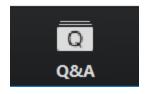
Water Delivery in Accelerated Weathering Testing

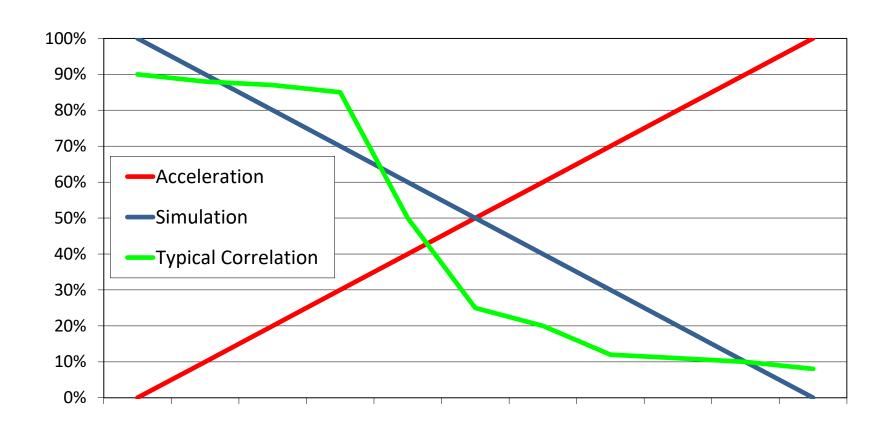
Q-Lab Corporation

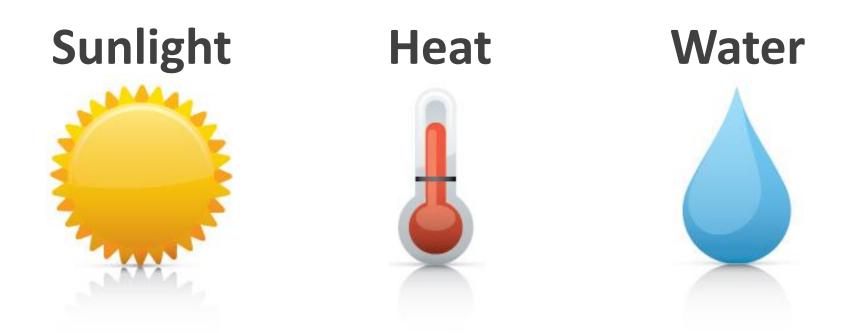

Dave Duecker, Technical Marketing Specialist
Bill Tobin, Technical Marketing Specialist
Dr. Andy Francis, Marketing Director
Sean Fowler, Technical Director

<u>the morning</u> <u>presentation.</u>

<u>the afternoon</u> presentation.

Before we begin...


- In the coming days, a follow-up email will be sent which includes a link to a survey and as well as where you can download the webinar slides.
- Our ongoing webinar series can be found at <u>q-lab.com/webinars</u>
- Use the Q&A feature at the bottom of the screen to ask question


 If you have any follow up questions after the presentation, send them to <u>info@q-lab.com</u>

Accelerated Testing

Simulation, Acceleration, and Correlation

Forces of Weathering

How are these accelerated in laboratory testing?

Sunlight in Laboratory Weathering Testing

Defined light source

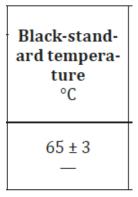
Plastics — Methods of exposure to laboratory light sources —

Part 2:

Xenon-arc lamps

Irradiance values, control points, and tolerances

Irradiance ^b			
Broadband (300 nm to 400 nm) W/m ²	Narrowband (340 nm) W/(m²·nm)		
60 ± 2 60 ± 2	0,51 ± 0,02 0,51 ± 0,02		


Spectral requirements

Spectral passband (λ = wavelength in nm)	Minimum ^c	CIE No. 85:1989, <u>Table 4</u> de %	Maximum ^c %
λ < 290			0,15
290 ≤ λ ≤ 320	2,6	5,4	7,9
320 < λ ≤ 360	28,2	38,2	39,8
360 < λ ≤ 400	54,2	56,4	67,5

