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Abstract
Early identification of toxicity associated with new chemical entities (NCEs) is critical in preventing late-stage drug develop-
ment attrition. Liver injury remains a leading cause of drug failures in clinical trials and post-approval withdrawals reflecting 
the poor translation between traditional preclinical animal models and human clinical outcomes. For this reason, preclinical 
strategies have evolved over recent years to incorporate more sophisticated human in vitro cell-based models with multi-
parametric endpoints. This review aims to highlight the evolution of the strategies adopted to improve human hepatotoxicity 
prediction in drug discovery and compares/contrasts these with recent activities in our lab. The key role of human exposure 
and hepatic drug uptake transporters (e.g. OATPs, OAT2) is also elaborated.
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Introduction

Drug-induced liver injury (DILI) remains a leading cause of 
drug failure in terms of clinical trials and drug withdrawals 
(Watkins 2011; Cook et al. 2014). Approximately 18% of 
compound withdrawals from the market between 1953 and 
2013 were due to hepatotoxicity, making the liver the most 
frequent site of adverse drug reactions (ADRs) leading to 

drug failure (Onakpoya et al. 2016). Significant inter-species 
differences in drug absorption, distribution, metabolism, and 
excretion (ADME), resulting in differences in metabolic 
fates and the exposure of test compounds in blood and key 
tissues (Martignoni et al. 2006), confound the extrapola-
tion of data derived from pre-clinical species. Moreover, 
a large-scale comparison of animal versus human toxicity 
associated with 150 compounds found that rodent (primarily 
rat) and non-rodent (primarily dog) animal models predicted 
only approximately 50% of the human DILI events attributed 
to these drugs (Olson et al. 2000). More recent analyses 
have gone so far as to propose that the quality of preclini-
cal safety profiles may actually be inversely correlated with 
clinical stage project closure due to safety issues (Cook et al. 
2014). The pharmaceutical industry has responded to this 
challenge in the drive to develop human-focused predictive 
in vitro assay systems to address the risk of hepatotoxicity 
early in drug discovery. This is evident by the large number 
of publications (> 100; PubMed) over the last 5–10 years 
in this field.

In vitro human-based models for the prediction of hepa-
totoxicity have been developed utilising a range of cell 
sources and endpoints. These include the use of cell lines, 
e.g. HepG2, THLE and HepaRG cells and primary human 
hepatocytes with endpoints ranging from biochemical meas-
urements of (cell death) markers such as LDH leakage or 
ATP measurement to more mechanistic (pre-cytotoxic) 
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multiplexed endpoint measurement using techniques such 
as high-content imaging (HCI), as hepatotoxicity involves 
multiple mechanisms (see below; Lee 2003), and as such a 
multi-parametric approach may be important for the accurate 
evaluation of hepatotoxic potential. The current understand-
ing of DILI remains sub-optimal, with a number of marketed 
drugs (e.g. paracetamol) demonstrating dose-dependent 
predictable hepatotoxicity, which can often be identified 
in preclinical animal toxicology studies. Various underly-
ing molecular/cellular mechanisms have been identified as 
arising from either direct or off-target effects of either the 
parent drug or its metabolites. However, a substantial num-
ber of marketed drugs are idiosyncratic in nature occurring 
infrequently (typically 1 in 10,000 patients or less) and as 
such are often only identified following regulatory approval, 
leading to costly drug withdrawals (Lee 2003). Idiosyncratic 
DILI is almost undetectable in preclinical animal experi-
ments (Funk and Roth 2017; Robles-Diaz et al. 2016) and 
therefore poses a significant problem for the pharmaceutical 
industry. It is increasingly appreciated that delayed, idiosyn-
cratic hepatotoxicity is frequently the result of an adaptive 
immune attack on the liver (Mosedale and Watkins 2017). 
However, there are several in vitro studies using multi-par-
ametric approaches shown to identify hepatotoxicants con-
sidered idiosyncratic (Aleo et al. 2014; Schadt et al. 2015; 
Shah et al. 2015; Thompson et al. 2012). These studies pro-
pose that many examples of idiosyncratic drug-induced DILI 
have underlying intrinsic mechanisms that pose a risk for 
hepatotoxicity. In addition, recent developments have seen a 
shift in emphasis by the industry from single-cell 2D in vitro 
approaches to more complex 3D assays and the potential 
of multicellular microphysiological devices is also being 
evaluated within a vision to replicate the characteristics and 
response of human tissues in vivo. This article summarises 
the evolution of strategies within and across pharmaceutical 
companies to identify and minimise human DILI liabilities 
in the drug discovery and development process and recent 
developments from our own lab.

Human DILI classification

First, it is challenging to evaluate and cross-compare directly 
the relative sensitivity and specificity of DILI strategies 
from existing publications. This is related to a lack of con-
sistent reference compounds and also inconsistency in the 
assignment of in vivo DILI categories. Figure 1 highlights 
inconsistent DILI categorisation with 11 compounds hav-
ing both positive and negative DILI assignments across the 
literature. Pioglitazone, for example, is categorised as a Less 
DILI severity by Chen et al. (2016) but as an in vivo DILI 
positive by Garside et al. (2014), Proctor et al. (2017) and 
Gustafsson et al. (2014), and yet O’Brien et al. (2006), Xu 

et al. (2008), Dawson et al. (2012) and Persson et al. (2013) 
assume non-DILI potential. To evaluate DILI prediction 
strategies within early-stage drug discovery and develop-
ment, our reference compound training sets require stand-
ardisation. In an attempt to minimise the discrepancies seen 
within literature DILI classifications, Chen et al. (2011) 
published a reference database of drugs (a DILI rank data-
set; 287 drugs), which was part of the FDA’s Liver Toxicity 
Knowledge Base (LTKB) project. This was subsequently 
followed in 2016 with a larger reference set including 1036 
marketed drugs categorised using their developed schema 
to verify FDA drug label information using publicly avail-
able resources such as NIH LiverTox, Spanish DILI registry, 
Swedish Adverse Drug Reaction Advisory Committee Data-
base and the Drug-Induced Liver Injury Network (DILIN) 
in the USA (Chen et al. 2016). This DILI classification has 
started to be incorporated in to more recent studies (e.g. 
Aleo et al. 2019 and Williams et al. 2019). A comparison 
of 17 publications was performed over 769 tested reference 
compounds, aligned with (Chen et al. 2016), where possible 
(supplemental Table 1).

