

In vitro ADME

BCRP Inhibition

Background Information

'In vitro inhibition studies are recommended to investigate whether the investigational drug inhibits any of the transporters known to be involved in clinically relevant in vivo drug interactions'

⁵The European Medicines Agency (EMA) Guideline on the Investigation of Drug Interactions (Adopted 2012)

- BCRP (Breast Cancer Resistance Protein/ABCG2) is expressed in the gastrointestinal tract, liver, kidney, brain endothelium, mammary tissue, testis and placenta¹.
- Inhibition of intestinal BCRP has shown to be responsible for several clinical drug-drug interactions involving specific statin common co-medications such as rosuvastatin and atorvastatin, resulting in their increased absorption and subsequent exposure (up to 2 fold increase in AUC)^{2,3}
- The International Transporter
 Consortium¹, the draft FDA guidance⁴
 and the EMA guideline⁵ recommend
 investigating BCRP due to BCRP's
 clinical importance in the absorption and
 disposition of drugs.
- Cyprotex use Caco-2 cells to identify BCRP inhibitors using a range of test inhibitor concentrations in the presence of the probe substrate estrone 3-sulfate, a good surrogate for the clinically relevant BCRP substrate rosuvastatin. This method conforms with the recommended methods within the International Transporter Consortium white paper¹, the draft FDA drug interactions guidance⁴ and the EMA drug interactions guideline⁵.

Protocol

Substrate

1 μ M [3 H]-estrone 3-sulfate (surrogate *in vitro* probe for clinically relevant BCRP substrate rosuvastatin 7)

Test Article Concentrations

Seven point IC₅₀ (triplicate wells)

Direction

Unidirectional (basolateral to apical)

Inhibitor Preincubation Time

30 min

Incubation Time

90 min

Growth Period

20 days

Analysis Method

Liquid scintillation counting

Integrity Marker

Lucifer Yellow

Data Delivery

IC₅₀ (derived from corrected B-A P_{ann})

'BCRP has been increasingly recognized for its important role in the absorption, elimination and tissue distribution of drugs and xenobiotics⁶.'

 Table 1

 Inhibition of BCRP-mediated estrone 3-sulfate transport by literature inhibitors.

Inhibitor	Mean IC ₅₀ ± Standard Deviation (n=3)
Novobiocin (positive control)	2.06 ± 0.884
Fumitremorgin C	0.250 ± 0.0540
Pantoprazole	11.0 ± 0.737
Elacridar	0.581 ± 0.165

The Caco-2 cell test system using the BCRP substrate estrone 3-sulfate is able to correctly identify known literature BCRP inhibitors with a range of different potencies.

The incubation conditions have been fully characterised for our chosen BCRP substrate, estrone 3-sulfate, based on time linearity and chosen substrate concentration being approximately ten-times lower than the reported $K_{_{\! m}}$ previously determined in membrane vesicles $^{\! 7}$, and as such IC $_{\! 50}$ equates to $K_{_{\! 1}}$ (assuming competitive inhibition).

References

¹ The International Transporter Consortium (2010) Nat Rev Drug Disc 9; 215–236

² Elsby R et al., (2012) Clin Pharmacol Ther **92(5)**; 584-598

³ Elsby R et al., (2016) Drug Metab Dispos **44**; 398-408

⁴ Draft FDA Guidance for Industry – In Vitro Metabolism and Transporter-mediated Drug-Drug Interaction Studies, 2017

⁵ The European Medicines Agency (EMA) Guideline on the Investigation of Drug Interactions (Adopted 2012)

⁶ Zhanglin N et al., (2010) Curr Drug Metab **11(7)**; 603-617

⁷ Elsby R et al., (2011) Xenobiotica **41(9)**; 764-783