Heat in Laboratory Weathering Testing

Black panel temp with tolerances

Ambient temp with tolerances

Chamber temperature °C	
38 ± 3 —	

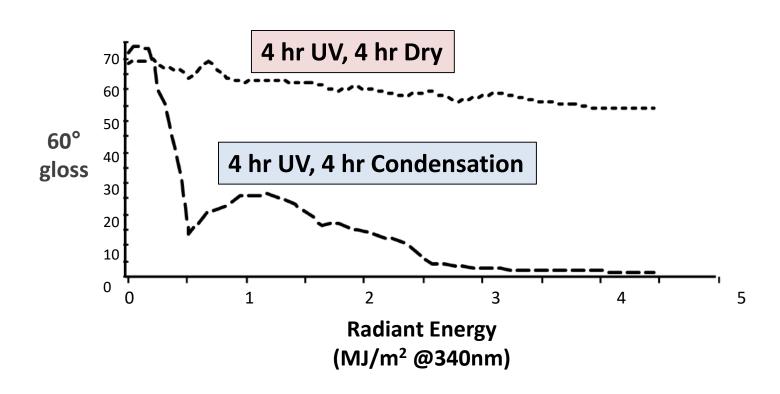
Thermal Cycling

Step Number	Step Minutes	Black Panel Temperature Set Point ^A	Chamber Air Temperature Set Point ^A
1	240	_	40°C
2	30	50°C	42°C
3	270	70°C	50°C
4	30	50°C	42°C
5	150	_	40°C
6	30	_	40°C
7	20	50°C	42°C
8	120	70°C	50°C
9	10	_	40°C

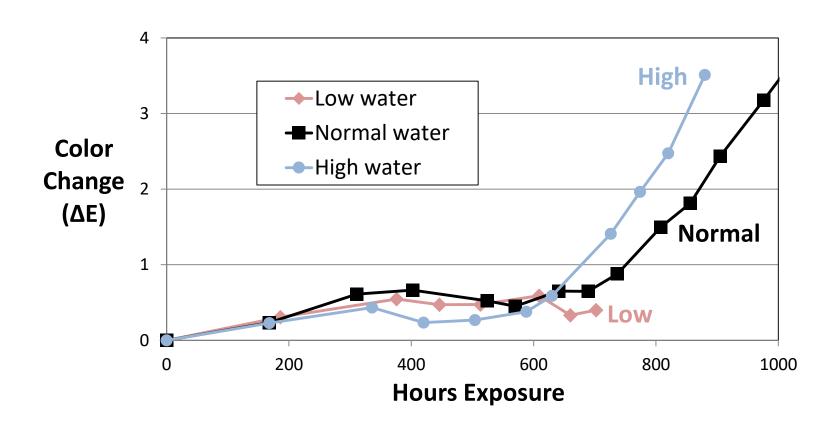
Water in Laboratory Weathering Testing

Why is this important?

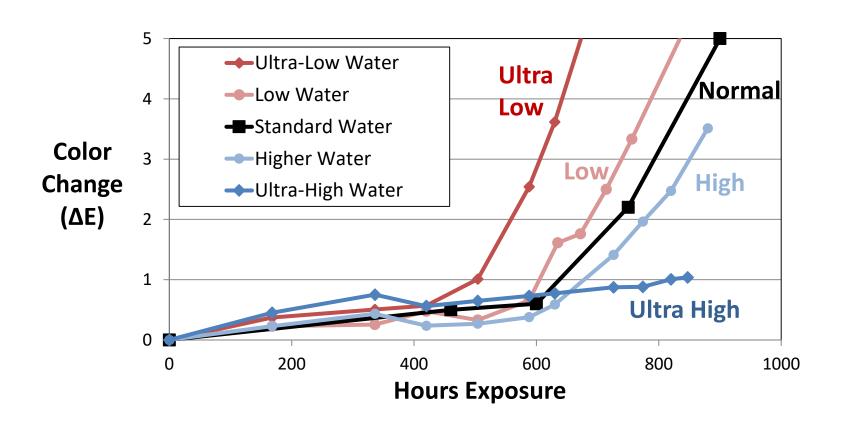
Water Delivery in Accelerated Lab Testing


