facebook, Twitter and LinkedIn. We hope to see you at future webinars!

Today's webinar was part of a weekly series on weathering and corrosion. You can register for the remaining webinars in the series or watch previous ones here

Click here to download the presentation. You'll find a link to the recording on the title slide. Subtitles can be accessed through YouTube for the video recording.

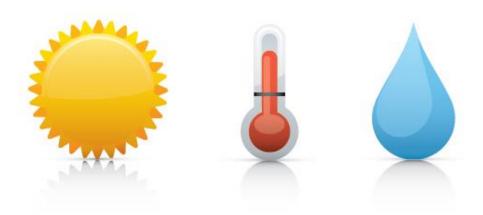
What is Accelerated Outdoor Weathering?

... outdoor weathering using the sun as the source of irradiance, and where the rate of deterioration is accelerated by increasing one or more of the influencing parameters above a level obtained in the natural environment.

From ASTM G113 "Standard Terminology Relating to Natural and Artificial Weathering Tests of Nonmetallic Materials

Why Accelerated Outdoor vs. Laboratory?

Real world conditions are variable


Real world conditions are **complex**

Excellent balance between **speed** and **realism**

Common forms of Acceleration in Outdoor Testing

- Increased Irradiance
 - Solar concentration and/or tracking the sun
- Modified Temperature
 - Trapping/Adding heat or Freezing periods
- Increased Moisture
 - Supplementary water spray

Interior Materials Testing

AIM Box
TRUE-AIM Box

Outdoor Tests for Interior Components

Automotive Interior Materials AIM Box

- Reproduces extreme heat from automotive interior
- Can test entire instrument panel
- Different plastics experience different thermal expansion
- Generates differential stresses between different interior plastics

AIM Box Configurations

- Tempered clear or laminated glass
- Static 45° S or Tracking 51° S
- Over-temperature shade protection

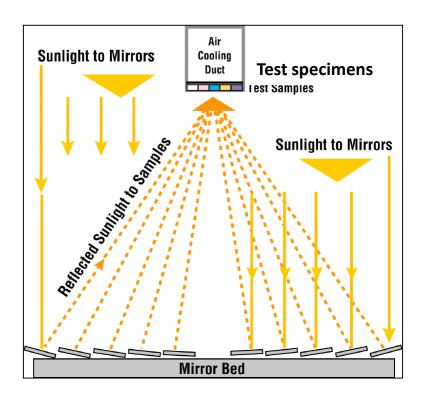
AIM Boxes

TRUE-AIM Box

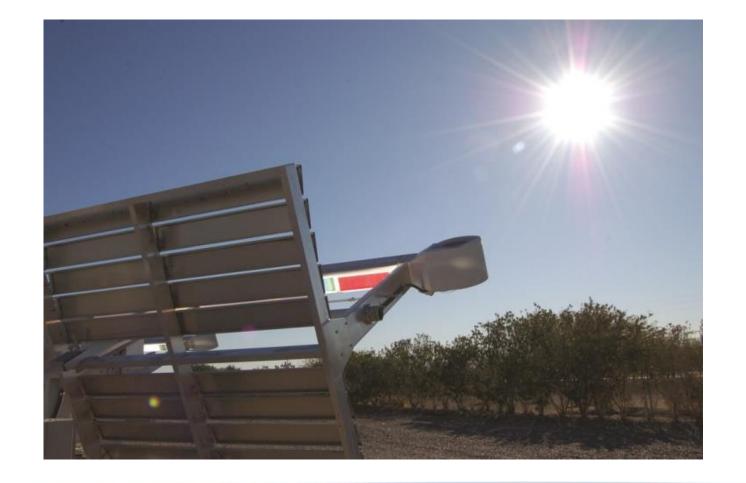
- TRUE (Tracking Reflecting Ultra Exposure) AIM box increases total solar radiation exposure
- Highly reflective mirrors and dualaxis tracking (azimuth and elevation) to focus more sunlight into the box interior.
- Approximately doubles total sunlight received by specimens.

