

Development and evaluation of 3D in vitro models for the prediction of tissue specific toxicities

Overview of Presentation

3D In Vitro Models

- Overview of compound attrition in drug discovery
- Fundamentals of high content screening in in vitro toxicology
- Development and characterisation of human 3D microtissues
- Development of key areas to assess potential safety liabilities:
 - Hepatotoxicity
 - Cardiotoxicity
 - Neurotoxicity
 - Nephrotoxicity

Causes of drug failure in development and clinic

In Vitro Toxicology and Safety Assessment

- Toxicity remains a leading source of attrition in Drug Dx both pre-clinically but also in clinical development
- The industry has responded to this failure by developing early in vitro screen to minimize liabilities.
- Initial focus has been in the CV area (hERG) but that has divested into additional organ specific areas such as hepatic and CNS
- Approaches to in vitro safety models require physiologically relevant models and predictive endpoints

Phase	Preclinical	Preclinical	Phase I-III	Phase I-III	Post Approval
Information	Causes of attrition	Causes of attrition	Causes of attrition	Causes of attrition	Withdrawl
Source	ABPI (2008)	Car (2006)	ABPI (2008)	Olson et al. (2000)	Stevens & Baker (2008)
Sample size	155 CD	88 CD	63 CD	82 CD	47 drugs
Cardiovascular	25%	27%	35%	21%	45%
Hepatotoxicity	15%	8%	29%	21%	32 %
CNS	12%	14%	2%	21 %	2%
Immunotox	7%	7%	10%	11%	2%
GI	5%	3%	2%	5%	2%
Reprotox	9%	13%	5%	1%	2%
Renal	6%	2%	5%	9%	0%
Carnogenicity	0%	3%	3%	0%	0%

Data Analysis

Image analysis

Dye/antibody within cytoplasm

Validated channels and colours

Multiplexing dyes and antibodies

Development of Cell Culture Models

Transition from simple to complex

In vitro 3D Cell Culture

- In vitro three-dimensional (3D) cell cultures more accurately reflect the complex in vivo microenvironment than simple two-dimensional (2D) cell monolayers
- Spheroids are a popular 3D cell culture choice due to cost effective cell usage and scaffold free
- Spheroid formation utilised the **hanging drop technique** can be used whereby cells are suspended in droplets of medium to promote cell aggregation
- Alternatively **ultra-low adhesion microplates** can be used which are assay amenable plate formats for high content screening

Confocal HCS Imaging of Microtissues

Confocal High Content Imaging (using ArrayScan XTI)

- Confocal imaging to allow us to analyse more complicated tissue models using high content screening techniques
- 3D models represent more *in vivo* relevant *in vitro* tissue model
- Combined with HCS to determine sensitive and mechanistic cell health parameters
- Microtissue in **ULA or transwell** imaging possible

Confocal vs. Widefield Imaging

Spheroid and Microtissue Development Stages

Single cell model = spheroid. Co-culture cell model = microtissue

- 1. Optimisation of seeding density involves HCS imaging of membrane permeability (PI) as a marker of necrotic core combined with a measure of cellular ATP and DNA correlation as a marker of cell health
- Co-cultured models require additional optimisation of cell to cell ratios
- 3. Characterisation of longevity and tissue specific functions

Confocal 3D Imaging

Z stacks through a microtissue

Development of 3D Capabilities

Focus on tissue specific models and predictive endpoints

Spheroids and Microtissues (MTs)

Platforms	Confocal high content imaging (XTI Thermofisher)
Spheroids/Microtissues	HepG2, H9c2, HepaRG, Cryopreserved human and rat primary hepatocytes, iPSC cardiomyocytes tri culture, Brain (iPSC astrocytes and neurons), Kidney
Non-parenchymal cells (NPCs)	+/- NPCs including Kupfer cells
Assay Endpoints / endpoint combinations	GSH content, ROS formation, phospholipidosis, steatosis, mitochondrial potential, mitochondrial mass, DNA damage, cell stress, calcium homeostasis, CYP activity, ATP content, LDH release
Time points	Live cell imaging, 4, 16, 72 and 14 day repeat dose 1)

3D Approaches for Drug Induced Liver Injury (DILI)

Genentech and AstraZeneca 2017 Publication

Historical published pharmaceutical DILI strategies (GSK, AZ, Pfizer, Lundbeck, Astellas, Roche) focused on 2D multi-parametric endpoints many including HCS based approaches.

