

In vitro ADME & PK

BSEP, MRP2, MRP3 and MRP4 Inhibition

Background Information

'Proactive evaluation and understanding of BSEP inhibition is recommended in drug discovery and development to aid internal decision making on DILI risk..'

³Kenna JG *et al.*, (2018) *Clin Pharmacol Ther* **104(5)**: 916-932.

Related Services

P-gp BCRP Human SLC Transporters

- BSEP (bile salt export pump; ABCB11) is an ATP binding cassette (ABC) efflux transporter located on the canalicular membrane of hepatocytes, and is the major transporter for the secretion of bile acids from hepatocytes into bile in humans¹.
- Because of the link between BSEP inhibition and initiation of cholestatic DILI, the European Medicines Agency Guideline on the Investigation of Drug Interactions (2012) recommends *in vitro* screening of BSEP inhibition².
- MRP2 (multidrug resistance associated protein 2; ABCC2), MRP3 (ABCC3) and MRP4 (ABCC4) are ATP binding cassette (ABC) efflux transporters located on the canalicular membrane (MRP2) or sinusoidal membrane (MRP3, MRP4) of hepatocytes^{3,4}.
- MRP3 and MRP4 efflux transporters are upregulated under cholestatic conditions suggesting they provide a protective role aginst bile acid-mediated hepatotoxicity by alleviating increases in intracellular bile acid concentrations, which may occur as a result of impaired biliary excretion due to inhibition of BSEP^{3,4,5}. Understanding whether a compound is able to inhibit MRP transporters may therefore provide useful additional information towards helping evaluate the risk of DILI.
- Cyprotex offer BSEP, MRP2, MRP3 and MRP4 inhibition assays which investigate inhibition of the uptake of prototypical probe substrates (taurocholic acid for BSEP and estradiol 17β-D-glucuronide for MRPs) into inside-out membrane vesicles overexpressing the human ABC-transporter of interest.

Protocol

Test System

Sf9 insect cell-derived or mammalian (HEK293) cell-derived inside-out membrane vesicles overexpressing a single transporter (BSEP, MRP2, MRP3 or MRP4) incubated in the presence of ATP and AMP (absence of ATP).

Probe Substrate

[³H]-Taurocholic acid [³H]-Estradiol 17B-glucuronide

Test Article Concentrations

6 concentrations plus 0 µM (triplicate wells) (final test article concentrations dependent on customer requirements)

Time Points

Dependent on transporter

Analysis Method

Radiochemical detection using scintillation counting

Data Delivery

IC₅₀ Written report available on request

Figure 1

BSEP-mediated taurocholic acid (A) and MRP-mediated estradiol 17β -D-glucuronide (B-D) transport in the presence of a range of concentrations of inhibitor expressed as a percentage of vehicle control (mean ± standard deviation; n=3-9 wells, triplicate incubations performed on 3 separate occasions).

Table 1

Inhibition of human BSEP- and MRP-mediated transport of the prototypical substrates, taurocholic acid and estradiol 17ß-glucuronide, respectively.

Transporter	Substrate	Inhibitor	IC₅₀ ± Standard Deviation (µM)
BSEP	Taurocholic acid	Ketoconzole	8.78 ± 1.25
MRP2	Estradiol 17β-glucuronide	MK-571	22.6 ± 6.38
MRP3	Estradiol 17β-glucuronide	Terfenadine	33.5 ± 6.77
		MK-571	56.8 ± 7.23
		Fidaxomicin	1.06 ± 0.117
MRP4	Estradiol 17β-glucuronide	MK-571	0.555 ± 0.238
		Indomethacin	3.79 ± 0.342
		Ibuprofen	42.0 ± 23.7

The incubation conditions for each of the species have been fully characterised for the chosen substrates based on time linearity and uptake kinetics (V_{max} and K_m).

The chosen substrate concentration is much lower than the determined K_m , and as such IC_{50} equates to K_i (assuming competitive inhibition).

References

- ¹ Wang L et al., (2002) The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II. J Clin Invest 110(7); 965-972.
- ² The European Medicines Agency (EMA) Guideline on the Investigation of Drug Interactions (Adopted 2012)
- ³ Kenna JG *et al.*, (2018) Can bile salt export pump inhibition testing in drug discovery and development reduce liver injury risk? An International Transporter Consortium perspective. *Clin Pharmacol Ther* **104(5)**: 916-932.
- ⁴ Zamek-Gliszczynski MJ et al., (2018) Transporters in drug development: 2018 ITC recommendations for transporters of emerging clinical importance. Clin Pharmacol Ther 104(5): 890-899
 ⁵ Morgan RE et al., (2013) A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development. Tox Sci 136: 216-241