Supplemental Table 1 contains 1383 DILI and non-DILI 
reference compounds utilised from 19 publications (Aleo 
et al. 2019; Albrecht et al. 2019; Chen et al. 2011, 2016; 
Dawson et al. 2012; Garside et al. 2014; Gustafsson et al. 
2014; Khetani et al. 2012; O’Brien et al. 2006; Porceddu 
et al. 2012; Proctor et al. 2017; Sakatis et al. 2012; Schadt 
et al. 2015; Tolosa et al. 2012, 2019; Williams et al. 2019). 
If available and/or interpretable the in vivo DILI observation 
has been simplified to positive (+ ve) or negative (−ve), and 
the assay or strategy prediction included, 422 compounds 
are classified in the LTKB, however, only 189 of these com-
pounds are consistently classified as either DILI negative 
or positive across the publications. Interestingly 28 com-
pounds are consistent within the publications but disagree 
with the LTKB classification for example donepezil which 
has a “less-DILI concern” LTKB classification; however, in 
five publications donepezil is considered non-DILI. 11 com-
pounds in publications are considered DILI positive in vivo 
and are “ambiguous DILI concern” or non-DILI in Chen 
et al. (2016), e.g. furosemide, tolbutamide and trifluopera-
zine. The Cyprotex reference set of compounds comprised 
54 compounds: 29 assigned as hepatotoxic (Most DILI 
severity), 9 assigned as hepatotoxic (Less DILI severity) 
and 16 assigned as non-hepatotoxic (No/ambiguous DILI 
severity) according to Chen et al. (2016) when available; 
otherwise, a literature average was adopted.

The question remains how many reference DILI com-
pounds would be sufficient to evaluate the different pub-
lished DILI strategies. To date the greatest number of refer-
ence compounds tested in a single publication is the human 
hepatocyte imaging assay technology (HIAT; Xu et al. 2008, 
see Table 1). It certainly would be extremely ambitious to 
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Fig. 1  Distribution of assigned 
DILI categories and Cmax.tot 
values and across 10 literature 
references for 33 compounds. 
Cmax.tot (µM) values are plotted 
on a log scale when avail-
able in the literature. Green 
shading highlights compounds 
with negative DILI potential 
concordance, yellow shad-
ing highlights compounds of 
ambiguous DILI categorisa-
tion, red shading highlights 
compounds with positive DILI 
potential concordance across the 
literature. In vivo DILI potential 
( +) and no DILI potential (−) 
are assigned from the literature, 
aligned with the DILI severity 
category (top; Chen et al. 2016), 
unless not available NA (color 
figure online)
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test all 1383 reference compounds in Supplemental Table 1. 
Also, many strategies report high sensitivity and specificity 
although with less reference compounds. Perhaps an in vitro 
DILI strategy development consortium could recommend 
a “gold standard” reference compound set to be adopted 
with consideration of currently under-predicted reference 
compounds (see Supplemental Table 1) and consideration 
of chemical space, therapeutic areas, and therapeutic dose.

Development and evolution of pre‑clinical 
pharmaceutical DILI strategies

This review is primarily focused on strategies published by 
the pharmaceutical industry. However, additional publica-
tions deemed to have contributed significantly to this area 
have been included (see Table 1 for an overview of the strat-
egies discussed below).

Screening for hepatotoxicity has been part of pharmaceu-
tical companies’ strategies for several decades. However, 
most of the initial work in this area focused primarily on 
the assessment in rat hepatocytes, due to the limited avail-
ability of quality human tissue, with measurement of single 
biochemical endpoints or markers of cell death (e.g. LDH 
release, MTT, cellular ATP). With the availability of human-
based cell lines (e.g. HepG2, THLE and HepaRG) and the 
improved access and functionality of cryopreserved human 
hepatocytes, the industry has responded by developing more 
human-focused models. In addition, it has generally been 
accepted that, due to the complex nature of human DILI, the 
measurement of multiple mechanistic cell health endpoints 
or markers in these systems should hopefully better inform 
and improve DILI prediction.

Hepatic mechanisms of chemical injury can be quite 
diverse as illustrated in an initial review by Lee (2003) 
highlighting several mechanisms of action including cal-
cium homeostasis, steatosis, cholestasis, covalent binding, 
immune involvement, apoptosis and mitochondrial affects. 
Following on from this review, Pfizer in 2004 considered 
the importance of in vitro mechanistic endpoint assays and 
the potential to predict DILI liabilities for the pharmaceuti-
cal industry (Xu et al. 2004). This review compared simple 
cytotoxicity assays in HepG2 cells to a panel of pre-lethal 
mechanistic assays covering a range of toxicities: steatosis, 
cholestasis, phospholipidosis, reactive metabolites, mito-
chondrial toxicity, oxidative stress and drug interactions. 
The authors hypothesised that the rational use of one or 
more of these pre-lethal cellular mechanistic assays in meta-
bolically competent cells may allow scientists to select new 
candidates with an improved hepatic safety profile. This was 
the first recommendation that multiplexed screening for drug 
safety may be beneficial in pharmaceutical strategies. Two 
leading papers using HCI in either HepG2 cells or primary 

human hepatocytes (O’Brien et al. 2006; Xu et al. 2008) 
followed this review.

The O’Brien et al. (2006) paper used HepG2 cells and 
HCI to screen for drug-induced human hepatotoxicity (see 
Table 1 for assay details such as number of compounds 
tested). Reference compounds were assessed with an expo-
sure time of 72 h. After exposure to test compound, the end-
points measured were cell count, nuclear area, mitochondrial 
membrane potential (MMP), intracellular calcium levels and 
cell membrane permeability. The HCI approach was devel-
oped due to an initial evaluation of historical data from 
seven individual in vitro cytotoxicity assays (DNA synthesis, 
protein synthesis, glutathione (GSH) depletion, superoxide 
induction, caspase-3 induction, membrane integrity and cell 
viability), each assay alone yielded < 19% DILI reference 
compound sensitivity. Combination of three of the assays, 
DNA synthesis, GSH and cell viability improved the sensi-
tivity, however only achieving 25% with a specificity of 83% 
(Xu et al. 2004; O’Brien et al. 2006). The HCI-based assay 
dramatically improved sensitivity and specificity (Table 1) 
with DILI positive defined as the lowest HCI endpoint  IC50 
(or in the absence of dose–response < 100 µM) < 30 × total 
human plasma exposure levels (Cmax.tot). The incorporation 
of human exposure affords the opportunity to translate an 
in vitro flag or hazard into a quantitative assessment of risk. 
The most sensitive features measured were cell prolifera-
tion, mitochondria and nuclear area with the least sensitive 
parameters being membrane permeability and calcium lev-
els. The authors stated these multiplexed models might pro-
vide a valuable mechanistic understanding for compound 
prioritisation or de-risking. However, there are limitations 
with this approach in particular the lack of metabolic com-
petence in HepG2 cells, previously highlighted by Xu et al. 
(2004).

