
DevOps for
Developers:
Building a Case for
Your Organization

2 | TABLE OF CONTENTS

Table of Contents

6 Impossible Expectations
6 Meet DevOps
9 The Benefits of DevOps
11 The Core DevOps Principles
14 DevOps Culture

Part 1 | DevOps Basics

16 Starting DevOps
20 The Phases of a DevOps Pipeline
23 Applying Continuous to Your DevOps Pipeline
24 DevOps Best Practices
27 DevOps KPIs
28 Final Words

Part 2 | Implementing DevOps

Preface

Appendix

https://flexagon.com/flexdeploy-loves-salesforce-deploy-salesforce-apps-and-metadata-objects/

3

Preface
Why did we write this guide?

| PREFACE

4

As a developer, you may have found yourself drudging through slow, tedious manual tasks and getting called
at all hours, disrupting your plans at short notice to help deploy code releases. Organizations demand more
and more from their developers as you are the backbone of software changes, driving innovation from the
most basic level through to end users.

More is required from you as companies face increasing competitive pressure. However, you’re stuck in the
trenches with these time-consuming tasks and unable to offer the true value of your software development
skills. Budget constraints often shut down the possibility of investing in automation tools that could provide the
help you need.

Luckily, there is a solution!

DevOps is the answer to these continuous struggles for many companies. In fact, adoption of DevOps has
skyrocketed in recent years. 74% of organizations have adopted DevOps to some degree, according to
Redhat’s 2021 State of Database DevOps report.

In this eBook, we will explore how you can implement DevOps at your organization and eliminate the pesky
and time-consuming manual tasks that overrun your day, so you can take back your time to focus on what you
love: developing, improving the user experience, and providing value.

Leadership is often skeptical of DevOps because of its “hipster” hype, the initial cost, and the likelihood (or
unlikelihood) of achieving the many benefits touted. We’ll show you how to appeal to leadership with language
they understand and with metrics that appeal to them.

How do we know how to help?

Capgemini is one of the largest global consultancies delivering services from ideation to design, build, deliver,
maintain and operate. Sometimes our customers want us to work with specific processes and tools, but when
the customer is looking for guidance we elect to adopt a DevOps model and a preferred set of go-to tools.
Flexagon’s FlexDeploy is one such tool. Capgemini has been working with Flexagon for several years now to
enable the adoption of DevOps to deliver value to our clients.

Flexagon is a leading provider of continuous delivery and release automation software. Flexagon’s DevOps
platform, FlexDeploy, helps businesses develop, deliver, and manage software solutions faster and with
improved quality, cost, and risk. Since the inception of Flexagon, the focus has been on the developer
experience. Previously, commercial DevOps tools were too complex and supported only the largest enterprise
needs. FlexDeploy revolutionized the commercial DevOps space and allowed organizations of any size to reap
the benefits of build automation, deployment automation, and release orchestration. In 2020 Flexagon was
recognized as a CDRA Leader by Forrester Research.

Through our successful partnership, Capgemini and Flexagon have come together to create this eBook and
succinctly outline how to successfully adopt a DevOps practice to achieve the benefits promised by DevOps
evangelists. The implementation process is not simply licensing a product but requires a number of
techniques, key organizational changes, and buy-in from leadership.

Let’s explore how you can ensure DevOps is successfully adopted at your organization.

| PREFACE

https://www.red-gate.com/solutions/database-devops/report-2021
https://www.forrester.com/report/The+Forrester+Wave+Continuous+Delivery+And+Release+Automation+Q2+2020/RES157265

5

Part 1
DevOps Basics

| DEVOPS BASICS

Companies turn to DevOps and automation solutions to solve these challenges. These solutions help them
achieve speed at scale, whilst improving quality and more effectively managing the costs and risks
associated with software delivery.

DevOps and automation help teams complete their extensive to-do lists while maintaining quality— all within
business hours. Furthermore, with the tedious manual tasks out of the way, you have more time to focus on
the work you enjoy: developing!

6

Impossible Expectations

Running a successful business that delivers products and services is impossible without technology. Most
enterprises have a wide and varied technology landscape to deliver value and respond to customers’ needs.

Managing these tools soon becomes a cumbersome task for you as a developer. Manual tasks and scripting
are required for each update and change. Maintaining efficient systems becomes even more difficult when you
have to coordinate with other developers and various teams in the IT department.

Despite your increasing list of to-do’s, the organization demands greater innovation and productivity from the
IT department. They want the software development teams to deliver high-quality outputs even more
frequently so they can be competitive.

You may have proposed expanding the team or purchasing a tool to help with the workload, but there are strict
budgets in place that shut down these ideas. Without additional personnel or tools to assist with development,
the IT team is stretched thinner, more out-of-hours work is required, and heavy workloads and tight timelines
result in mistakes, which causes outages and even more headaches.

Every organization is striving to develop and deliver software in a quick, high-quality, and cost-effective
manner. The goal is to wow customers.

Is it possible to develop high-quality software faster and more repeatedly, with lower cost and less risk?

Meet DevOps

| DEVOPS BASICS

Each organization is somewhere along its Agile and
automation journey, which has traditional waterfall
methodologies and limited automation at one end of the
spectrum and agile practices and extensive automation on
the other. To be successful, organizations must continue to
evolve their processes and enable the use of technology.
The next step for you may be an evolution toward agile and

At the end of this book, there is a list of

Terms and Definitions. Reading those short

explanations before continuing may be

helpful to you. Please reference it whenever

you need a reminder or clarification.

automated processes. Maybe your next steps is to increase the rate at which new capabilities are delivered.
Perhaps it is more general, like adopting new technologies, such as cloud, microservices, serverless, or
containers.