Natural Sunlight Concentrators

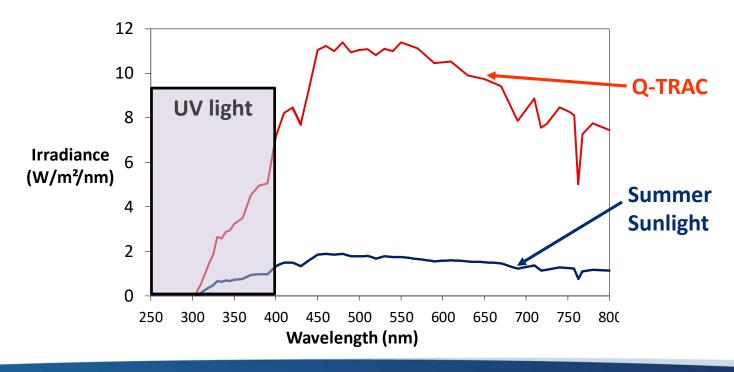
Fresnel Concentrator
Solar Concentrator
Q-TRAC



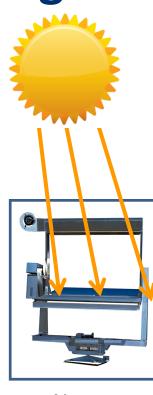
Sunlight Concentrating Mirrors



Mirrors Reflect Sunlight onto Specimens



Mirrors on average reflect 80% of solar UV radiation


Summer Sunlight vs. Q-TRAC ~5× UV Irradiance of Natural

Following the Sun...

Morning

Noon

Afternoon

Arizona Only

 Tracking is required for concentration to work

- Doesn't work when light is diffuse (cloud cover)
- Doesn't work in inclement weather!

Radiant Exposure

The accumulated light energy falling on a surface over a period of time, per unit area [usually MJ/m²]

Q-TRAC tests are measured in radiant exposure – higher during summer months than winter

Q-TRAC Tests Are Usually Timed by Accumulated Radiant Dosage

Exposure Angle	1 Year Florida Energy (MJ/m² TUV)
0° South	322
5° South	339
26° South	345
45° South	320
90° South	170

Q-TRAC delivers ~1400 MJ/m² annually - ~5× a typical year in Florida*

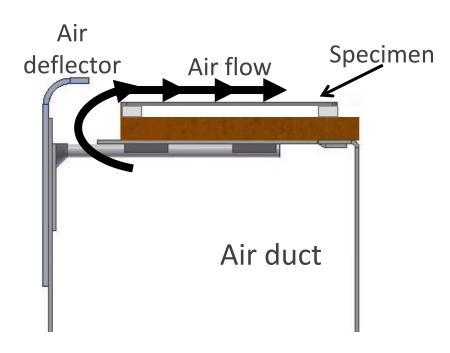
True or False?

5× the sunlight means

5× the degradation

Q-TRAC Acceleration

~5 times more UV


- ~5 years Florida sunlight in 1 year
- However: Light intensity is only one stressor

Q-TRAC Specimen Mounting

- Flat Specimens
 - Backed or unbacked

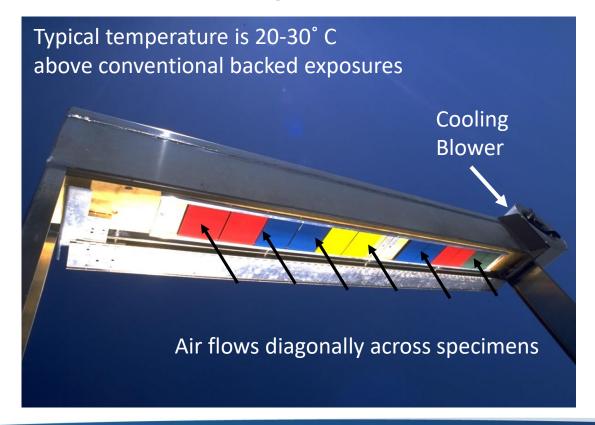
- Width < 14 cm (5.5 in)
 - Tests are charged by length along target board

- Thickness < 2.5 cm (1 in)
 - All specimens should be similar thickness

Q-TRAC Target Board

Outdoor accelerated testing

Temperature Effects



High temperatures from both desert conditions and concentrated irradiance

Temperature Effect of Mounting

	Open /	Plywood	Black Box	Natural Sunlight Concentrator	
	Mesh	Backed		Conventional	Temp controlled
Black Panel (°C)	50	70	80	100	70
White Panel (°C)	40	50	60	80	50

Q-TRAC Specimen Cooling

Outdoor accelerated testing

Daytime water delivery

- Daytime spray dries quickly, causes thermal shock
- Coatings do not absorb any water!