Water contributes to material degradation in many ways

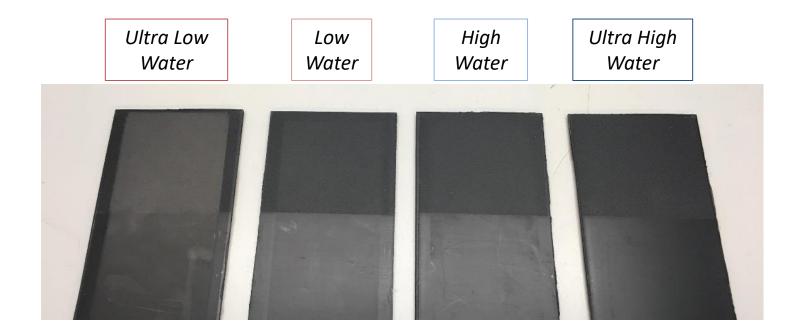
- Plasticization
- Swelling
- Blistering
- Adhesion
- Mass transport
- Mass loss


UV Fluorescent Weathering

Water Delivery Accelerating Gloss Loss


Xenon arc Weathering

Water Delivery Accelerating Color Change Polypropylene (Talc, Carbon Black, UV package 1)


Xenon arc Weathering

Water Delivery Inhibiting Color Change Polypropylene (Talc, Carbon Black, UV package 2)

Xenon arc Weathering

Water Delivery Inhibiting Color Change Polypropylene (Talc, Carbon Black, UV package 2)

Water in Laboratory Weathering Testing

- Water significantly influences test results for many materials
- Compared to Sunlight and Heat, in lab testing Water is:
 - Less quantified
 - Less accelerated
- Today we will look at standards that do emphasize water
 - ASTM G90 (solar concentrator)
 - EN 927-6 (UV fluorescent)
 - ASTM D7869 (xenon arc)

Water Delivery in Accelerated Outdoor Testing

ASTM G90

Standard Practice for Performing Accelerated Outdoor Weathering of Materials Using Concentrated Natural Sunlight

Outdoor accelerated testing Natural solar concentrator

 5× the UV light of natural exposure

 High temperatures from desert conditions and concentrated irradiance

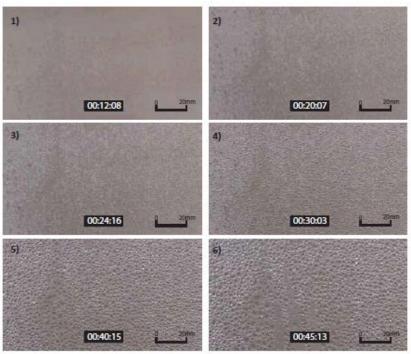
Outdoor accelerated testing Daytime water delivery

- Daytime spray dries quickly, causes thermal shock
- Polymer matrices do not absorb any water!

Outdoor accelerated testing Nighttime water delivery

Test Cycle	Daytime		Nighttime			
	Spray duration	Dry duration	Cycles	Spray duration	Dry duration	Cycles
1	8 min	52 min	1 / hr	8 min		3 per night: 21:00, 00:00, 03:00
3		none		3 min	12 min	4 per hour (40 total) 19:00-05-00

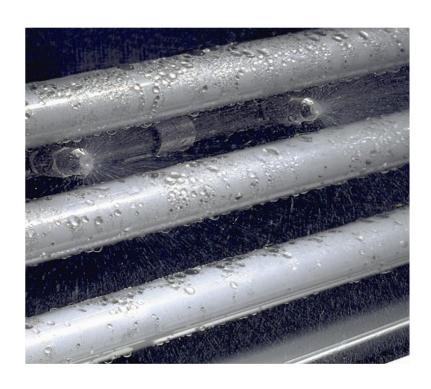
- Frequent nighttime spray cycles = high Time of Wetness
- Increased water uptake of coatings more realistic test