Significant reductions in scripting and manual tasks

More frequent, less costly deliveries with fewer errors and outages

Visibility and continuous feedback across all aspects of solution development and delivery

Easier and faster troubleshooting

Compliance and audit effectiveness

Simplicity of a single DevOps platform to manage the entire toolchain

Reduction in costs to implement and support the overall software delivery lifecycle

Optimizing DevOps within the enterprise requires both the flexibility to leverage a broad range of tools across
the toolchain while standardizing the end-to-end software delivery process. Many organizations want to
consolidate tools to streamline processes and allow cross-team sharing. Orchestrating the tools in an efficient,
repeatable, auditable way is a must-have for establishing enterprise scale DevOps and continuous delivery
practices.

A mature DevOps practice has a plethora of benefits for developers, operations, release managers, QA,
system administrators, product managers, test engineers, and every other role involved in software
development and delivery. Even more importantly, DevOps improves both products/services and experiences
for end users.

After adopting DevOps, companies enjoy:

7 | DEVOPS BASICS

Automated, integrated, and repeatable delivery processes from provisioning and configuration
management through the build/deploy/test/release process

Efficiency driven by simplified processes

These positive results explain why DevOps has gained prominence and why adoption rates are increasing.

Despite these benefits and the growing popularity of DevOps, your organization may not be adopting these
practices. Why not? Sometimes the concept is still undiscovered. Perhaps the issue of budget is holding back
your department. Maybe leadership is too stuck in their ways to implement these “cutting edge” or “hipster”
ideas.

Getting leadership on board is necessary to implement and practice DevOps. The benefits of DevOps may be
most immediately obvious to the developer, but the cultural change to capitalize on it depends on management
supporting it with investment and leadership.

Before we dive into how to sell DevOps to leadership, it is important to first understand the various aspects of
DevOps, including the key benefits, core principles, and critical changes required.

8 | DEVOPS BASICS

Getting leadership on board is necessary
to implement and practice DevOps.

A significant aspect of the DevOps journey is the introduction of automation, from coding through to production
deployment. This acts to make the spotting and preventing of bugs faster and easier. This saves time.
Although it may not feel like that, if there is presently low code coverage or a backlog of unit and other
automated testing is being addressed to drive up coverage. But this also increases confidence in software
quality as it passes through processes going to production. Each time a release cycle is started the need to
build that assurance up through manual or semi-manual testing contracts.

If the effort required to release software decreases, releases can take place more frequently. If you don’t
change the release tempo, then you’ve freed up people’s time to do other things; To put it another way: you're
doing more with less. Of course, if that spare capacity can be invested into increasing the automation, then
you’ll see a virtuous cycle developing, where more resources are available to drive more improvement.

9

The Benefits of DevOps
At its essence, the benefits of DevOps can be summarized as:

Delivering more with less

| DEVOPS BASICS

These points might seem vague, but the many benefits all fit into one or more of these few categories. So let’s
unpack these benefits to see how they are realized.

But let’s be brutally honest, if you have an established history of working in other ways, you need to start the
DevOps journey and potentially undergo some changes. During these changes it is likely you won't see these
benefits. In fact, you may see things get worse for a brief period. This is no different to the concepts of team
building as you pass through the stages of forming, storming, norming and finally performing, as Bruce
Tuckman described in the 1960s. But just like the five stages of team development, moving through the
process generates tremendous outcomes.

Delivering more with less
Delivering more frequently with improved quality and stability
Meeting customer needs in a more timely manner with the right features

Both the Dev and Ops team should have an active stake in ensuring software
is operationally easy to manage and is unlikely to need urgent intervention.

Both the Dev and Ops team should have an active stake in ensuring software is operationally easy to manage
and is unlikely to need urgent intervention. Let’s face it, no one likes being woken up at strange hours to sort
out a work problem. When you have ‘skin in the game’ you are far more likely to incorporate preventative
measures, or at least make it very easy for first line support to understand and run rectifying actions. Not to
mention time spent on Ops tasks and fixing problems is time away from the more interesting activities of
feature development.

With more agile processes, batches of code are smaller and are released more frequently. Any errors or
issues are easily identified and can be more quickly solved when releases are smaller, versus the larger
releases common among organizations with traditional processes.

10 | DEVOPS BASICS

Delivering more frequently with improved quality and stability

The best proof that software is working and doing what is actually needed is to expose it to the real world. That
means getting users to try things out as early as possible, both for functional and nonfunctional assessment
(particularly for user experience). Even without user involvement, such as report generators, AI and ML,
having software in production helps us understand whether the solution is on target or course adjustments are
needed.

Meeting customer needs in a more timely manner

Any errors or issues are easily identified and can be more
quickly solved when releases are smaller...

The importance of customer engagement cannot be overstated. The ability to turn around changes for the
users to see adjustments reflecting their feedback reinforces their engagement. This positive relationship will
see you through any moments of difficulty.

To achieve all of this you must have the ability to turn around software quickly (continuously) and with high
quality. This enables feedback with lower risk and ultimately ensures the right features are being provided.

The best proof that software is working and doing what is
actually needed is to expose it to the real world.

Continuous Improvement

Shift Left

Automation

DevOps isn’t a single switch you flip to take you from your before-DevOps phase to your after-DevOps phase.
It’s a journey. You start where you are today and take one step at a time. Prioritize your team's most pressing
needs but never stop moving forward. This is continuous improvement, a VIP of the “Continuous Everything”
club.

11 | DEVOPS BASICS

This term refers to the practice of focusing on quality in software development to prevent issues rather than
detect them later in the process. If you picture the pipeline with Plan on the left and Production on the right,
shifting left means running tests and quality checks as early in the process as possible. This prevents issues
from popping up in Production.

Continuous testing and continuous deployment are key practices to successful shift left.

The Core DevOps Principles

Before you propose DevOps to your organization, you must know what you are proposing. The following core
principles are the pillars on which DevOps stands and succeeds. There are technical aspects to implement
(many of which are defined in the Term and Definitions section located at the end of this book), but a new
mindset must also be adopted. In fact, this aspect is so important, DevOps is more commonly defined as a
mindset than as a set of practices.