Pfizer published subsequently in 2008 on a further HCI 
approach, the HIAT assay, to predict clinical drug-induced 
liver injury (Xu et al. 2008). 110 reference compounds over-
lapped with the previous study with DILI compounds clas-
sified as withdrawn from the market due to hepatotoxicity; 
not marketed in the USA due to hepatotoxicity; assigned 
black box warnings from the Food and Drug Administra-
tion (FDA); marketed with hepatotoxicity warnings inde-
pendent of clinical reports of hepatotoxicity; and internal 
Pfizer compounds for which development was stopped due 
to hepatotoxicity. Any compound not meeting any of the 
above criteria was assigned as DILI negative. The com-
pounds were assessed in metabolically competent human 
hepatocytes with a 24-h exposure and concentrations up 
to 100-fold the total plasma therapeutic Cmax.tot or 1 µM if 
Cmax values were not available (i.e. top concentration tested 
was 100 µM). The rationale for the 100-fold ratio was to 
account for several factors: population exposure variability 
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(×6); potential for higher liver exposure via the portal vein 
for orally administered drugs (×6); and a further threefold 
to account for drug–drug and/or drug–diet interactions and 
potential for accumulation on repeat dosing (Xu et al 2008). 
The multiplexed endpoints measured were nuclear count, 
nuclear area, lipid intensity, reactive oxygen species (ROS) 
formation, MMP and GSH levels. Analysis of the endpoints 
produced a true-positive rate of 50–60% with a false-positive 
rate of 0–5% (see Table 1). Analysis of the contribution of 
individual features to the models’ predictivity showed that 
MMP, ROS and GSH contributed most to the prediction 
of DILI with cell number and nuclear count contributing 
least. The authors utilised a higher ratio of Cmax.tot (100×), 
which was purported as a reasonable threshold to differenti-
ate between toxic and non-toxic drugs. Further investigations 
into drug–drug combinations, long-term exposure and addi-
tional mechanistic endpoints were considered as additional 
factors, which could improve the model further with respect 
to predicting human DILI.

In 2012, AstraZeneca published a study investigating the 
role of inhibition of the bile salt efflux transporter (BSEP; 
ABCB11; Dawson et al. 2012) in cholestatic DILI. They 
study utilised both human and rat BSEP activity in mem-
brane vehicles. 42 drugs were classified as DILI, which are 
cholestatic/mixed hepatocellular, 22 as DILI, hepatocellular 
and the remaining 21 as non-DILI. The authors also consid-
ered drug dose and maximum unbound plasma concentration 
(Cmax,u) as additional DILI risk factors. The large distribution 
in Cmax,u values within DILI categories suggested that  Cmax,u 
alone is not a primary determinant of liver injury. Using 
an hBSEP inhibition  IC50 threshold of < 300 µM assigned 
24 out of 42 cholestatic/mixed compounds as positive, with 
4 positive hepatocellular compounds and 5 false-positives. 
Three out of the five false-positives had low drug exposures 
(Cmax,u < 0.002 µM) with only two from the DILI compounds 
with Cmax,u < 0.002 µM, and combining both cut-off criteria 
to determine DILI-positive compounds (Cmax,u > 0.002 µM 
and  IC50 < 300 µM). The authors concluded that Cmax,u has 
the potential to improve the assessment of the DILI risk 
posed by test compounds which inhibit BSEP in vitro, yet 
accepted that the presence of false-negatives within their 
assay highlights the existence of more complex relation-
ships and that cholestatic liver injury is only one contribut-
ing mechanism of DILI.

Also during this time, a third paper using a HCI approach 
was published using HepG2 cells at two time points (3 and 
24 h) and exposed to either 100 µM or retested at 1000 µM 
if no response was observed (Tolosa et al. 2012). The HCI 
endpoints determined were cell viability, nuclear morphol-
ogy, MMP, intracellular calcium and oxidative stress, several 
of which could be linked to in vivo mechanism. The mini-
mum effective concentration (MEC) from the HCI data was 

used and based on the strength of response a toxicity risk 
(TR) was calculated. Despite a quite high cut-off of 1000 µM 
high sensitivity and specificity (1 false-positive; ketotifen) 
was obtained (Table 1). Interestingly, this approach with-
out Cmax normalisation was capable of generating a severity 
score aligned with DILI in vivo, with this in mind it would 
be interesting to test a greater number of non-DILI com-
pounds. To address the low metabolic activity in HepG2 
cells, the authors later evaluated a small number of bioac-
tivated compounds in HepG2 cells transfected with CYP 
enzymes (Tolosa et al. 2013, 2018).

In the same year, AstraZeneca also published an internal 
strategy to screen and mitigate the risk of DILI in drug dis-
covery and development (Thompson et al. 2012). A panel 
of five in vitro assays was used to assess reference com-
pounds, 16 of which resulted in either discontinued develop-
ment, withdrawal or FDA black box warnings categorised as 
severe, 11 resulting in restricted drug usage and cautionary 
warnings categorised as marked concern, and 9 categorised 
as low concern which were associated with few findings.

The individual assays utilised were

• Toxicity to THLE cells (SV40 T-antigen-immortalised 
human liver epithelial cells) which do not express CYP 
enzymes

• Toxicity to THLE cells which selectively express 
CYP3A4

• Cytotoxicity in HepG2 cells grown in either glucose or 
galactose media to determine mitochondrial toxicity

• Inhibition of the human bile salt efflux transporter 
(BSEP; ABCB11)

• Inhibition of the rat multidrug resistance-associated pro-
tein 2 (MRP2)

• Determination of reactive metabolite exposure by deter-
mining the covalent binding in human hepatocytes 
together with the maximum prescribed dose and fraction 
of metabolism contributing to covalent binding.

Even though drugs classified as severe or marked exhib-
ited activity in individual assays, it was apparent that many 
examples from these categories did not exhibit any activity 
(13 out of 27). Furthermore, three out of the low concern 
drugs responded in at least one assay, therefore a combined 
endpoint approach was assessed to determine an aggregate 
score for compounds with data from the individual assays. 
Using a panel score of two gave sensitivity of 48% and 
specificity of 89%. The incorporation of dose and covalent 
binding burden with these panel scores to determine an 
integrated in vitro hazard matrix, using cut-offs of a panel 
score > 2 and a CVB burden of > 1 mg/day, improved over-
all prediction (Table 1). Limitations include a small test set 
due to the requirement for radiolabelled compound and lack 
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of enzyme activation aside from CYP3A4 as other CYP 
enzymes bioactivate many drugs. Additional DILI mecha-
nisms could be evaluated by use of multi-parametric HCI 
approaches as described above. Results support the con-
cept of an integrated approach to risk assessment, which 
can be utilised in drug discovery to mitigate risk for human 
ADR’s and was part of AstraZeneca’s strategy at the time 
of publication.

