

The development and characterisation of 3D neuronal microtissues for safety testing.

Paul Walker

IVTS 24th November 2017

Presentation Overview

The development and characterisation of 3D neuronal microtissues for safety testing

- Brief Company overview
- 3D Organoid/Microtissue development
- Example models developed
- Confocal high content imaging
- Brain microtissue development project
- Further characterisation using Agilent whole human genome oligo microarray
- Initial HCS investigations
- Combined strategy to understand Neutoxicity potential.

Cyprotex is now part of Evotec AG

Evotec's worldwide operations

Cyprotex is an ADME-Tox CRO, based is the UK and US: Acquired by Evotec (Jan 2017)

San Francisco, Branford & Princeton, Watertown, USA

~95 employees

- Compound ID, selection and acquisition
- Compound QC, storage and distribution
- Cell & protein production
- ADME-Tox, DMPK

Abingdon, Alderley Park, UK

- ~400 employees
- Medicinal chemistry
- ADME-Tox, DMPK
- Structural biology
- In vitro & in vivo anti-infective platform / screening

- ~300 employees
- Compound management
- Hit identification
- In vitro & in vivo oncology
- Medicinal chemistry
- ADME & PK
- Early drug formulation and solid form screening
- Cell, protein & antibody production

Hamburg (HQ), Göttingen and Munich, Germany ~405 employees

- Hit identification
- In vitro & in vivo biology
- Chemical proteomics & Biomarker discovery and validation
- Cell & protein production
- Antibody discovery

- In vitro three-dimensional (3D) cell cultures more accurately reflect the complex in vivo microenvironment than simple two-dimensional (2D) cell monolayers
- Spheroids are a popular 3D cell culture choice due to cost effective cell usage and scaffold free
- Spheroid formation utilised the **hanging drop technique** can be used whereby cells are suspended in droplets of medium to promote cell aggregation
- Alternatively **ultra-low adhesion microplates** can be used which are assay amenable plate formats for high content screening

Microtissue Development Stages

Characterisation may depend upon organoid

- Optimisation of seeding density involves HCS imaging of membrane permeability (PI) as a marker of necrotic core combined with a measure of cellular ATP and DNA correlation as a marker of cell health
- 2. Co-cultured models re-quire additional optimisation of cell to cell ratios
- 3. Characterisation of longevity and **tissue specific functions**

Increasing seeding density

Day 7 Day 14 Day 21 Day 28

Tissue specific characteristics

Cardiac microtissue

Human Liver Microtissues and HepaRG Spheroid Characterisation

- hLiMTs and HepaRG spheroids display uniform size, shape and improved longevity
- Both models show albumin production, functional bile canaliculi and cytochrome P450 activity

Confocal Imaging of Microtissues

Confocal High Content Imaging (using ArrayScan XTI)

- Confocal imaging to allow us to **analyse more complicated tissue** models using high content screening techniques
- 3D models represent more *in vivo* relevant *in vitro* tissue model
- Combined with HCS to determine sensitive and mechanistic cell health parameters
- Microtissue in ULA or transwell imaging possible

Confocal vs. Widefield Imaging

Pilot Comparison of HepaRG Spheroids and hLiMTs

Combining 3D Microtissues with HT high content imaging.