Let’s look at 8 Core DevOps principles that are essential for implementing and maintaining a
successful practice.

Automation is the foundation on which everything else is built. Automating repetitive, manual tasks is the
primary goal of DevOps. It closely ties into other goals as well. For example, more frequent deliveries are
made possible when automation pushes small batches of changes through the pipeline.

Automation is your biggest friend as it eliminates the tedious manual tasks from your workload.

Configuration Management

Feedback enables informed decision making. When teams receive feedback from end users they can allocate
their time and energy to the most important areas. This ensures that resources aren’t wasted on projects that
won’t bring value to the organization’s stakeholders.

Remember: Focusing on the customer’s needs is critical to both the success of a DevOps practice and a
business as a whole. Keep your customers in mind and allow this to guide your efforts.

12 | DEVOPS BASICS

Feedback Loops

Feedback comes from both end users and your systems. Visibility through the planning, release, and
monitoring process and the ability to view both real-time and historic reports are integral to DevOps.

With this information you can improve decision making, streamline troubleshooting, adhere to audit
compliance, and promote continuous improvement.

Reporting and Measurements (KPIs)

Many of the horror stories told by companies of their pre-DevOps lives are the result of large, bulky releases.
This process of deploying huge amounts of code which has been developed over a long period of time is often
referred to as “merge hell.”

DevOps alleviates this issue through frequent small releases. Developers’ code is frequently updated to a
shared source control tool through the process of continuous integration. These updates can be several times
a day or any time a developer commits a change.

Frequent small releases allow development teams to commit and verify changes more often by automating
builds and tests so any issues can be detected and resolved early. This increases the productivity of
developers which is essential to delivering software faster and with higher quality.

Frequent Small Releases

Configuration management is the process by which an organization manages its various environments,
configurations, and source code. The objective is to optimize the configuration of these environments so all the
related resources - both hardware and software - are functioning properly and contributing to the success of
your software development process.

Poor configuration management can result in some major issues including outages and data breaches.

13 | DEVOPS BASICS

Dev and Ops have a long running conflict rooted in their differing goals. Development wants to build software
and integrate systems as quickly as possible. Operations teams want stability, security, and control, all
adjectives not often associated with speed.

A successful DevOps practice fosters a collaborative culture at an organization, uniting Dev, Ops, and other
teams in a way Romeo and Juliet never could with the Montague and Capulet families (and with notably fewer
deaths). By focusing on common objectives, teams throughout the software development lifecycle become a
larger team whose sum is greater than their parts.

As a result, both Dev and Ops are responsible for the project from beginning to end, or “cradle to grave.” There
is no longer a handoff which causes inefficiencies and errors.

Collaboration and streamlined communication is arguably the most important aspect of DevOps, ensuring
success both during the implementation and throughout maintenance. Let’s continue exploring the importance
of cultural change management.

Collaboration and End-to-End Responsibility

14 | DEVOPS BASICS

DevOps Culture
The adoption of DevOps principles, particularly the automation mindset, can be a huge challenge to an
organization that has been working a particular way for a long time. The principles can be seen as a threat,
and to some (such as manual test teams) a risk to jobs. To others it appears as a sudden expectation that they
take on new and unfamiliar responsibilities, such as the blending of development and operations.

This can be further compounded for any organization that has strong compliance demands. They will likely find
change even harder, as compliance and its auditability will be used as a case to resist change.

The heart of this isn’t a technology issue, but that of organizational change. When we introduce a major new
system such as an ERP to an organization, the need for training and transition for the business is understood
as a distinct delivery stream.

The difficulty is that an IT change to an IT organization is not seen as the same level of change, yet for some
organizations introducing DevOps is just as radical as a new ERP. In both cases, to get the impacted teams
engaged with understanding the reason, you must show the potential benefits of the change for both the
organization and individual in words they understand.

Over the years, we have seen organizations make decisions to align with Service Oriented Architecture (SOA),
or "are going Agile." But within a year or so things are no better off, and - if you peel away the veneer - things
haven’t really changed.

The problem is that the adoption of these ideals require a level of faith, commitment, and investment. From an
investment perspective it isn’t simply money for everyone to have a nice training course. It is hiring seed
resources who have battle scars to know where the unwitting traps may be and share that practical knowledge
into a wider team. It is the willingness to address technical debt that can be a limitation. For example,
automation of testing, building up the test coverage that will allow a realistic automated regression test for
example. You need to ensure that in 6 months time you have a set of tools and know how and why it works.

The investment isn’t a bottomless pit, but it needs to be there to get the process embedded and to smooth out
the issues, whether that is a lack of automated test coverage or overhauling release processes. Eventually, the
process will work like a gyroscope or a flywheel - become self-sustaining without external input.

Unlike the SOA and Agile cases, we should be able to more definitively link the investment to a dividend, the
amount of debt cleared, the tooling investment and setup against code quality, and mean time to releases
getting quicker.

Commitment and Investment in Enabling DevOps

15

Part 2
Implementing DevOps

| IMPLEMENTING DEVOPS

For any initiative to be truly successful laying the groundwork is essential. For DevOps - like most IT initiatives
- the core technical processes and tooling need to be agreed upon and defined.

This should cover at least:

16

Starting DevOps
Before you start a journey, you need to have a clear picture of what it is you’re seeking to achieve. Trying to
adopt DevOps because someone has heard it’s a good idea can be problematic, if for no other reason, how
can you show that you’re making positive headway without knowing what success looks like? Is the goal about
cost management, accelerating delivery cycles, and/or freeing up developers’ time?