Water Delivery in Fluorescent UV Testing

EN 927-6

Paints and Varnishes - Coating Materials and Coating Systems for Exterior Wood

Fluorescent UV Accelerated Lab Testing Condensation


20

7) 01:00:07

- Condensation function an excellent simulation of natural dew
- Hot condensation (~50 °C) accelerates moisture attack

Fluorescent UV Accelerated Lab Testing Water Spray

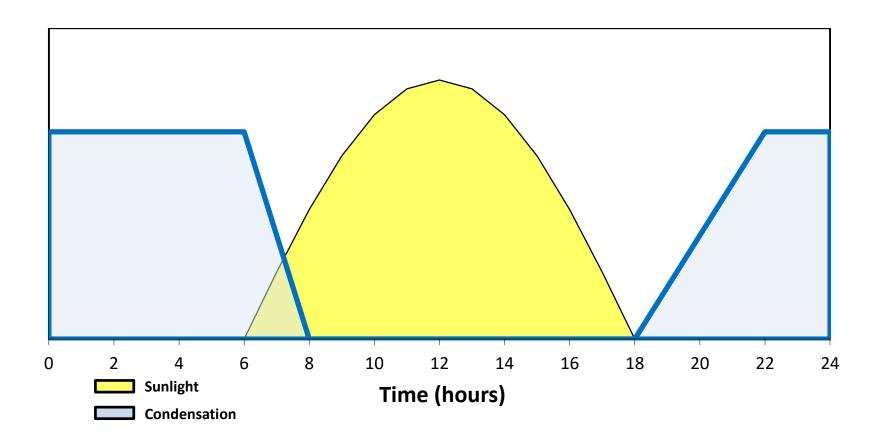
- Usually just short sprays for thermal shock
- EN 927-6 introduces
 longer, frequent water
 spray to reproduce
 erosion in wood coatings

Fluorescent UV

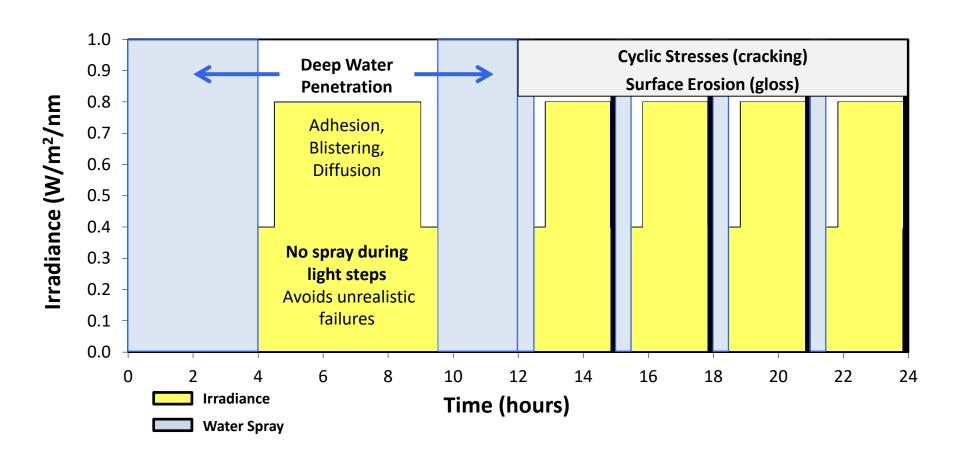
Erosion of wood coatings from water spray

[&]quot;Improving of coatings durability on selected kinds of wood in the exterior applications", No. TH02020873 financed by TAČR