AstraZeneca continued work in this area by later pub-
lishing work utilising the THLE-Null and THLE-3A4 cell 
models in an automated screening platform within an MTS-
reduction assay following 24-h exposure (Gustafsson et al. 
2014). The authors utilised literature and US FDA product 
labels to categorise their compound set into 5 DILI catego-
ries; severe, high concern, DILI reports (considered +ve 
for DILI), ALT elevations and no liver signals (−ve, DILI). 
Interestingly, considering the perceived importance of CYP 
mediated metabolism in DILI, Gustafsson et al. reported 
high specificity in both THLE-Null cells  (EC50 ≤ 200 µM) 
and THLE-Null/THLE-3A4  EC50 ratio (≥ 1.4) yet modest 
sensitivity (Table 1) with many of the drugs labelled with 
DILI concerns not responding.

GSK also published an approach in 2012 for the screen-
ing of DILI risk in preclinical candidate selection (Saka-
tis et al. 2012). Either in-house data or literature data were 
sourced for CYP metabolism-dependent inhibition (MDI, 
179 compounds), GSH adduct formation (190 compounds), 
covalent binding data (53 compounds) and clinical dose 
for all compounds. A decision tree was developed based 
upon a response in either CYP MDI (> fivefold cofactor-
dependent decrease in  IC50 of any enzyme) and GSH adduct 
observed (both cofactor dependent and independent, of any 
intensity) in conjunction with daily clinical dose estimated 
to be ≥ 100 mg. If both in vitro assays were negative, the 
chemical would be progressed to pre-candidate selection. 
If an in vitro assay is positive addition investigatory GSH 
assays in S9 or hepatocytes could be performed to confirm 
the risk. Further, if the clinical dose is also estimated to 
be ≥ 100 mg termination may be considered, or further con-
sideration of covalent binding can be taken into account; 
if ≥ 200 pmol equiv/mg protein then the progression of the 
compound would be reviewed. 76% of drugs with a daily 
dose < 100 mg were non-hepatotoxic from the authors’ anal-
ysis, ~ 65% of hepatotoxic drugs presented with ≥ 100 mg 
daily dose or marked GSH adduct formation, marked CYP 
MDI, or covalent binding ≥ 200 pmol equiv/mg. Unfortu-
nately, the raw data were not provided; however, an analy-
sis of the performance of this approach was calculated (see 
Table 1 and Supplemental Table 1).

Subsequently, H. Lundbeck A/S reported their approach 
to predict human drug-induced liver injury (Persson 
et al. 2013). They developed a novel HCI assay based on 

the measurement of six parameters: nuclei size, plasma 
membrane integrity, lysosomal activity, MMP and mito-
chondrial area in HepG2 cells. HepG2 cells were exposed 
to the compounds for 24 or 72 h at a fixed concentration 
range of 0.01–100 µM. Using a 100-fold therapeutic index 
(TI) which is the ratio of the in vitro MEC and therapeu-
tic Cmax.tot to classify a hepatotoxic and non-hepatotoxic, 
most individual parameters had a sensitivity and specificity 
of ~ 50% and ~ 90%, respectively. The authors stated that one 
of the main priorities of such an early DILI screen should 
be to avoid deselecting potentially promising compounds 
in drug discovery programs. Using a zonal classification 
system based on the nuclei size, MMP and human Cmax.tot 
values, they were able to identify an area without a single 
false-positive compound, whilst still maintaining sensitiv-
ity (Table 1). This substantiated the initial observation by 
O’Brien et al. (2006) that nuclei size and MMP are highly 
predictive parameters for the prediction of human DILI. The 
lack of sensitivity is again likely due to the low metabolic 
capability of HepG2 cells (as above), with compounds that 
require metabolic activation such as bromfenac were nega-
tive. The authors concluded that an approach as described 
above utilised in a drug discovery setting allows for decision 
making by project teams to prioritise hit series during the 
hit-to-lead process and allows for the de-risking of potential 
human DILI liabilities.

AstraZeneca reported an alternative strategy from their 
earlier combined mechanistic assay approach in 2012 with 
an HCI DILI strategy in 2014 (Garside et al. 2014). HepG2 
cells, HepG2 combined with Aroclor-induced rat liver S9 
(rS9) and primary human hepatocytes were used. Cells were 
exposed to reference compounds (up to 250 µM) and mul-
tiplexed endpoints measured at 4 h and 24 h (cell count, 
MMP, ROS formation), 24 h and 24 h with 24-h recovery 
(caspase-3 activation), 24 h with 24-h recovery only (cell 
stress responses; hsp70/72 and cell cycle arrest; pH3) and 
48 h (phospholipidosis and neutral lipid accumulation). 
The individual endpoint that identified DILI with the great-
est precision was ROS formation in hepatocytes after 24-h 
exposure with a sensitivity of 41% and specificity of 86%. 
The authors refrained from normalising the in vitro data 
to unbound in vivo plasma concentrations due to concern 
over assumptions that drugs added to the cells remain free 
in solution and that there is no binding to proteins or lipids 
present in the media or cell, plus cellular accumulation 
related to carrier-mediated transport. The inclusion of rS9 
with HepG2 cells did not show any significant improvement 
in detecting DILI compounds other than cyclophosphamide, 
a compound known to be metabolised by CYP2C19 and 
CYP3A4 to a cytotoxic metabolite (Otto et al. 2008; Stein-
brecht et al. 2019). However, utilising a hierarchical cluster-
ing approach to group drugs based on the similarity of their 
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assay profiles (all in vitro endpoints utilised) provided the 
most sensitive approach (Table 1). The authors concluded 
that if this approach were used to support compound profil-
ing in drug discovery it would aid in the selection of com-
pounds with a low risk of DILI liability and potentially other 
target organ toxicities.