Groundwork

| IMPLEMENTING DEVOPS

As we’ve mentioned DevOps should be about incremental steps and continuous improvement. If you’re
looking to introduce DevOps with a greenfield development program then choose part of the program that is
pretty typical of the development needed. While this won’t provide any comparative anecdotal evidence to the
benefits, there is the opportunity to show how doing things early on (i.e., shifting left) contributes to the overall
benefit.

In a brownfield development it’s also worth choosing something that is typical of a lot of the overall solution
development. Ideally this will also be something that has proven to be a source of bugs or regular change.
Doing this will help at the very least provide anecdotal evidence of making things faster and easier. If there are
pre-DevOps measures on delivery then even better(!), as a level of comparative value can be achieved.

Aim for 80/20

We would recommend establishing just enough, but setup so you can keep building on what has gone before,
keeping an eye on the likely future increments so each step doesn’t have any unnecessary work.

Ensuring configuration management and the branching and releasing is agreed including how
assets are marked with versions

Sufficient tooling to manage:

Agreed measurements to demonstrate progress and improvement

Source, binary and deployable artifacts
Automation and orchestration of build and deployment processes
Tooling for automated testing and any quality metrics

The next step is to grow the adoption in two directions: breadth and depth. Extend the breadth of coverage
with your initial steps, particularly if there is organizational resistance to change. Start by implementing
practices with the development teams so they can experience the benefits of DevOps. These teams benefiting
from the new approach are the best advocates into the rest of the organization.

Depth is also essential. You may have started with automated build and deployment along with successful unit
testing. So look to create and automate larger tests, but with the spirit of shift left. Tooling on code quality will
return benefits - flagging the likely source of bugs (complexity checks) and test coverage.

There is one very important consideration here. It is very tempting to use these tools and tell development
teams to achieve near perfect code with 100% test coverage from now on. This can really backfire in several
ways…

17 | IMPLEMENTING DEVOPS

The drive for DevOps adoption can form within the development team as you can see and feel the benefits of
such adoption, such as automation eliminating hand cranking tasks like build, deploy, and testing. You’re in the
trenches everyday and know what processes would make your work more efficient and beneficial to the
organization.

You focus on technology, while the leadership focuses on team productivity, outputs, quality, and expenses.

The begs the question: How do I improve the state of play?

The simple answer is pragmatically and progressively. The 80/20 principle tells us that the last 20% of work
will cost us 80% of the time. So where does the cost/benefit start to breakdown (assuming no one subverts the
processes to get the scores right)? For aircraft software - that cost benefit probably stops in the last 0.001%.
But for a simple document editor, that threshold will be far lower. Bugs are annoying but how much will our
users tolerate?

Firstly, in a brownfield you can't fail your existing code. It’s out there being used. So the question is: What’s
wrong with it if it works?

The way forward is to start by setting the criteria so warnings are generated. Then incentivize the teams to
shrink the warnings. After a ‘grace’ period move the warnings to build fails, by the time you’re doing this, the
checks set as warnings are the exception. But time must be given for the improvements to be made.

Selling to Leadership

Suddenly delivery slows down, despite faster delivery being touted as a DevOps benefit

Development bad practices take place, such as stubbing unit tests that return successful results
regardless of the reality

Quality rules are modified in configuration to show positive outcomes, but the measures are so diluted
they become meaningless

The challenge is convincing leadership to invest in the tooling and address technical debt, which can be
perceived as not an issue as it is against functionality that is already in production. Adopt the right language
and appeal to leadership with metrics and benefits that resonate with them.

Here are some benefits leadership will appreciate:

18 | IMPLEMENTING DEVOPS

The best approach is to collect metrics for performance prior to adopting the DevOps model. These metrics
are best when you can see details that easily align to organizational goals. For example, speed to deliver
features or the ability to identify and react to software supply chain issues reducing the chances of becoming
the next organization under scrutiny for a 3rd party library security exposure.

With these metrics, a pilot adoption with a basic setup and the same metrics can be run. The outcome should
provide statistics showing the gains. This can be extrapolated to show wider adoption benefits. These benefits,
when closely aligned to financial benefits, need to be tempered with clarity on the need to address existing
debt.

Being clear about the indirect benefits can also be beneficial, particularly if they can be linked to undesirable
issues or events that have occurred. This can range from customer complaints regarding bugs, to missed
delivery commitments, to avoiding software supply chain issues due to security breaches.

Other arguments for DevOps worth considering:

With full automation, the development team is more productive, operating faster and more effectively to
solve business problems.

We can achieve speed at scale WITH quality all while managing cost and risk.

By forming a cross-functional team we can achieve far more than we ever could as individual team
members.

We can deliver changes frequently and quickly respond to customer needs, which means we please
more end users.

With the time we save, we can focus on innovation and become increasingly competitive. We can do
more with the same size team.

Dashboards and reports provide visibility and transparency that increase confidence in project status and
risks. Automated processes and an integrated toolchain capture the necessary data and metrics.

Retention of staff by modernizing skills.

Better reliability in delivery timelines and easier to deliver smaller increments or urgent bug fixes to
customers. Generally, it provides the ability to be more reactive to customers.

Pitching the organizational aspect of DevOps can be tricky as there can be issues around authority,
ownership, and influence involved. When these are challenges, it is best to increase collaboration between
Development and Operations so both sides gain influence. The goal is to get operational insight and practices
supported earlier.

Ultimately Dev and Ops should become a unified team. This may not be practical. If that is the case, try to get
Ops staff embedded into development cycles and Dev teams experiencing Ops issues (rotations in the Ops
team, or becoming second line support including call outs).

The gains achieved through these overlaps that will get attention are around how the team dynamics can
change:

19 | IMPLEMENTING DEVOPS

Organizational Change

More effective knowledge transfer between Dev and Ops. Let’s be honest, development teams aren’t fans
of documentation, so active collaboration will increase the sharing of what is not written.

The ‘throw it over the fence’ behaviors that occur between teams under pressure and ultimately are more
costly in time loss overall are less likely as the Dev team are likely to experience pain from such behavior.