Recent publications have focused on transition to 3D approaches.

Arch Toxicol DOI 10.1007/s00204-017-2002-1

IN VITRO SYSTEMS

Utility of spherical human liver microtissues for prediction of clinical drug-induced liver injury

William R. Proctor¹ · Alison J. Foster^{2,4} · Jennifer Vogt¹ · Claire Summers^{2,4} · Brian Middleton^{3,4} · Mark A. Pilling^{3,4} · Daniel Shienson⁵ · Monika Kijanska⁶ · Simon Ströbel⁶ · Jens M. Kelm⁶ · Paul Morgan^{2,4} · Simon Messner⁶ · Dominic Williams^{2,4}

MIP-DILI

Mechanism-Based Integrated Systems for the Prediction of Drug-Induced Liver Injury

Complexity of Modelling Hepatotoxicity

Combination of model and relevant endpoints

Human Liver Microtissues and HepaRG Spheroid Characterisation

Microtissue size, CYP450 activity and bile caniculi

- hLiMTs and HepaRG spheroids display uniform size, shape and improved longevity
- Both models show albumin production, functional bile canaliculi and cytochrome P450 activity

Efflux Transporter Activity in Human Liver Microtissues

Active MRP2 in hepatocytes and HepaRG microtissues

- Human liver microtissues (hLIMT's) establish bile canaliculi networks with active MRP2 transporters as highlighted by the efflux of CMFDA dye into bile canaliculi
- HCS imaging of CMFDA dye in liver microtissues allows efflux transporter activity to be studied by quantifying bile canaliculi area

Comparison of HepaRG Spheroids and hLiMTs

Response to hepatotoxicants

In this small set of reference compounds with a 5x C_{max} cut-off HepaRG spheroids are more sensitive to DILI compounds than hLiMTs

Drug	Cmas (µM)	DILI category
Amiodarone	5.3	0 1
Trovafloxacin	19.7	#
Diclofenac	10.1	7.
Flutamide	5.4	- 0
Lapatinib	19.2	- At
Nitrofurantoin	21	7
Carbamazepine	50.8	
Sunitinib	0.25	#
Troglitazone	6.29	#
Fialuridine	1	77
Nefazodone	4.3	- 11
Perhexiline	2.16	- 10
Tolcapone	21.96	- 0
Acetaminophen	165.4	#
Bosentan	4.7	7
Ticlopidine	8.1	- #- "
Azathioprine	2.22	- 11
Chlorpromazine	0.94	
Tamoxifen	1.18	#]
Buspirone	0.01	N
Entacapone	3.276	N

Cyprotex hLIMT DILI prediction using MEC (µM)	Cyprotex hLIMT DILI prediction using ATP MEC (µM)	Most Sensitive Feature
5.31	15.4	ROS
45.2	54.4	GSH
	78.1	DNA
	8.72	ROS
		ROS
24.7		ROS
	73.6	DNA
	0.417	MMP
		MMP
11.5	11.5	ATP
	13.7	ATP
		ROS
		ATP
		ATP
	29.4	DNA
	27.72	DNA
3.48	2.48	ATP
		ROS
1.54		ROS
3.12	3.12	ATP
40.2	40.2	ATP

Chlorpromazine

HepaRG MTs Normalised to Human Liver Concentrations (Tissue C_{max})

Dose normalisation of toxicity

- PBPK model to predict tissue C_{max} from total plasma C_{max}
- Improves
 IVIVE of hits
 within 1x C_{max}