In this same year, UCB published an evaluation of a liver 
co-culture model (Atienzar et al. 2014). Dog hepatocytes 
combined with non-parenchymal stromal cells, primary 
human hepatocytes and HepG2 cells were used and dosed 
for 5 days with a repeat dose at day 3. Cell viability was 
determined by measuring cellular protease activity and GSH 
content with a response  (LC50) from either assay at less than 
100 × Cmax.tot considered hepatotoxic. As such, most of the 
human hepatotoxic drugs were detected in HepG2 cells, pri-
mary human hepatocytes and in the dog co-culture model 
with a sensitivity of 82, 83 and 78%, respectively. Never-
theless, the specificity was low for HepG2 cells (36%) and 
46% for hepatocytes compared to 73% for the canine model; 
however, only 11 non-hepatoxic compounds were assessed 
(Table 1). It is also well accepted that primary hepatocytes’ 
cultures are limited in their ability to maintain hepatocyte 
functionality over an extended time course (Lecluyse 2001).
The overall higher specificity of the liver co-culture mod-
els could be a consequence of their ability to mimic better 
in vivo liver morphology and functions such as albumin and 
urea production as well as active bile canaliculi.

Tomida et al. (2015) from Kaken Pharmaceuticals used 
HepaRG cells as a human liver in vitro model following 
studies showing that HepaRG cells maintain many liver-spe-
cific functions such as expression of CYP enzymes, nuclear 
receptors, membrane transporters, and phase II metabolising 
enzymes at levels comparable to those of human primary 
hepatocytes (Aninat et al. 2006; Guillouzo et al. 2007). Hep-
aRG cells were exposed to the test set of compounds for 24 h 
at a range of concentrations equivalent to 1.6-, 6.3-, 25- and 
100-fold the therapeutic Cmax.tot. Following treatment cellu-
lar health was assessed using several endpoints: cell viabil-
ity, GSH content, caspase 3/7 activity, lipid accumulation, 
LDH leakage and albumin secretion. A positive in one end-
point from the multi-parametric assay was determined if cut-
off values of < 70%, < 60%, > 4.9-fold, > 2.8-fold, > 1.9-fold 
and < 40%, respectively, were reached within 100 × Cmax.tot. 
This approach gave a sensitivity of 67% and specificity of 
73%. Applying a 25 × Cmax.tot cut-off decreased the sensitiv-
ity to 41% with a concurrent increase in specificity to 87%, 
a relatively low sensitivity compared to other studies (see 
Table 1).

In 2015, Pfizer also published a strategy to combine hepa-
totoxic liabilities (cytotoxicity in THLE or HepG2 cells), 
BSEP inhibition, or mitochondrial inhibition/uncoupling 
(Shah et al. 2015). A Cmax.tot of > 1.1 µM alone distinguished 
most DILI from non-DILI compounds with high sensitivity 

(80%) and specificity (73%), whereas Cmax.u alone gave a 
sensitivity of 52% and specificity of 74% at > 0.51 µM. The 
sensitivity of the three assays BSEP, mitochondrial effects 
and cytotoxicity was relatively low with Cmax.tot > 1 µM and 
 IC50 < 100 µM providing 33, 20 and 27% sensitivity respec-
tively with specificity ≥ 96%. A combination of all three 
approaches gave poor sensitivity of with no false-positives 
(Table 1).

Roche also published their approach in 2015 (Schadt 
et al. 2015) which utilised a range of in vitro endpoints to 
minimise DILI risk in development. The endpoints meas-
ured were generation of reactive metabolites (CYP3A4 
time-dependent inhibition and GSH-adduct formation), 
BSEP inhibition, mitochondrial toxicity and cytotoxicity in 
NIH3T3 fibroblasts and primary human hepatocytes. Com-
pounds were classified according to FDA drug labelling 
(Chen et al. 2011). A comparison of the predictivity of indi-
vidual endpoints was calibrated with either dose or plasma 
exposure from typical clinical dosing regimens. Incorporat-
ing all endpoints and calibrating with dose-reported sensitiv-
ity and specificity values of 76% and 82%, the specificity is 
amongst the lowest reported (Table 1) The authors conclude 
that the best option to mitigate the risk of idiosyncratic DILI 
potential in drug discovery and development is to reduce the 
major compound-related risk factors, by utilising mechanis-
tic screening assays with rapid turnaround times to support 
lead optimisation.

Astellas Pharmaceuticals published an HCI approach for 
the prediction of human hepatotoxicity (Saito et al. 2016). 
In this study, the in vitro systems assessed were HepG2 and 
HepaRG cells cultured as monolayers. The two liver-derived 
cell lines were exposed to the test compounds for 1, 6 and 
24 h after which time the following endpoints were meas-
ured: nuclear count, nuclei size and intensity, ROS intensity, 
membrane permeability, MMP intensity, GSH content and 
cellular ATP. The lowest observable adverse effect concen-
tration (LOAEC) was determined for each of the param-
eters, broadly equivalent to an MEC threshold used in other 
studies. Comparison of the responses in HepG2 cells versus 
HepaRG cells showed that changes to ROS generation and 
GSH decreases were observed at lower concentrations in 
HepaRG compared with HepG2 cells. In addition, seven 
of these compounds were known to form CYP-dependent 
GSH conjugates highlighting the metabolic differences 
between the two cell types. In addition, the authors utilised 
a scoring approach to predict human DILI potential based 
upon incorporating all of the individual endpoints. Using an 
approach based upon two individual parameters responding 
at 100 × Cmax.tot gave a sensitivity and specificity of 90.9% 
and 76.6% in HepaRG cells and 100% and 70.6% in HepG2 
cells. More compounds would need testing to confirm which 
cell model is most predictive and also if the high sensitivity 
observed.
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Sison-Young et al. (2017) published on a pharmaceutical 
multi-centre assessment of single-cell models for prediction 
of hepatotoxicity. This work was part of the EU-funded MIP-
DILI project focused on the development and evaluation of 
in vitro approaches for the prediction of human DILI. The 
cell models assessed incorporated primary human hepato-
cytes, HepG2, Upcyte and HepaRG cells. A relatively small 
compound set was used to assess the predictivity of the 
models with nine DILI compounds and four non-DILI com-
pounds screened in each. Cells were dosed for either 24 h or 
dosed daily over a 72-h period with cell viability determined 
(cellular ATP). This approach was taken to assess critically 
the cell models utilised across the pharmaceutical industry, 
with the results indicating that none of the four cell mod-
els assessed could distinguish between DILI and non-DILI 
compounds based upon the in vitro data alone. The authors 
concluded that particularly when using simple endpoints 
none of these models were suitable for the prediction of 
DILI. However, when  EC50 < 20 × Cmax.tot was incorporated, 
primary human hepatocytes were the most accurate model 
for identifying DILI with eight out of the nine DILI true-
positive (TP) compounds detected after 72 h but not 24 h 
with one false-positive (FP), closely followed by HepG2 
cells (7 TP and 0 FP). The recommendation was that more 
complex cells’ models need to be assessed. These could 
include co-culture models with the incorporation of non-
parenchymal cells or long-term exposure in 3D approaches 
in conjunction with more sophisticated endpoints for adverse 
cell responses. This was also acknowledged in a perspective 
from the pharmaceutical industry IQ Consortium DrugSafe 
(Butler et al. 2017).