In addition to not throwing things over the fence, the likelihood of blame culture decreases and the team
becomes more collective.

Appreciation of operational needs will lead to improved operations and likely reduce support effort and
more critically shrink time from fault to resolution.

Operate

20

The Phases of a DevOps Pipeline
DevOps pipelines vary from one organization to another. Although all pipelines begin with a plan and end with
the deployment and monitoring of changes, the number and names of phases are defined by teams.

Although pipelines look different, they have the same goal: segment the software development and delivery
process to simplify planning and streamline execution.

Let’s review seven phases often used:

| IMPLEMENTING DEVOPS

The Plan phase is driven by a Product/Project Manager and supported by the team. They create a roadmap to
guide the development of the product/project. The requirements for the content is based both on internal
feedback and customer requests.

The Product/Project Manager writes this roadmap including identifying steps, including Epics, Features, and
User Stories. This planning is typically documented in an agile project/ticket management system which
includes timelines, a process tracker, and milestone markers. The plan is iterative and broken in smaller
deliverables that are developed, tested, and delivered into the hands of the end users.

This step is sometimes referred to as the Code phase or the Build phase. During this time, developers begin
developing and committing their code to a shared repository.

Teams use a variety of tools and plugins to assist with this process ensuring code quality and collaboration.
Some common tools include source control management, sandboxes, and frameworks.

Organizations practicing DevOps typically use continuous integration, which means code is frequently updated
to the shared source control tool. These frequent updates - occurring via pull requests and code reviews - and
automated unit tests minimizes integration issues. Any errors that do occur can be quickly identified and
resolved because they are part of a small batch of code.

Develop

Plan Develop Test Deploy Release

Plan

Retire

21 | IMPLEMENTING DEVOPS

The Test phase is iterative and is where the code is deployed to the staging environments for further testing.
Automation begins to shine in this phase as the code is automatically moved to the staging environments
where both automated and manual tests take place. All tests are determined and set up by each organization
to fit their unique needs.

There are multiple types of tests that you can include in this phase. Some tests are part of a more traditional
software development life cycle (SDLC), such as unit testing, integration testing, system testing, and
acceptance testing. You should also consider other types of tests such as static code analysis, software
composition analysis, web vulnerability scanning, and container security scanning.

Test

Deployments occur across the test stages iteratively, including at the point the various build artifacts are
deployed into Production. Thanks to the last two phases, teams are confident that the release will work
seamlessly in Prod. This means the deployment process can be automated.

This is the phase where deployment strategies are implemented as best practice.

Deploy

At the Release phase, teams decide whether the changes are ready for deployment into the Production
environment or need further refinement. At this point, the code has passed the tests in the previous phase and
the operations team can rule any breakages in Prod unlikely.

The majority of organizations opt for a regular release cadence and choose to manually approve releases.
Additionally, there may be a dedicated Release Manager overseeing this phase.

Organizations with the most mature DevOps practices automate deployments via continuous deployment. This
maturity results in multiple deployments of products every day, which is often considered DevOps nirvana.

Release

22 | IMPLEMENTING DEVOPS

The changes are now live and the team enters the final phase. This phase is called Operate by some
organizations, others call it Monitor, and some break it down into two or more concurrent phases phases.

End users are using and interacting with changes. The Operations team is checking that the new changes are
running smoothly. Teams are collecting end user feedback and other generated data. This information must be
communicated back to the product/project manager and the Development team so they can incorporate it into
future changes.

Customers are the best source of feedback and will assuredly find any errors or weak areas. Incorporating
feedback into releases ensures happy and heard customers and an optimized product.

From a tooling perspective, this is where Application Performance Monitoring (APM) comes in. Tools like
Splunk, New Relic, and Datadog are used to monitor what is going on in a production environment and to
facilitate the feedback lifecycle. Some of this is information relates to the user experience (UX) and some is
more operational in nature. For example, teams use APM to proactively identify performance issues and
address these prior to an end user impact.

Operate (and Monitor)

Sometimes a team will want to remove a release from production. This could be because the system release is
redundant, needs to be replaced, or has become obsolete. Endless growth of code drives up costs, so IT
departments can decrease expenses by stopping builds of components no longer needed and removing code
that would otherwise need to be tested.

The process of purging data no longer needed (or undeploying) is completed in the Retirement phase.

There are several tools on the market that can be used to undeploy and to freeze a release for a period of time
before undeployment.

Retire (optional)

23

Applying 'Continuous' to Your DevOps Pipeline
Becoming agile and maturing your SDLC means involving more and more ‘continuous’ into your processes.
This allows you to be responsive, quickly receiving feedback and making changes.

Let’s look at several aspects of ‘continuous’ that you should incorporate into your DevOps pipeline.

| IMPLEMENTING DEVOPS

Continuous planning eliminates the predefined monthly or annually planning for releases. Instead, planning
development and releases is part of everything you do. You no longer sit down to brainstorm and plan, it is
now closely intertwined with everyday activities. This means plans are up-to-date and accurate.

Continuous Planning

Continuous development takes normal development and transforms it into an iterating cycle. Releases provide
new functionality, improvements, patches for bugs, updates to address environmental changes, and so on.

Continuous Development

As the development processes are scaled up, the process of drawing through many developer changes every
minute and hour needs to be automated. This builds upon the continuous development, but when changes
occur in a specific branch you must test it. This process may include merging changes from different sources
together and driving any necessary activities to help deconflict changes.

Continuous Integration

This moves the tests to a condition by which the different testing phases and outcomes are controlled by the
choreography process. This can extend to management and resetting of external stubs, simulators or even
real solutions.

The most valuable aspect of continuous testing is the ability to provide regression, so any new change does
not break what has already gone before it. Through automation we can drive these activities every time
changes are applied to the code base

Continuous Testing

present problems. For example, verifying that they don’t carry critical vulnerabilities that could be detrimental to
the software being developed.