Water Delivery in Xenon arc Testing

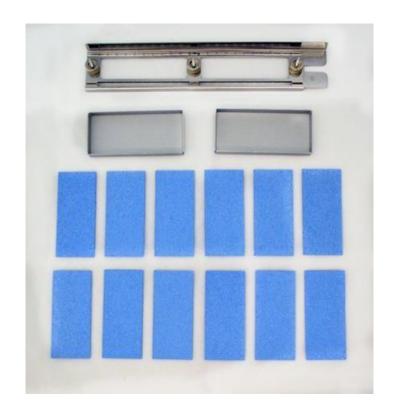

ASTM D7869

Standard Practice for Xenon Arc Exposure Test with Enhanced Light and Water Exposure for Transportation Coatings

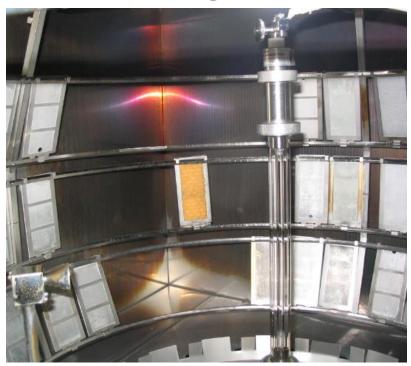

Xenon arc Accelerated Lab Testing ASTM D7869

- ASTM D7869 simulates and accelerates Sunlight, Heat, and Water from outdoor weather
- Test validated by comparison to long-term outdoor weathering data from aerospace and automotive coatings
- Test is realistic it reproduces faithfully almost all physical failure mechanisms.
- Test is fast 30% acceleration over related test methods.
- Accelerated testing that correlates with outdoor test data for transportation coatings.
- Many companies and standards bodies are investigating this test cycle for weathering of plastics

Outdoor daily weather cycle



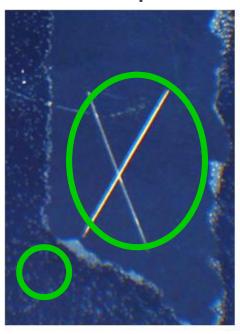
ASTM D7869 test cycle


ASTM D7869 Water Delivery

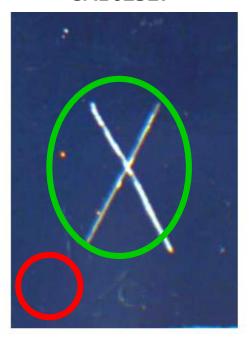
Calibrated sponge used to ensure coating saturation from water delivery

ASTM D7869 Water Delivery Calibration

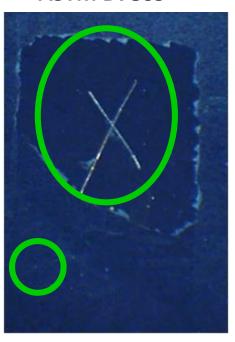
Rotating Drum



Flat Array



ASTM D7869 Test Result

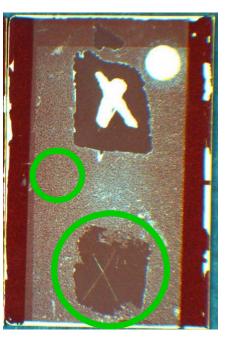

Florida Exposure

SAE J2527

ASTM D7869

- Water-deficient tests reproduce some coating failure modes
- ASTM D7869 reproduces more, including water-based blistering

ASTM D7869 Test Result


Florida Exposure

SAE J2527

ASTM D7869

- Water-deficient tests reproduce some coating failure modes
- ASTM D7869 reproduces more, including water-based blistering

Conclusions

- Sunlight, Heat, and Water are all delivered to specimens during accelerated weathering testing
- Water contributes to many failure modes but is often underspecified and underdelivered in test standards
- Some modern test standards including ASTM G90, EN 927-6, and ASTM D7869 take greater care to accelerate water delivery
- - important to actually conduct the testing!

Thank you for your attention!

Questions?

info@q-lab.com