Pfizer recently published their latest DILI strategy using 
modelling approaches instead of binary endpoint analysis 
(Aleo et al. 2019). The in vitro assays used were cytotox-
icity in THLE or HepG2 cells, mitochondrial dysfunction 
(inhibition and uncoupling) using isolated mitochondria, 
plus the Glu/Gal assay and bile salt export pump (BSEP) 
inhibition, screened against a library of 200 reference drugs 
from the LTKB annotated as Most (79), Less (56), No (47), 
and Ambiguous-DILI-concern (18). A safety margin was 
calculated for each in vitro assay by dividing the  IC50 (μM) 
values by a Cmax.tot with the exception of the Glu/Gal assay. 
Hepatic risk matrix (HRM) scores were assigned to each 
(< 1, 1–10, 10–100, and > 100 × clinical Cmax,total = 4,3,2,1,0, 
respectively). The Glu/Gal assay was score in the absence 
of dose normalisation (> 3, > 2 to < 3 and < 2 ratio scor-
ing 4, 2 and 0, respectively). The total of these scores was 
combined with either of two scores from physiochemical 
models, which were Rule of Two (cLogP ≥ 3 and total daily 
dose ≥ 100 mg; Chen et al. 2013) giving a score of 4 or drug 
ionisation state partitions for daily dose, cLogP, and frac-
tional carbon bond saturation (Fsp3; Leeson 2018) depend-
ing upon if the drug was an acid, base or neutral giving 

a maximum score of 4. These two approaches were then 
classified as DILI positive with two cut-offs for each (rule of 
two hybrid HRM scoring system ≥ 3 or ≥ 8; partition hybrid 
HRM scoring system ≥ 4 or ≥ 8). This approach attempted to 
predict most-DILI-concern compounds only and considered 
Less-DILI as part of the negatives, unlike other authors. The 
sensitivity and specificity of this modelling approach were 
70% and 69% respectively for the ≥ 3 score or 41% and 97% 
respectively for the ≥ 8 score for the HRM combined with 
Rule of two systems. For the HRM combined with partition 
system, the sensitivity and specificity were 80% and 58% 
respectively for the ≥ 4 score or 48% and 94% respectively 
for the ≥ 8 score. Interestingly using this approach but clas-
sifying Less-DILI compounds as positive would have similar 
specificity with scores > 7.5; however, the sensitivity would 
drop by > 10% (Table 1). Furthermore, the incorporating of 
other mechanistic assays (reactive metabolite and cytotoxic 
metabolite generation and hepatic efflux transport inhibition, 
other than BSEP) to the HRM had minimal beneficial impact 
in DILI prediction. Using the Partition HRM hybrid scoring 
model successfully classified TAK-875 (liver injury in Phase 
3 clinical trials) as a DILI concern and was also valuable in 
evaluating the relevant DILI risk for several compounds in 
development (Aleo et al. 2019).

During the drafting of this manuscript, the Horizon 2020 
EuToxRisk project published an initial DILI strategy (Albre-
cht et al. 2019). The authors evaluated cytotoxicity in both 
PHH (three donors) and HepG2 cells, concluding the PHH 
approach to be more robust. Using an evaluation of test per-
formance, parameters by quantifying the differentiation of 
DILI and non-DILI compounds (Toxicity Separation Index; 
TSI) and the degree to which hepatic blood concentrations 
in vivo can be estimated (Toxicity Estimation Index; TEI). 
The TSI and TEI evaluation indicated a 48-h exposure was 
comparable to 7 days and an improvement over 24 h. This 
finding is in contrast to previous studies that have demon-
strated the improved predictive power of repeat dosing over a 
longer exposure period (Bell et al. 2016; Proctor et al. 2017). 
In addition, the best parameter of dose normalisation was 
the 95%-population-based percentile of Cmax.tot (comparable 
to previous utilised Cmax.tot values, see Fig. 1), rather than 
Cmax.u as also reported previously (e.g. Shah et al. 2015). 
With a support vector machine-based classifier, using an 
 EC10 − 1.75 TSI cut-off from the median donor–response 
gave high accuracy of 93% (two false-positives: acetami-
nophen at Cmax.tot = 109 µM and glucose). This TSI approach 
is reported to allow extrapolation of DILI risk by generating 
the probability of hepatotoxic oral doses and blood concen-
trations. Interestingly, due to the separation between DILI 
and non-DILI compounds observed, a Cmax.tot cut-off rang-
ing from < 31× to < 99× would yield equivalent sensitivity 
and specificity. As such, it would be interesting to see the 
performance of this approach with a larger dataset.
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Evaluation of 3D approaches for DILI 
evaluation

Pharmaceutical DILI strategies within the industry have 
gravitated towards evaluating 3D cellular systems as poten-
tially more predictive models of the DILI response in 
humans. Butler et al. (2017) stated that the predictivity of 
2D cellular models may not be adequate hence the drive 
to build and evaluate more complex in vitro systems. The 
concept of 3D cell culture models is not new and 3D mod-
els utilising a range of cell types have been in existence for 
many years. However, improvements in cell supplies and 
in vitro techniques have allowed this approach to be become 
more accessible, reproducible, cost-effective and less labour-
intensive thereby making it more amenable for use in screen-
ing strategies.

Tissue function cannot be readily reproduced in vitro 
without the appropriate tissue architecture mimicking the 
in vivo scenario. Concerning the liver, the functional unit 
for drug metabolism and hepatotoxicity is the hepatic lob-
ule consisting of primarily hepatocytes with Kupffer cells, 
stellate cells and endothelial cells radiating out from a cen-
tral vein. The apical membrane of hepatocytes forms the 
continuous network of bile canaliculi and the basal mem-
brane makes contact with the sinusoidal network. As such, 
the liver architecture is complicated to recapitulate in vitro 
ideally requiring a polarised multicellular system, with a 
bile and sinusoidal network and vasculature (see review by 
Lelièvre et al. 2017 on 3D in vitro model development). 
Hepatocytes cultured on fibronectin or collagen sandwiches 
maintain hepatocyte polarity, express functional transporters 
in culture and are a useful tool to predict hepatobiliary trans-
port in vivo (Bi et al. 2006; Ziegerer et al. 2016). However, 
sandwich cultures have been shown to de-differentiate by 
selective remodelling of the mitochondrial and metabolic 
proteomes (Rowe et al. 2013; Heslop et al. 2017), with 
resulting decline in liver functions within 24 h (Khetani and 
Bhatia 2008).

