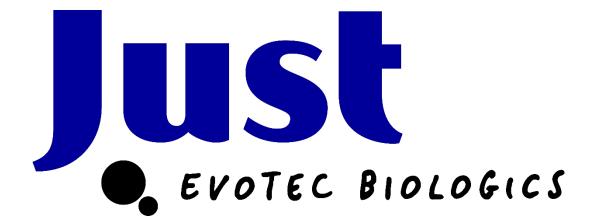

A Small-Scale Model for Studying Resin Interactions with Chemical Sanitants

Rachel Straughn, Rob Piper

Downstream Process Design, Just – Evotec Biologics, Seattle, WA

hree	out of	Four	Resins	Tested	Could	be	Sanitized	

	Bioburden (CFU)					
otein A Resin	Before PAA	2hr PAA	2hr PAA/EtOH			
ProA - 1	TNTC	0	0			
ProA - 2	TNTC	TNTC	~200			
- 2 Base Beads	TNTC	TNTC	TNTC			
ProA - 3	TNTC	0	0			
ProA - 4	TNTC	0	0			


- contaminations
- reduction methods

Production Day Bioburden (CFU)									
Unit Op	Day 8	Day 10	Day 12	Day 15	Day 19	Day 22			
SUB	0	nt	0	0	0	0			
SUSV1	0	0	0	0	0	0			
ProA-2 nd Pass	0	0	0	0	0	0			
ProA EL	nt	nt	0	0	0	0			
SUSV2	nt	0	0	0	0	0			
SUSV3	nt	0	0	0	0	0			
SUSV4	nt	0	0	0	0	0			
Final Pool			0	0	0	0			

Lessons Learned in Sanitization Model Development

- conditions
- 82(4), 1035-1039.

rachel.straughn@just.bio rob.piper@just.bio

Conclusions

• The apparent interactions between the ProA - 2 base matrix and PAA were identified as a potential cause of the observed

• These results informed process-scale column sanitization work, and ultimately resulted in a sanitization procedure that successfully enabled a bioburden-free GMP continuous capture process **for 14 days**⁴

• These results emphasize the importance of screening new materials for their compatibility with continuous processes – which includes chemical sanitants and other bioburden

> <u>Table 2.</u> nt = not tested. Bioburden results from an integrated continuous run. No bioburden was detected at any sampling point along the process, including the ProA 2nd Pass and ProA Elution pools⁴

• Spike resin with bacterial spores instead of vegetative bacteria, and hold for at least 1 day to mimic a worst-case contamination scenario

• Resuspend treated resin in TSB or other cell culture media for at least 2 days to confirm bioburden assay result

Conditions tested at small-scale should be verified at processscale, which includes applying cell culture media to a column for a prolonged period of time to mimic continuous capture

References

Leggett, M. J., et al. (2016). Mechanism of sporicidal activity for the synergistic combination of peracetic acid and hydrogen peroxide. Appl. Environ. Microbiol.,

Application note: Impact of sporicidal agent on MabSelect SuRe Protein A resin lifetime. GE Healthcare, 29262168, Edition AA (2017).

Nerandzic, M. M., Sankar C, T., Setlow, P., & Donskey, C. J. (2016). A cumulative spore killing approach: synergistic sporicidal activity of dilute peracetic acid and ethanol at low pH against Clostridium difficile and Bacillus subtilis spores. In Open forum infectious diseases 3(1), ofv206. Oxford University Press.

Piper, R. (2020). Protein A column sanitization: Enabling continuous antibody production for GMP manufacturing [PowerPoint Slides].

Contact Information

Just – Evotec Biologics 401 Terry Ave N, Floor #2 Seattle, WA 98109