							Γ	Cyprotex				Confocal (CF)	
In this small set of	Drug	C _{max} (μM)	DILI category	Cyprotex hLiMT DILI prediction using MEC (µM)	Cyprotex hLiMT DILI prediction using ATP MEC (µM)	Most Sensitive Feature		3D HepaRG spheroid DILI prediction using MEC (μM)	Cyprotex 3D HepaRG DILI prediction using ATP MEC (µM)	Most Sensitive Feature	Nuclei		
reference	Amiodarone	5.3	P	6.51	15.4	ROS		2.41	5.12	DNA			- CARTA
compounds with a $5x C_{max}$ cut-off	Trovafloxacin	19.7	Р	45.2	54.4	GSH		7.27	7.27	ATP	Mitochondria	a state of the second	and the second
	Diclofenac	10.1	Р	50	78.1	DNA		30.5	38.8	DNA		The second second	
	Flutamide	5.4	Р	3.63	8.72	ROS		7.43	7.75	SIZE			and the second
	Lapatinib	19.2	Р	1.79	12.6	ROS		0.77	1.21	GSH			
HepaRG spheroids are slightly more sensitive to DILI compounds than hLiMTs	Nitrofurantoin	21	P	24.7	51.3	ROS		4.89	9.27	SIZE	ROS formation GSH content Combined	and the street	200
	Carbamazepine	50.8	P	49.2	/3.6	DNA		81.5	81.5	AIP			1 Cardina
	Troglitazone	6.29	P D	0.24	1.55	MMP		1.69	25	DNA		6	
	Fialuridine	1	P	11.5	11.5	ATP		1.41	1.41	ATP			A Contractor
	Nefazodone	4.3	P	13.7	13.7	ATP		11.6	11.6	DNA		Salah Bak	1000 State 18
	Perhexiline	2.16	Р	1.03	1.49	ROS		1.69	1.76	DNA			
	Tolcapone	21.96	P	21.9	21.9	ATP		18.2	20.5	MMP		1000000000000000000000000000000000000	
	Acetaminophen	165.4	P	302	302	ATP		240	342	SIZE			
	Bosentan	4.7	P	12.3	29.4	DNA		10.4	35.2	DNA			
		8.1	P	2/8	27.2			0.28	0.278	IVIITOIVIASS		the well	
	Chlorpromazine	0.94	P	0.34	0.347	ROS		1.07	3.48	SIZE			
	Tamoxifen	1.18	P	1.54	1.98	ROS		3.52	10.8	SIZE		And the Re-	and the second sec
	Buspirone	0.01	N	3.12	3.12	ATP		NR	-	-		1. A 18 19 19 19	and the second second
	Entacapone	3.276	N	40.2	40.2	ATP		45.4	45.5	GSH			
		≤ 1x Cm ≤ 5x Cm	ax									DMSO	10 uM
		>5x Cm	ax									Ch	lorpromazine

See posters for more details and examples

Drug-induced Brain Neurotoxicity

Current pre-clinical *in vitro* neurotoxicity models often focus on neurons alone, in a restrictive 2D environment with acute compound exposures

Complicating factors:

- Blood-brain barrier deregulation
- Neurogenesis impairment
- Neuroinflammation e.g. astrocyte swelling
- Neuronal dysfunction
 - Chemical perturbment
 - Cell death
- Vascular dysregulation

The importance of Astrocytes

No longer considered "filler cells"

Anderson et al., (2011) Cardiovascular Psychiatry and Neurology

iPSC CDI Human Neural Microtissue

Collaboration with SEAC (Unilever)

Microtissue formation (Seeding)

All mirotissues formed under each condition

- 1:1 ratio of astrocytes and neurons
- Seeding density test with 2% or 10% FBS in media

Microtissue viability

PI staining to check for necrotic core

- 4000 size difficult to handle (tend to float due to low density)
- 10000 size show morphological variability with irregular shapes
- Therefore 7000 size selected; optimal handling size and uniform

Viability assay over time and DMSO tolerance

7000 cells/ MT, seeded in 10% serum, maintained in 2% serum

- All microtissues display an increase in cell membrane permeability following 28 days of 0.5% DMSO, no increase prior to this.
- Microtissues show no significance difference in viability across different media types

Basal ATP content over time

ATP demand linked to neural differentiation

- Decrease in ATP doesn't correlate with increased cell membrane permeability (PI staining) or loss in DNA structure (Hoechst staining).
- Literature suggests decrease in ATP demand with maturity of neurons.

A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells

Matthew J. Birket, Adam L. Orr, Akos A. Gerencser, David T. Madden, Cathy Vitelli, Andrzej Swistowski, Martin D. Brand and Xianmin Zeng* Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA "Autor for companding (zeng @buchinitute.org) Journal of CAS Sources 124, 344-54 Journal of CAS Sources 124, 344-54 @ 2011. Published By The Company of Biologiets Ltd doi:10.1249/ps.072872

Agilent whole human genome oligo microarray G4851B

The Brain microtissues continue to develop over the 28 day period

81 KEGG pathways

- Neuronal development e.g. synaps pathways
- Intracellular adhesion
- GAP junctions (Astrocyte/neuronal linking?)
- Axon guidance peaks at day 14.

78 KEGG pathways

- Cell adhesion (CAMs) remodelling?
- Focal adhesions
- ECM-receptor interaction

Neurotransmitter pathways

Pathway associated with all 5 types of neurotransmitter increase up to 28 days

Classification by neurotransmitter production:

- Cholinergic neurones
- GABAergic neurons
- Glutamatergic neurons
- Dopaminergic neurons
- Serotonergic neurons

All types of synapse seem to be upregulated over the 28 days

Confocal imaging of MT structure

7000 cells/ MT

Day 0

βIII –Tubulin (Neurons)GFAP (Astrocyes)Hoechst (Nucleus)

Day 28

GFAP Hoechst

Brain Microtissue Structure

- Astrocyte cell number increases with microtissue age? and/or astrocytes migrate to the outer surface until ٠ day 14-28?
- At day 28 astrocytes show networking of processes throughout the microtissues ٠
 - In the mature brain, there are 5 to 10 times as many astrocytes as there are neurons and they form spindle like processes of around 50 µm which extend throughout the CNS
 - Feet like processes at the media/vascular interface (in the absence of a vascular network)?