Following on from the HCI approaches in sandwich cul-
tures (the HIAT assay, Xu et al. 2008), Pfizer published their 
assessment of a 3D DILI assay amenable to long-term drug 
dosing (Khetani et al. 2012). They utilised human hepato-
cyte micropatterned co-cultures (hu-MPCC) in combina-
tion with a multi-parametric approach monitoring albumin 
production, ATP content, urea secretion and GSH content 
following compound exposure. Reference compounds were 
tested using hu-MPCC (at 1, 30, 60, and 100 × Cmax.tot, with 
2 repeat doses over 5 days), the compounds were selected 
and evaluated against negative DILI compounds in the 
HIAT. A positive was considered if hu-MPCC gave a  TC50 
in at least one of the multiplexed assays at 100 × Cmax.tot. All 
HIAT-positive compounds were also positive in hu-MPCC, 

and 12/25 DILI compounds negative in HIAT were positive 
in hu-MPCC, however, with a gain in one false-positive. As 
suggested here due to differences in in vivo DILI assign-
ments across studies, alignment with the Liver Toxicity 
Knowledge Base (LTKB; Chen et al. 2011) should help 
resolve these cross-lab and system comparisons.

One limitation of the hu-MPCC is that long-term dos-
ing is not possible across various donors due to the decline 
in liver function in serum-free dosing medium (beyond 
9 days; Khetani et al. 2012). To move beyond this potential 
limitation the pharmaceutical industry has looked towards 
scaffold-free 3D models either using a hanging drop meth-
odology or utilising ultra-low attachment (ULA) plates 
(Messner et al. 2013; Proctor et al. 2017; Bell et al. 2016). 
Bell et al. (2016) reported on the development and charac-
terisation of a 3D primary human hepatocyte (PHH) model 
system for DILI as part of the MIP-DILI project. Using the 
ULA method to form 3D hepatocyte spheroids, the authors 
showed that PHH spheroids can be maintained for at least 
5 weeks in serum-free conditions: a considerable increase in 
the potential to perform long-term dosing whilst minimising 
the binding of drugs or their metabolites to serum proteins 
which may impact drug sensitivity. Further characterisation 
also found that these spheroids maintained albumin secretion 
and CYP levels over this period. By evaluating the response 
to five hepatotoxins (amiodarone, bosentan, diclofenac, 
fialuridine and tolcapone) over a range of time points (48 h, 
7 days and 28 days) using three hepatocyte donors, it was 
observed that repeat long-term dosing improves sensitiv-
ity to DILI compounds. The ATP  EC50 values were lower 
than 30 × Cmax.tot for all five compounds following a 7-day 
exposure. This was particularly evident for fialuridine, 
which showed no toxicity at 48-h exposure with increasing 
toxic response observed at 7 and 28 days. Based upon these 
responses, albeit with a limited number of reference com-
pounds indicated, this 3D system could be a powerful tool to 
predict DILI during preclinical drug development. Interest-
ingly, the inter-donor sensitivity of 3D hepatocytes appeared 
relatively minor depending upon the cut-off used, despite 
previous observations of differential liver donor metabolic 
capacity (Shimada et al. 1994; Takayama et al. 2014).

The previous study was followed by Proctor et al. (2017) 
who published an approach that again was part of the MIP-
DILI project, which included Genentech and AstraZeneca. 
This approach compared the use of PHH in both 2D and 
3D formats. Drugs were assigned into one of five catego-
ries with respect to DILI classification (Garside et al. 2014) 
as opposed to the DILI rank dataset (Chen et al 2016; see 
Supplemental Table 1). For this study, those drugs assigned 
severe, high and low clinical DILI concern were all consid-
ered DILI positive and those drugs classified by elevations 
in ALT and other enzymes in the clinic with no DILI clinical 
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observations were considered non-DILI. The approach com-
pared the response of PHH cultured in a collagen-coated 
2D format exposed for 48 h with the response in 3D PHH 
co-cultured with Kupffer cells (human liver microtissues; 
hLiMTs) using the hanging drop method (Messner et al. 
2013), exposed for 14 days with repeat dosing. In both 
assays, the endpoint used to measure viability was cellular 
ATP, a range of thresholds was used to determine the predic-
tivity of both approaches. Using a predefined  IC50 threshold 
of 100 µM, the sensitivity and specificity of 2D were 33.3% 
and 85.4%, respectively; this increased to 60.9% and 85.4% 
in hLiMTs. Interestingly normalising the assay responses 
to Cmax.tot  (IC50 < 100 × Cmax.tot) slightly improved the sen-
sitivity of 2D cultures increasing to 40.6% with no change 
in specificity. In direct contrast to previous studies such as 
Shah et al. (2015) where a Cmax.tot cut-off alone (> 1.3 µM) 
was able to distinguish DILI from non-DILI (sensitivity 
73%, specificity 73%); in this study, Cmax.tot normalisation 
actually decreased the sensitivity and specificity slightly (to 
59.4% and 80.5% respectively). However, not all compounds 
were tested to 100 × Cmax.tot, due to solubility, higher con-
centrations have been tested in other studies. In addition, 
the finding from Bell et al. (2016) was confirmed whereby 
long-term dosing in combination with increased repeat dos-
ing improved the sensitivity of 3D models. The 3D-based 
approach improved prediction of human DILI when com-
pared to a comparative approach in 2D; however, there were 
still a significant number of DILI compounds (23) incor-
rectly classified (~ 40%, where  IC50 > 100 µM).

To assess the reproducibility, robustness and a matched 
comparison of PHH 2D sandwich cultures and 3D spheroids 
formed using ULA plates for predicting DILI, Bell et al. 
(2018) published a multi-centre approach supported by the 
MIP-DILI project that included AstraZeneca, Janssen Phar-
maceuticals, GSK and Orion Pharma. The approach char-
acterised the proteomic phenotype and drug metabolising 
capability of primary human hepatocytes in the two cellular 
models. In addition, five DILI compounds were screened 
in both models across six participating laboratories, and 
with hepatocytes from three different donors, viability was 
assessed by measurement of cellular ATP. Repeat dosing 
was performed in matched conditions over 72 h (single treat-
ment), 7 days (three treatments) and 14 days (six treatments) 
in both models. The authors concluded that primary human 
hepatocytes cultured as 3D spheroids were more function-
ally stable and exhibited increased sensitivity, following 
repeat dosing, for the prediction of hepatotoxicity when 
compared to the responses in 2D culture. They proposed 
that differences in the proteomic phenotype and metabolic 
capability of the 3D spheroids may underlie some of the 
rationale for the increased sensitivity as the dosing regime 
and time points were matched. 3D spheroids, for example, 

demonstrated higher CYP1A2, CYP2C8, CYP3A4 and drug 
transporter activity when compared to levels in PHH 2D 
sandwich cultures. In addition, the inter-laboratory vari-
ability was similar between both models. The authors also 
concluded there was little significance in sensitivity between 
3D spheroids from different donors. Nonetheless, bosentan 
and diclofenac were only detected by one of three donors at 
a 10 × Cmax.tot cut-off following a 14-day exposure.