				Lowest MEC (μM)		
Drug	DILI category	Plasma C _{max} (μM)	Liver_kP C _{max} (μM)	Plasma C _{max} normalisation	Liver_kP C _{max} normalisation	
Amiodarone	Р	5.3	49.5	2.41	2.41	
Trovafloxacin	Р	19.7	28.3	7.27	7.27	
Diclofenac	Р	10.1	2.7	30.5	30.5	
Flutamide	Р	5.4	9.7	7.43	7.43	
Lapatinib	Р	19.2	152.8	0.77	0.77	
Nitrofurantoin	Р	21	13.0	4.89	4.89	
Carbamazepine	Р	50.8	41.3	81.5	81.5	
Sunitinib	Р	0.25	1.7	0.28	0.28	
Troglitazone	Р	6.29	37.5	1.69	1.69	
Fialuridine	Р	1	0.9	1.41	1.41	
Nefazodone	Р	4.3	22.4	11.6	11.6	
Perhexiline	Р	2.16	53.6	1.69	1.69	
Tolcapone	Р	21.96	16.8	18.2	18.2	
Acetaminophen	Р	165.4	360.8	240	240	
Bosentan	Р	4.7	4.3	10.4	10.4	
Ticlopidine	Р	8.1	38.4	34	34	
Azathioprine	Р	2.22	3.0	0.28	0.28	
Chlorpromazine	Р	0.94	19.3	1.07	1.07	
Erythromycin	Р	11	78.0	125	125	
Tamoxifen	Р	1.18	20.8	3.52	3.52	
Buspirone	N	0.01	0.1	NR	NR	
Entacapone	N	3.276	4.1	45.4	45.4	
Donepezil	N	0.028	0.4	6.49	6.49	
Clotrimazole	N	0.06	0.2	5.13	5.13	
Betaine	N	940	539.0	NR	NR	
Metformin	N	7.74	8.0	NR	NR	
		W	/ithin 1x C _{max} =	10	14	

Drug-induced Cardiovascular Toxicity

Focus on structural CV toxicity

Cardiovascular toxicity can arise from direct or indirect effects upon the heart resulting in structural and/or functional changes and ultimately reduced cardiac efficiency

Role of non-cardiomyocytes in Cardiotoxicity

Importance of co-culture cardiac in vitro models

- Current cardiac drug safety tests
 primarily focus on cardiomyocytes
 in isolation, ignoring other cellular
 components of the myocardium
- The myocardial tissue comprises 30% cardiomyocytes and 70% nonmyocytes, the majority of which are endothelial and fibroblast cells
- These non-myocytes are essential to myocardial structure and function with emerging evidence suggesting important roles within drug induced cardiovascular toxicity

Spontaneously Beating Cardiac Spheroids

Co-culture of cardiomyocytes, endothelial cells and fibroblasts

Hoechst Nuclear Staining

Brightfield

- Cardiac spheroids are a 3D monoculture formed from iPSC derived cardiomyocytes
- Spontaneous contractions are observed following 5 days in culture
- Functionality is maintained for at least 28 days in culture
- Amenable to repeat dosing (chronic) or acute exposures

CD31; endothelial marker

Vimentin; fibroblast marker

ACTN2 (sarcomeric α actinin); cardiomyocyte marker

- Cardiac tri-cultured MT's display uniform size and shape with a diameter of 200 µm
- Whole mount immunofluorescence displays even distribution of key cell markers throughout MT's

HCS – Structural Cardiac Toxicity

Historical structural CV toxicity dataset

- Structural cardiotoxicants were analysed using hESC cardiomyocytes (Pointon et al., 2013)
- HCS parameters combined with a measure of ATP content improves structural cardiotoxicity assay sensitivity
- Identified mitochondrial disruption and calcium mobilization as major targets for structural cardiotoxins
- Clozapine, isoproterenol and cyclophosphamide only picked up by IonOptix (contractility)

Modified 3D Structural Cardiotoxicity Assay

• Modified structural cardiotoxicant assays (Pointon et al., 2013) to analyse cardiac microtissues

Isoproterenol Calcium Dyshomeostasis – in Cardiac Microtissues (MTs)

- Isoproterenol as previously shown undetected by structural cardiotoxicant assays (Pointon et al., 2013)
- Calcium dyshomeostasis shown in cardiac MTs

Cardiac Cell Model Comparison (72h Exposure)

Comparison on different cell models (2D/3D)

- iPSC derived cardiac MTs are more predictive than either 2D or H9c2 spheroids
- Cyclophosphamide and isoproterenol only detected in iPSC derived cardiac MTs using HCS