GFAP

High content imaging assay development

Nuclear features, Calcium Content, and Mitochondria

Hoechst Calcium Mitochondria

Brain microtissue safety testing

14 day MTs vs 2 day MTs (maturity) & 72h vs 336h dosing

			100 x	2 day brain MT		14 day brain MT		Wilson <i>et al.,</i> 2014 (6 day)					de la compañía de la		
Compound	Expected outcome	C _{max} (μM)	Cmax	72 hr	336 hr	72 hr	336 hr	SH-SY5Y	PC12	hN2	DMSC contro 0.5%				State 1
		(µM) MSM HCS and ATP MSM neurite outgrowth				owth HCS	100								
Amoxicillin	Non-toxic	0.87	87	NR	NR	NR	NR	NR	500uM	NR	M uine				
Acetaminophen	Toxic, Non-neurotoxic	130	13000	8790	6450	13800	3230	1mM	NR	1mM	20 µl loroq				
Chloroquine	Neurotoxic	1.62	162	52.5	13.1	28.2	13.1	100uM	100uM	100uM	ch				
Colchicine	Neurotoxic	0.015	1.5	0.0138	0.00748	0.00954	0.00488	100 nM	1uM	100 nM					
Lead acetate	Neurotoxic	1.3	130	NR	>200	>200	23.1	NR	500uM	NR	μM icine				
Lidocaine	Neurotoxic	25.6	2560	>3000	1650	>3000	2120	500uM	500uM	1000uM	0.002 Colch	and the second			
Paclitaxel	Neurotoxic	2	200	45.4	NR	16.7	<0.08	10uM	10uM	10uM	00				
Tamoxifen	Neurotoxic	0.083	8.3	NR	6.37	9.45	5.45	1uM	1uM	NR	ate				
Vinblastine	Neurotoxic	0.24	24	0.0429	<0.008	<0.008	<0.008	1uM	1uM	100nM	0 μM I acet				
					-	_					2 Lead				
Negative (>100 x Cmax)															
Positive (<100 x Cmax)											Nuclei	Calcium	Mitochondrial	Merged	

- Brain microtissues will be maintained for either 2 days or 2 weeks before test compound exposure
- Microtissues were treated to reference compounds for either 72 hours or 14 days
- Microtissue size, DNA structure, calcium homeostasis, mitochondrial function and ATP determined.
- Responses compared to HCI neurite out growth assay (Wilson et al., 2014)
- Positive response based on 100x C_{max}
- Small evaluation set however brain microtissues improve compound prediction (14 day with 336 hour exposure).

Evaluating a combined approach

Structural/Cytotoxicity in Brain MTs

eCiphr®Neuro

- Primary rat cortical neurons
- · Validation of iPS cell derived neurones ongoing

Axion Biosystem's Array

CONTRACTOR AND A CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIP

10.10

- Firing Rate
- Spike Burst Rate
- Interburst interval
- Burst Duration
- Spike Synchrony

Neurite outgrowth Assay (HCS)

Summary and next steps

- Brain **MTs developed** 7000 cells/ well (ratio 1:1)
- Brain microtissues are resistant to 0.5% DMSO up to 28 days
- GFAP (astrocyte marker) and βIII-tubulin (neurone marker) immunofluorescence show an **increase in astrocyte number on the microtissue periphery** suggesting astrocyte proliferation and/or migration.
- Microtissues amenable to High Content Imaging Techniques
- Brain microtissues slight improvement compared with neurite outgrowth assay (Wilson *et al* 2014), limited data set.
- 336hr (chronic exposure) more sensitive
- Complements **other approaches** such as function ePhys assay (eCiphr®Neuro) and neurite outgrowth assay, further validation on going.
- Inclusion of **enodothelial cells**?
- Increased validation/reference compound data sets.

Any Questions?

- Collaborative approach
- Custom assay development
- Ranking compounds based on individual and combined endpoints
- Compound databases and modelling
- Integrating exposure of dose (e.g. C_{max})
- Specific Client Report Formatting and Data Formats
- 3D cellular assays

High content screening

Microelectrode array

3D cellular models

Stem cell models

iQue screener

Your contact:

Paul Walker Head of Toxicology +44.(0).1625.50.51.51 p.walker@cyprotex.com