As a result, the development process needs to accommodate multiple
development paths through code and configuration branching allowing bug fixes
to be implemented without disrupting feature releases. This may include
retrofitting changes to earlier versions.

As modern development builds on many 3rd party dependencies, it may be
necessary to incorporate into the process tooling to verify dependencies don’t

23 | IMPLEMENTING DEVOPS

For many organizations, monitoring means Ops personnel actively check the health of the system. Continuous
monitoring transforms it from a reactive state to notification system - drawing Ops attention only when manual
intervention is needed. This can extend to taking identified issues and generating issues using products such
as ServiceNow and Jira.

Collecting performance data and feeding back to the development team allows analysis of volume use. Teams
look for any problem patterns that can occur in distributed deployments.

Continuous monitoring may extend into areas such as capturing analytics of a production solution where A/B
testing is used to determine if change is providing more value.

Continuous Monitoring

In the most mature DevOps organizations the decision for promoting code changes into production doesn’t
involve any human intervention. Instead, software is controlled into production through the deployment
orchestration processes. These changes are typically small incremental changes onto a known and controlled
baseline, so the risk of a fault is minimized.

Continuous Deployment

Continuous operations reflects the automation of processes, particularly tasks such as housekeeping (backup,
outage management, etc). It involves scaling the environment up and down to meet the demand being
identified by continuous monitoring.

This may include feeding information into audit trails and enterprise level configuration management tools.

Continuous Operations

Continuous feedback isn’t so much a stage of the cycle, but a way of life. At every point in the lifecycle we
should be seeking feedback. Just like control systems are needed to determine what happens, test feedback
determines if we can go to production and so on.

Feedback shouldn’t be limited in the stages we have direct responsibility for, instead consider it for the
Operate phase. This way we can better understand how software is used or where it performs below our
desires. Additionally, the feedback helps the development team better understand what parts of the software
are used most.

Continuous Feedback

24

DevOps Best Practices
DevOps is not a set-it-and-forget-it process. There are various best practices you should adhere to in order to
ensure a successful DevOps practice.

| IMPLEMENTING DEVOPS

Many tasks are better when they are automated. Automation removes the tasks from someone’s to-do list and
eliminates the risk of human error, resulting in faster and more consistent development and delivery while
freeing up time to focus on more important activities.

Take advantage of continuous integration, continuous delivery, and even continuous deployment. Although a
streamlined and automated traditional software development and delivery process provide benefits, it further
helps to break down the work into smaller and more manageable pieces and deliver the results to the end
users faster. In addition to gathering the feedback from the end users more rapidly, the smaller and typically
less complex changes are easier to develop and manage.

There are some tasks you may wish to complete manually such as edge conditions for testing to ensure
quality or gathering insights to the end user’s experience. However, automate what you can to remove waste
and time from the process while improving the quality of deliverables.

Continue to shift left from problem detection to prevention. In addition to automating functional tests and
moving them earlier in the process, also focus on areas such as security and performance. Identifying issues
or potential issues earlier will reduce the risk and cost to get the deliverables into the end users hands at the
quality levels you desire.

Implement Automation Wherever Possible

Deployment strategies are used to ensure deployments are high-quality and risks are managed. This is done
through both processes and enabling technologies which ultimately get the capabilities into the end users'
hands faster and enables feedback and validation in a more controlled fashion.

There are many deployment strategies such as A/B, Blue/Green, and Canary. Each recognizes that there are
many types of changes and not all are the same standard. Applying such strategies means testing changes to
verify the results in a live environment and executing them with confidence so you can adjust as needed. This
process can be repeated via continuous experimentation - yet another ‘continuous’.

Applying deployment strategies may not be the first tasks you undertake as you implement DevOps, but don’t
miss out on the benefits of applying more advanced forms of deployment as your DevOps implementation
matures.

Take Advantage of Deployment Strategies

25 | IMPLEMENTING DEVOPS

Agile project management methodologies are commonplace today, including the supporting tools that help
teams to plan, develop and focus on clear schedules, and follow through with software changes. Remember
that DevOps and Agile require a cultural change which includes roles, processes, and tools that facilitate
collaboration and promote an agile mindset.

Although Agile and DevOps are not one and the same, applying both helps optimize the outcomes. Plan
projects with a simple set of steps, which can be as easy as: To Do, In Progress, In Review, and Complete.
Break down large projects into small, manageable steps. This ensures that everything is covered without
intimidating the team with one large looming task. It helps to tie your agile project management tickets to
source control changes and ultimately to the release of changes to the end users. This traceability improves
the insight which can be gathered down the road to assess the value of changes and also improve the ability
to execute audits more effectively.

Agile methods aren’t just for application development, and should also be considered for delivering and
managing infrastructure resources on premises and in the cloud.

Incorporate Agile Project Management

Feedback can come from internal and external users and from data. Establish processes for continuing to
collect this feedback as it can guide your decision making by revealing top priorities, existing or looming issues
and inefficiencies, UX optimizations, and more.

Comments and critiques from end users should be highly valued, as it is the core of customer-centricity. This
feedback helps you prioritize what projects to undertake and what new features should be added to your
products/services.

Apply AI/ML to support advanced feedback gathering and insights. Applying these approaches in concert with
continuous delivery compounds the impact of fast feedback cycles.

Never Stop Gathering Feedback

26 | IMPLEMENTING DEVOPS

Access to and insights from data is essential to successful and efficient processes. This data can come in the
form of logs, traces, and metrics captured throughout the development, delivery, and ongoing operations.
Immediate access to technical information such as logs and traces can shorten the troubleshooting process
and ability to restore service when a problem occurs. Capturing metrics for the frequency and quality of
deployments ensures continuous learning from insight from this data throughout the value stream.