Outdoor accelerated testing Nighttime water delivery

Test Cycle	Daytime			Nighttime		
	Spray duration	Dry duration	Cycles	Spray duration	Dry duration	Cycles
1 "Spray 1"	8 min	52 min	1 / hr	8 min		3 per night: 21:00, 00:00, 03:00
3 "Spray 2"	none			3 min	12 min	4 per hour (40 total) 19:00-05:00

- Frequent nighttime spray cycles = high Time of Wetness
- Increased water uptake of coatings more realistic test

Applications

Natural sunlight concentrator particularly useful for durable, high-temperature materials

- Coil Coatings
- Powder Coatings
- Some Plastics
- Roofing

Natural Sunlight Concentrator Cycles

Cycle	Application	Day	Night
Desert	Plastics, Coatings, Inks, Textiles, Building Materials	Sunlight only	Ambient
Spray-1	Plastics, Coatings, Sealants, Textiles, Building Materials	Sunlight Spray 8 min/hr	8 min water 3 times a night
Spray-2	Plastics, Coatings, Sealants, Textiles, Building Materials	Sunlight only	3 min water every 15 min (ToW like Florida)
Interior (behind glass)	Auto Interior, Textiles, Inks, Indoor Products	Sunlight only	Ambient

Q-TRAC Test Examples

Q-TRAC Control Specimens

- 42 day Q-TRAC exposures
- Center panel is control
- High-performing coatings from ASTM D7869 study

Single-Stage Paint

Direct Exposure: 90 Days

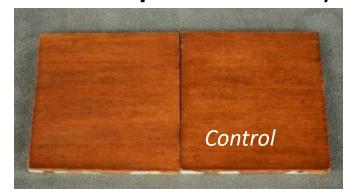
Q-TRAC Exposure

29 Days

42 Days

Single-Stage Paint

Direct Exposure: 90 Days


29 Days

42 Days

Wood Coating

Direct Exposure: 90 Days

115 MJ/m² TUVR

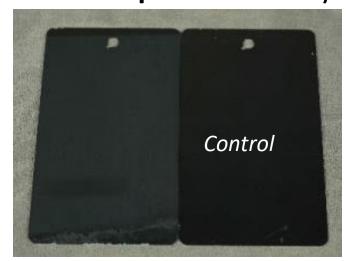
29 Days 106 MJ/m²

42 Days 153 MJ/m²

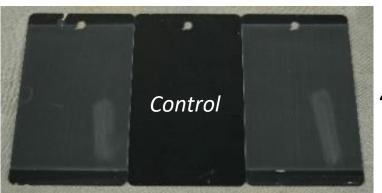
Wood Coating

Direct Exposure: 90 Days

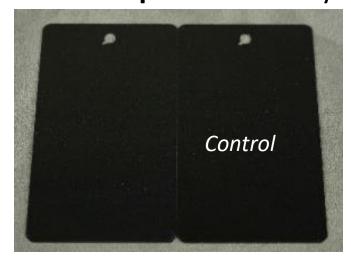
115 MJ/m² TUVR

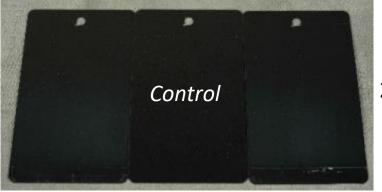

Freeze/thaw 42 Days 136 MJ/m²

42 Days 153 MJ/m²

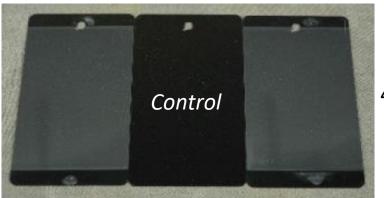

Single-Stage Paint Black "A"

Direct Exposure: 90 Days

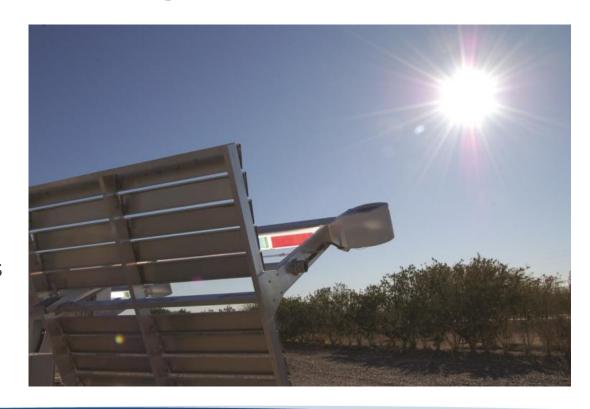

29 Days



42 Days


Single-Stage Paint Black "B"

Direct Exposure: 90 Days


29 Days

42 Days

Q-TRAC Natural Sunlight Concentrator

- Fast Results
- Full-spectrum natural sunlight
- High temperature (temp control available)
- Multiple water spray cycles available
- Nighttime Freezing option

Thank you for your attention!

Questions?

info@q-lab.com