

In vitro ADME & PK

P-glycoprotein Inhibition

Background Information

'In vitro inhibition studies are recommended to investigate whether the investigational drug inhibits any of the transporters known to be involved in clinically relevant *in vivo* drug interactions.'

⁴The European Medicines Agency (EMA) Guideline on the Investigation of Drug Interactions (Adopted 2012)

- P-gp is one of the most well-recognised efflux transporters expressed in many tissues including the intestine, brain and kidney¹.
- Inhibition of P-gp has shown to be responsible for several clinical drug-drug interaction. For example, clarithromycin can inhibit the transport of the P-gp substrate digoxin resulting in a clinically significant elevation of plasma exposure and a decrease in renal clearance².
- The International Transporter Consortium¹, the draft FDA guidance³ and the EMA guideline⁴ recommend investigating P-gp due to P-gp's clinical importance in the absorption and disposition of drugs.
- Cyprotex use MDCK-MDR1 cells to identify P-gp inhibitors using a range of test inhibitor concentrations in the presence of the clinically relevant probe substrate digoxin. This method conforms with the recommended methods within the International Transporter Consortium white paper¹, the draft FDA drug interactions guidance³ and the EMA drug interactions guideline⁴.

Protocol

Substrate 5 μΜ [³H]-Digoxin (clinically relevant substrate)

Test Article Concentrations Seven point IC_{50}

Direction Unidirectional (basolateral to apical)

Inhibitor Preincubation Time 30 min

Incubation Time 90 min

Growth Period 4 days

Analysis Method Liquid scintillation counting

Integrity Marker Lucifer Yellow

Data Delivery IC₅₀ (derived from corrected B-A P_{app}) **Interference at the level** of ATP binding cassette (ABC) and other transporters is increasingly being identified as the mechanism behind clinically important drug-drug interactions⁵.

Table 1

Inhibition of P-gp-mediated digoxin transport by literature inhibitors.

Inhibitor	Mean IC ₅₀ ± Standard Deviation (n=3)
Cyclosporin A (positive control)	0.931 ± 0.0574
Ketoconazole	8.83 ± 4.09
Verapamil	54.7 ± 10.3
Elacridar	0.284 ± 0.0452

The MDCK-MDR1 cell test system using the P-gp substrate digoxin is able to correctly identify known literature P-gp inhibitors with a range of different potencies.

The incubation conditions have been fully characterised for our chosen P-gp substrate, digoxin, based on time linearity and chosen substrate concentration being at least ten-times lower than the reported K_m, and as such IC₅₀ equates to K_i (assuming competitive inhibition).

References

- ¹ The International Transporter Consortium (2010) Nat Rev Drug Disc 9; 215-236.
- ² Wakasugi H et al. (1998) Clin Pharmacol Ther 64; 123-128.
- ³ Draft FDA Guidance for Industry In vitro metabolism- and transporter-mediated drug-drug interaction studies (2017).
- ⁴ The European Medicines Agency (EMA) Guideline on the Investigation of Drug Interactions (Adopted 2012).
- ⁵ Marchetti S et al. (2007) Oncologist **12**; 927-941.