Compound C _{max}		In vivo	<i>In vivo</i> cardiac	Reference	H9c2 monolayer	H9c2 MTs	iPSC-CM's monolayer	Cardiac Spheroids	Cardiac MTs	Feature
Compound	c _{max}		m vivo cararac	Reference	monorayer	14113	MEC μM	Spriciolas	14113	
Cyclophosphamide	153.20		Acute cardiac toxicity, CHF, myocarditis, myocardial necrosis	Floyd <i>et al</i> . 2005	NR	NR	NR	3710	30.8	Mito Mass
Dasatinib	0.72		QT prolongation, CHF, LVD and MI, cardiomyopathy, arrhythmia, cardiomegaly	Force <i>et al</i> . 2007	0.04	0.0771	7.32	6.58	0.208	Mito Mass
Doxorubicin HCl	15.34		CHF, decreased LVEF, sinus tachycardia, myocarditis, cardiomyopathy	Minotti <i>et al</i> . 2004	0.04	0.115	0.04	<0.04	0.04	АТР
Fluorouracil	4.61	Structural	HF, Ml, ventricular dysfunction, cardiac fibrillation, arrhythmia	Schimmel et al. 2004	1.88	NR	1.4	77.4	0.0407	Ca ²⁺
Idarubicin HCI	0.12	cardiotoxin	CHF, arrhythmia, cardiomyopathy, decreased LVEF	Anderlini et al. 1995	<0.04	<0.04	0.04	<0.04	<0.04	АТР
Imatinib Mesylate	3.54		CHF, decreased LVEF	Kerkela et al . 2006	13.7	3.53	29.3	0.558	22.6	ATP
Isoproterenol HCI	0.01		Tachycardia, palpitations, ventricular arrhythmias, myocarditis	Zhang et al . 2008	NR	NR	NR	NR	2.1	Ca ²⁺
Lapatinib	4.18		Decreased LVEF and HF, QT interval prolongation	Force et al. 2007	4.57	8.33	0.04	8.95	5.9	ATP
Sunitinib Malate	0.25		Decreased LVEF and HF, QT interval prolongation and TdP, cardiomyopathy	Chu <i>et al</i> . 2007	0.896	0.114	0.04	1.2	0.817	Ca ²⁺
Acyclovir	6.66	Non- structural	No report	-	NR	NR	NR	NR	NR	-
Buspirone HCI	0.03	cardiotoxins	Nonspecific chest pain	-	NR	0.237	NR	NR	NR	MT size

Cardiac Cell Model Comparison (72h Exposure)

Comparison to Cmax values

- iPSC derived cardiac MTs are more predictive than either 2D or H9c2 spheroids
- Cyclophosphamide and isoproterenol only detected in iPSC derived cardiac MTs using HCS

Compound	nd C _{max} In vivo		<i>In vivo</i> cardiac	Reference	H9c2 monolayer	H9c2 MTs	iPSC-CM's monolayer	Cardiac Spheroids	Cardiac MTs	Feature
	l liux	toxicity					MEC μM	<u> </u>		
Cyclophosphamide	153.20		Acute cardiac toxicity, CHF, myocarditis, myocardial necrosis	Floyd <i>et al</i> . 2005	NR	NR	NR	3710	30.8	Mito Mass
Dasatinib	0.72		QT prolongation, CHF, LVD and MI, cardiomyopathy, arrhythmia, cardiomegaly	Force <i>et al</i> . 2007	0.04	0.0771	7.32	6.58	0.208	Mito Mass
Doxorubicin HCl	15.34		CHF, decreased LVEF, sinus tachycardia, myocarditis, cardiomyopathy	Minotti <i>et al</i> . 2004	0.04	0.115	0.04	<0.04	0.04	АТР
Fluorouracil	4.61	Structural	HF, Ml, ventricular dysfunction, cardiac fibrillation, arrhythmia	Schimmel et al . 2004	1.88	NR	1.4	77.4	0.0407	Ca ²⁺
Idarubicin HCI	0.12	cardiotoxin	CHF, arrhythmia, cardiomyopathy, decreased LVEF	Anderlini <i>et</i> al . 1995	<0.04	<0.04	0.04	<0.04	<0.04	АТР
lmatinib Mesylate	3.54		CHF, decreased LVEF	Kerkela et al . 2006	13.7	3.53	29.3	0.558	22.6	ATP
Isoproterenol HCI	0.01		Tachycardia, palpitations, ventricular arrhythmias, myocarditis	Zhang et al . 2008	NR	NR	NR	NR	2.1	Ca ²⁺
Lapatinib	4.18		Decreased LVEF and HF, QT interval prolongation	Force <i>et al</i> . 2007	4.57	8.33	0.04	8.95	5.9	ATP
Sunitinib Malate	0.25		Decreased LVEF and HF, QT interval prolongation and TdP, cardiomyopathy	Chu <i>et al</i> . 2007	0.896	0.114	0.04	1.2	0.817	Ca ²⁺
Acyclovir	6.66	Non- structural	No report	-	NR	NR	NR	NR	NR	-
Buspirone HCI	0.03	cardiotoxins	Nonspecific chest pain	-	NR	0.237	NR	NR	NR	MT size