Automated alerts and notifications help provide immediate awareness of failures or potential issues which can
be quickly identified and resolved. In some cases human intervention is required and in others the systems
can be self-corrected to minimize or eliminate the impact.

Implement source control tools to document software versions and allow you to rollback to previous versions if
necessary.

Track Logs and Metrics

Security is critical and teams must take the proper steps to protect against data and system breaches and
vulnerabilities. This is where DevSecOps comes in, ensuring security is integrated throughout your software
planning, development, delivery, and operations lifecycle.

There are many aspects of security which should be considered as part of your DevOps practices including
role based segregation of duties, SSO, MFA, static code analysis, web vulnerability scanning, container
scanning, secrets management, and many more.

Ensure Security

27

DevOps KPIs
How do you know if DevOps is working for you? How do you track your maturity over time? What are the
metrics you should be measuring?

DevOps KPIs shine a spotlight on the most important metrics for teams to evaluate when they are analyzing
their DevOps practice. There are many KPIs, but here are 4 recognized by the DevOps Research and
Assessment (DORA) team:

| IMPLEMENTING DEVOPS

Deployment frequency indicates how often releases are successfully pushed to production. This can be
weekly, daily, or any time a change is made. It can also either be on a stable schedule or increase as a
DevOps practice matures.

Lead time for changes is the amount of time it takes for a change to move through the pipeline into the
Production environment. In general this indicates the efficiency of the development process.

Change failure rate is the percentage of releases that result in outages or failures in Production.

Time to restore service (i.e., mean time to recovery or MTTR) shows how quickly (or slowly) an organization
responds to and recovers from outages and failures in Production. This is one of the best known and common
KPIs.

According to DORA, “At a high level, Deployment Frequency and Lead Time for Changes measure velocity,
while Change Failure Rate and Time to Restore Service measure stability.”

Continue calculating these values and making improvements to streamline processes for the development and
delivery teams and to achieve greater results for the organization as a whole.

Deployment frequency
Lead time for changes
Change failure rate
Time to restore service

1
2
3
4

https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance

28

Final Words
Implementing DevOps at your organization can be a daunting task with so many changes both to technology,
processes, and people. Most often knowing how to build a case for leadership support is the biggest hurdle.
However, it is possible!

Keep in mind that DevOps is a journey. Remember that this change will benefit you, the various IT teams,
leadership, and end users. It is a worthwhile pursuit with great benefits along the journey. You won’t receive
every benefit right away and transformation doesn’t happen overnight. Don’t expect it and don’t promise it.

Take one step at a time. Mature your processes and adopt more automation and tooling to facilitate the
necessary changes.

When communicating to leadership, share the benefits that are most appealing to them, such as increased
productivity, greater delivery frequency, enhanced agility to respond to customer needs and competitive shifts,
and quick ROI.

Continue learning about DevOps and its benefits so you can formulate a strong case and get this
transformation underway at your organization!

Talk to an Expert

| IMPLEMENTING DEVOPS

Interested in adopting DevOps at your organization?
Schedule time to talk to an expert. We can help you identify

your DevOps needs and find a solution.

https://flexagon.com/resources/contact-us/
https://flexagon.com/resources/contact-us/

29

Appendix
Resources and Definitions

| ADDITIONAL RESOURCES

"Easy to understand and uses simple terms and does not require prior knowledge of DevOps terms."

30

Additional Resources
The best way to present the case for DevOps at your organization is to be educated on the topic. Our team of
developers, architects, and leadership have compiled some of our favorite resources that we found informative
and helped us throughout our careers.

Video: What is DevOps? - In Simple English

| ADDITIONAL RESOURCES

These websites have a wealth of resources, from articles to webinars. They are especially helpful if you are
looking to learn more about a specific topic within DevOps.

Websites: DevOps.com, DZone, and the DevOps Institute

~ Keith, Software Developer

"This one could be considered blasphemy in the tech world but it really goes into detail about how having the
right DevOps practice in combination with fewer rules and regulations for developers enables more productivity
and creativity."

Video: How Netflix Thinks of DevOps

~ Joel, Senior Software Engineer

This DevOps newsletter links to some great resources in various DevOps sectors, generally provided by
experts in the field. It will keep you up-to-date on trends and other news in DevOps.

Newsletter: DevOps'ish

This paper outlines 6 benefits of DevOps, including shortening the delivery lifecycle, reduce manual
processes, and achieving ROI quickly.

Paper: 6 Benefits of a DevOps Platform and Calculating ROI

This webinar explains the important aspects of DevOps. The goal of the webinar is how you can achieve the
key benefits of DevOps, including those we outlined in this eBook.

Webinar: An Introduction to DevOps

https://youtu.be/_I94-tJlovg
https://devops.com/
https://dzone.com/
https://www.devopsinstitute.com/
https://youtu.be/UTKIT6STSVM
https://devopsish.com/
https://info.flexagon.com/benefits-of-automation
https://info.flexagon.com/webinar/introduction-to-devops

This blog is written and run by Pushpa, a DevOps Engineer. She has a variety of book and articles available
on her blog, covering a wide variety of technical topics.

31

Blog: Adventures in DevOps

| ADDITIONAL RESOURCES

Video: Design Microservice Architectures the Right Way

"DevOps is only a subsection of this video but the video goes into detail about how modern projects should be
architected, everything from code generation, microservices to continuous integration and delivery."

~ Joel, Senior Software Engineer

This Carnegie Mellon University article was written by Bill Nichols, who has a doctorate in physical and serves
as a senior member of the technical staff at the Software Engineering Institute. This article dives into
DevSecOps metrics that software development stakeholders should know about their projects and how you
can improve your results.

Article: The Current State of DevSecOps Metrics

For any organization newly adopting Git, there isn't a more easily understandable and thorough set of tutorials
than what Atlassian offers.

Guide: Atlassian Git Tutorials

eBook: Securing DevOps by Julien Vehent

"Provides both sound ideas and real-world examples. A must-read."