Drug-induced Cardiomyocyte Hypertrophy

Key even in cardiotoxicity

Detecting Cardiomyocyte Hypertrophy in Spheroids

Predicting Pathophysiological Hypertrophy in Cardiac Spheroids (336h Exposure)

3D cardiomyocyte spheroid models allow for the improved *in vitro* prediction of structural cardiotoxins with pathophysiological hypertrophic potential

Drug	Human exposure (C _{max} ; µM)	In vivo structural toxicity (P/N)	In vivo patho- physiological hypertrophy (P/N)	Most sensitive structural MEC (µM)	Most sensitive hypertrophy MEC (µM)	Lowest combined assay MEC (µM)	Most sensitive structural mechanism
sunitinib	0.25	Р	Р	0.38	0.16	0.16	Calcium
dasatinib	0.72	Р	Р	0.15	0.02	0.02	ATP
imatinib	3.54	Р	Р	0.04	0.05	0.04	ATP
doxorubicin	15.34	Р	Р	0.01	1.46	0.01	ATP
norepinephrine	0.17	Р	Р	0.10	0.06	0.06	ATP
amphotericin B	9.00	Р	Р	7.85	0.25	0.25	DNA
lapatinib	4.18	Р	Р	0.19	37.40	0.19	ATP
clozapine	2.40	Р	Р	32.40	6.67	6.67	DNA
isoproterenol	0.01	Р	Р	0.10	26.30	0.10	ATP
cyclophosphamide	153.20	Р	Р	381.00	NR	381.00	ATP
amiodarone	5.30	Р	N	7.76	3.51	3.51	MMP
mitomycin C	3.12	Р	N	0.21	NR	0.21	ATP
idarubicin	0.12	Р	N	0.004	1.45	0.004	ATP
fluorouracil	4.61	Р	N	10.30	NR	10.30	ATP
acyclovir	6.66	N	N	NR	NR	NR	-
buspirone	0.03	N	N	NR	NR	NR	-

Effect of non-myocytes on Drug-induced Cardiomyocyte Hypertrophy

Importance of model characterisation

	Hypertrophy responses (Size increase MEC; μ M)							
	Pathophysi	iological hyp	ertrophins	Cytotoxin				
Microtissue model cell composition	Dasatinib	Clozapine	Sunitinib	Mitomycin C				
Cardiomyocytes	0.02	6.67	0.16	NR				
Cardiomyocytes + endothelial cells	0.168	5.44	NR	NR				
Cardiomyocytes + fibroblasts	NR	NR	NR	NR				
Cardiomyocytes + endothelials + fibroblasts	NR	NR	NR	NR				

- Only the cardiomyocyte model exhibits hypertrophy phenotypic response
- Cardiomyocyte + endothelial model detects dasatinib (however at a 10x higher MEC) and clozapine, but not sunitinib
- Once cardiac fibroblasts are introduced no hypertrophic responses are detected, using MT size parameters
- Interestingly the hypertrophy marker anti-proBNP shows increased staining following compound exposure

Drug-induced Nephrotoxicity

Research Model

- Drug-induced toxicity is the cause of approximately 20% of renal failure hospital admissions
- The kidney comprises a highly structured filtration net-work which is difficult to replicate in vitro
- In vitro nephrotoxicity assays are currently limited in their in vivo predictivity

Development of in vitro kidney models

Comparison 2D and 3D cell culture models

- Renal Models Developed:
- 2D culture of renal proximal tubule epithelial cells (RPTEC)
- 3D culture of RPTEC in spheroids
- 3D co-culture of renal microtissues consisting of RPTEC, renal cortical epithelial cells and renal fibroblasts
- Exposure to nephrotoxins (7 positive + 3 negative compounds) for 72hrs, 216hrs and 336hrs
- Assessed for changes in DNA structure, ATP content, mitochondrial function and GSH content

Development of in vitro kidney models

Response to nephrotoxins of 2D and 3D cellular models

- The longevity of in vitro human kidney MTs permits the study of chronic compound exposure
- Extended incubation times and repeat dosing improved accuracy of prediction of nephrotoxicity
- In vivo nephrotoxicity can be predicted with an accuracy of 100% and 90% in 2D and 3D cell models respectively
- Increases in phospholipids and changes in ATP and glutathione content are common observations