~ Adrien Saladin, PeopleDoc

http://devopsadventure.blogspot.com/
https://youtu.be/j6ow-UemzBc
https://insights.sei.cmu.edu/blog/the-current-state-of-devsecops-metrics/
https://www.atlassian.com/git/tutorials
https://www.manning.com/books/securing-devops

32 | ADDITIONAL RESOURCES

Article: A Successful Git Branching Model

"A good blog about branching strategy with helpful examples and clear illustrations."

~ Muthu, Senior Architect

Website: Baeldung

"A very good website with good examples for all java and web technologies. Explains the basic concept with
example and also share source code for execution. Very useful"

~ Muthu, Senior Architect

Report: Annual DevOps Report from Puppet

"Puppet publishes a DevOps report every year which provides a broad perspective on the subject."

~ Dan Goerdt, President of Flexagon

Want to hear from companies about their journeys to DevOps? This webinar features three Flexagon
customers who tell their stories and explain the results they now enjoy.

Webinar: Companies Share Their Success with DevOps

https://nvie.com/posts/a-successful-git-branching-model/
https://www.baeldung.com/
https://www.baeldung.com/
https://info.flexagon.com/companies_share_their_success_with_devops

DevOps is the collaboration of Development, Operations, and QA to create a culture of communication,
improve processes, and advance in technology and tools. This process includes three very important steps:
Build with Continuous Integration, Deploy with Continuous Delivery, and Release with Release Orchestration.

It is important to note that there are many definitions for DevOps.

33

Important Terms and Definitions
DevOps

| TERMS AND DEFINITIONS

Agile is a methodology based on the practices first outlined in the book Agile Manifesto and its 12 principles. It
is a mindset, rather than a set of strict protocol. Agile focuses on people, with fundamental values including
teamwork, self-organization, and accountability.

Agile is frequently contrasted with the older waterfall methodology. It was developed to better deliver software,
focusing on collaboration, communication, and constant change.

Additionally, an Agile mindset stresses testing, gathering feedback, and adjusting as a primary method to
developing and delivering the best software. This means small batches of code are released frequently so
feedback can be collected, and any corrections can be quickly made.

Agile

Continuous integration (CI) is the frequent updating of code to a shared source control tool (such as Git, SVN,
TFS) and automated build and testing in a lower environment. This allows many different individuals or teams
to work on a project simultaneously, ultimately speeding up processes and timelines. As long as the code is
updated and centralized frequently, disparate teams have access to the most updated version of code, helping
to eliminate conflicts and duplication of efforts.

Continuous Integration

Continuous Delivery (CD) is the process of ensuring code changes can be safely deployed at any time. The
goal is for developers to generate and move code through the lifecycle quickly and efficiently, allowing for rapid
and regular delivery to customers. This means eliminating manual interventions and automating the process of
building, testing, and pushing code changes to the next stage or environment.

Continuous delivery incorporates people (both in Development and Operations), process, and tooling to
transform the way software is delivered, establishing repeatable, high quality, and cost-effective software
solutions.

Adopting continuous delivery increases the velocity of the delivery and feedback lifecycle, while helping to
manage the cost and risk of delivering and maintaining software-based solutions. Continuous delivery enables
teams to cut release time and deliver features to market more frequently.

34

Continuous Delivery

| TERMS AND DEFINITIONS

A CI/CD pipeline is a series of stages that software must move through before being delivered to end users.
Stages typically include Plan, Build, Test, Release, Deploy, and Monitor. However, these steps can vary from
one organization to another.

CI/CD pipelines are fundamental components of DevOps and pervasive automation.

CI/CD Pipeline

Continuous deployment (also CD) is the process that moves releases that pass the tests in the Test stage of
the pipeline through to the Production environment.

With continuous deployment, code changes can pass through the entire pipeline without human intervention.
For this reason, this ‘continuous’ is typically reserved for organizations with mature DevOps practices that
have strong quality checks in place.

Continuous Deployment

Build automation is the process of creating and building software without direct human intervention. With build
automation, tasks that were traditionally the responsibility of a developer are standardized, to become scripted,
repeatable, automated steps to moving a new software forward to its final form.

Build automation is critical to DevOps, as it must be established before an organization can implement other
DevOps processes, including continuous integration, continuous delivery, and continuous deployment.

Build Automation

Deployment automation is the act of deploying software to a test, or production environment, without the need
for additional manual intervention or configuration. It is a critical step in mature DevOps – the automation helps
to further streamline processes and improve the software delivery cycle, while acting as a critical support
measure for continuous delivery.

35

Deployment Automation

| TERMS AND DEFINITIONS

Application Release Automation (ARA) is the process of packaging and deploying new and updated
applications across environments in an automated fashion, without dealing with manual and scripted
processes. It gives IT teams a consistent process that saves them time and headaches.

Release Automation

Release orchestration is the process of coordinating the tasks related to deploying software updates across
environments and into the hands of end users – improving planning, tracking, and communication throughout
the software release cycle across different teams, departments, and technologies. Release orchestration tools
are critical to accelerate the benefits of DevOps.

With release orchestration, a company can achieve visibility into the entire release pipeline, to improve
planning and scheduling of software updates. This visibility allows for process streamlining, operational
efficiency maximization, and early identification of errors or problems before a software application goes live.
Release orchestration also provides the framework for process control, helping a company to improve
reliability and prepare for compliance and audits.

Release Orchestration

Test automation is the process of assuring quality in the Test phase of the pipeline via triggering and executing
tests automatically and managing test data to make decisions. The test results should be actionable, meaning
there is visibility and insight that developers, testers, release managers, and other roles can use to better the
end-to-end delivery processes.

Test automation is integral to continuous delivery and continuous testing.

Test Automation

DevOps for Developers

Any questions or comments?
info@flexagon.com

Building a Case for Your Organization