	Cmax [µM]*	RPTEC 72hr		RPTEC 216hr		MT 72hr		MT 21	6hr
(S)-									
(+)camptothecin	0.083	0.102	PLD	0.18	GSH	0.263	MM	0.00746	MMP
acetaminophen	165.4	NR		1830	ATP	NR		1880	ATP
cisplatin	2	0.513	GSH	0.479	GSH	7.51	DNA	62.2	ATP
cyclosporin A	11	0.665	PLD	0.798	PLD	7.09	MMP	0.379	MMP
diclofenac	10.1	32.5	PLD	136	ATP	96.5	ATP	24.7	ATP
gentamycin	13	249	PLD	189	PLD	971	ATP	255	ATP
tobramycin	16	1020	PLD	128	PLD	13.9	MMP	768	DNA
buspirone	0.009	NR		NR		NR		NR	
piroxicam	12.79	NR		NR		NR		NR	
tacrine	0.077	19	PLD	25.7	GSH	NR		1.19	MM

Drug-induced Brain Neurotoxicity

Research Model

- Current pre-clinical in vitro
 neurotoxicity models often focus
 on neurons alone, in a restrictive
 2D environment with acute
 compound exposures and display
 very little
 in vivo toxicity correlation
- In vitro neurotoxicity models are currently are reliably predictive of in vivo CNS responses

iPSC Cellular Dynamic Human Neural Microtissue

Development of 3D CNS Model

Brain Microtissue Structure

Development of 3D CNS Model

- Astrocyte cell number increases with microtissue age and/or astrocytes migrate to the outer surface until day 14
- At day 28 astrocytes show networking of processes throughout the microtissues
 - In the mature brain, there are 5 to 10 times as many astrocytes as there are neurons and they form spindle like processes of around 50 µm which extend throughout the CNS
 - Literature also suggests in the mature brain astrocytes form a thick layer on the surface of the CNS

High Content Screening of Neurotoxicity

Development of 3D CNS Model

- Response of 3D CNS microtissues to colchicine, lead acetate and chloroquine
- Measurement of calcium levels, mitochondrial function and nuclear cell count

Predicting Neurotoxicity by Normalisation of Data to Brain Specific Exposure Levels (tsC_{max})

- Following, 72 hour exposure brain microtissues correctly predicted 60% of the compound panel with normalisation to either plasma C_{max} or brain tsC_{max}
- Following 14 day exposure, 60% of the compound panel correctly predicted neurotoxicity when normalised to plasma C_{max}. However, with normalisation to brain tsC_{max} 80% pre-diction was observed.

Compound	Expected outcome	C _{max} (μM)	tsC _{max} (μM)	72 hr MEC (μM)	72 hr MEC (μM)	14 day MEC (μM)	14 day MEC (μM)
Amoxicillin	Non-toxic	0.87	0.07	NR	NR	NR	NR
Acetaminophen	Non-neurotoxic	165	183	NR	NR	804	804
Acrylamide	Neurotoxic	0.03	0.037	NR	NR	NR	NR
Chloroquine disphosphate	Neurotoxic	1.62	4.7	13	13	7.22	7.22
Colchicine	Neurotoxic	0.015	0.008	0.00326	0.00326	0.0008	0.0008
Lidocaine	Neurotoxic	25.6	121.2	2120	2120	1540	1540
Paclitaxel	Neurotoxic	2	0.023	6.07	6.07	0.08	0.08
Tamoxifen	Neurotoxic	0.083	9.69	6.33	6.33	4.74	4.74
Lead acetate	Neurotoxic	1.3	1.03	NR	NR	12.3	12.3
Vinblastine sulfate	Neurotoxic	0.24	0.04	0.008	0.008	0.008	0.008
≤				C _{max}	tsC _{max}	C _{max}	tsC _{max}

Conclusions

Development of 3D Human Focused Models

- Human derived microtissues allow **better reconstitution of** *in vivo* **cellular physiology**, improved longevity *in vitro* and display organ specific characteristics
- Multiplexed 3D high content imaging (HCS) enables multiple toxicity endpoints to be predict organ specific toxicity
- In silico modelling of tissue exposure levels can improve in vitro toxicity prediction
- Aim to drive in vitro responses towards human relevant dose (C_{max})