In a further publication from the MIP-DILI project by 
Vorrink et al. (2018), a 3D PHH spheroid model was stud-
ied, in chemically defined media, formed using ULA plates. 
A repeated drug-dosing regimen (six in total) over 14 days 
was used with an assessment of cellular ATP (Vorrink et al. 
2018). Spheroids were exposed to 1×, 5×, and 20 × Cmax.tot 
concentrations with 48 of the 70 DILI-associated compounds 
correctly predicting positive  (IC20 < 20 × Cmax.tot cut-off) and 
all 53 of the non-DILI compounds were correctly predicted 
as negative. Unfortunately, the raw data were not provided 
(see Table 1), as such it is only possible to ascertain from a 
colour chart which compounds are positive and negative at 
each concertation. Two compounds, iproniazid (DILI) and 
propranolol (non-DILI), are positive at 5 × Cmax.tot but curi-
ously not positive at higher concentrations, the rationale for 
which is not given. A cross-comparison of human hepato-
cyte spheroids with those from animals used in pre-clinical 
studies (mouse, Wistar rat, mini-pig and rhesus monkey) was 
also investigated using 11 compounds (4 non-DILI and 7 
DILI). The human hepatocyte spheroid model displayed the 
highest degree of correlation with clinical DILI which again 
emphasised the requirement for human cell-based models. 
The authors argued that whilst studies in pre-clinical species 
constitute indispensable regulatory requirements, in vitro 
3D human-relevant hepatic models can help to minimise 
late drug-development failures resulting from inter-species 
differences. An example of this is the case of fialuridine 
whereby pre-clinical animal studies failed to predict the 
resulting fatal hepatotoxicity exhibited during phase I clini-
cal trials (Manning and Swartz 1995; McKenzie et al. 1995) 
and yet PHH spheroid models combined with chronic com-
pound exposure can detect this hepatotoxicity.

AstraZeneca in 2019 published their latest DILI strat-
egy using a Bayesian machine learning modelling approach 
(Williams et al. 2019). This strategy is the first approach 
to combine a 3D liver model (HepG2 C3A spheroid), 
in vitro assays (BSEP, mitochondrial toxicity; Glu/Gal in 
HepG2 cells and bioactiviation; BA) with physiochemi-
cal parameters (cLogP) and exposure (Cmax.tot). The rela-
tive contribution of the 3D model is difficult to ascertain 
due to the Bayesian modelling approach applied, however, 
using a human exposure normalisation approach (e.g. Vor-
rink et al. 2018;  EC50 < 20 × Cmax.tot) gives a sensitivity and 
specificity of 68% and 82%, respectively (see Table 1 for 
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Bayesian approach). As the reference compounds do not 
overlap entirely with that of Vorrink et al. (2018), it is dif-
ficult to directly compare; however, the lower accuracy of 
this 3D model maybe due to the fact that the C3A clone of 
HepG2 cells was used rather than PHH. C3A spheroids have 
considerably lower CYP activity; in addition, only a 4-day 
time course was utilised. AstraZeneca are reputedly devel-
oping a high-throughput PHH spheroid assay, which could 
be incorporated into this approach. Cmax.tot was reported as 
a high contributor to the DILI prediction, as reported by 
Proctor et al. (2017) along with bioactivation. In this study, 
BA flags were collated from the literature and from the NIH 
toxicity database in line with the FDA (Chen et al. 2016). 
The literature data were considered from evidence of cova-
lent binding either in vitro or in vivo or thioether adducts 
and/or conjugates detected by mass spectrometry analysis. 
Interestingly, 42 of the reference drugs had a BA flag (67% 
sensitivity) of which zero were false-positives and five of 
these were classified as DILI with no other in vitro flag. The 
Bayesian model has been implemented within AstraZeneca 
since August 2017 as a compound selection tool, and due to 
the flexibility of the approach novel/value add in vitro assays 
can be added or replace existing assays moving forward.

During the processing of this review, the MIP-DILI con-
sortium published a comprehensive synopsis of the applica-
bility of cellular models used in DILI research. The authors 
proposed a “roadmap” or tiered strategy to de-risk DILI 
using predictive preclinical models. This strategy is based 
upon a three-tiered approach following in silico tools with 
increasing complexity of cellular model from single cell to 
multicellular 3D models and preclinical or patient-derived 
models. Cellular models are critically evaluated in terms 
of their ability to determine drug-associated mitochondrial 
dysfunction, transporter interaction, reactive metabolites and 
oxidative stress, endoplasmic reticulum stress and immuno-
logical response with relevance to DILI in vivo. The sug-
gested roadmap has not yet been evaluated with a reference 
set of DILI compounds but does provide a strong rationale 
for the selection of appropriate endpoints and cellular mod-
els for future strategies to consider (Weaver et al. 2020).

Rational for development of 3D approaches 
with multi‑parametric endpoint measurements 
to predict DILI

As detailed so far, the pharmaceutical industry has taken 
a diverse approach to mitigate the risk of human DILI in 
drug discovery. However, as the previous synopsis has high-
lighted, there are some emerging trends:

1. The need for consistent assignment of DILI class or cat-
egory.

2. The use of metabolically competent cells such as pri-
mary hepatocytes or HepaRG cells appears to be a key 
element of many strategies (e.g. Saito et al. 2016; Vor-
rink et al. 2018).

3. Measurement of multiple mechanistic endpoints can 
improve sensitivity and allows for the detection of differ-
ing mechanisms associated with DILI. This can either be 
done by multiple individual in vitro assays (e.g. Sakatis 
et al. 2012, Thompson et al. 2012, Aleo et al. 2019 and 
Williams et al. 2019) or by utilising high-content imag-
ing (HCI) measuring a number of cell health parameters 
(e.g. Xu et al. 2008, Garside et al. 2014 and Saito et al. 
2016).

4. There is an acknowledgement of donor to donor vari-
ability with primary human hepatocytes (Shimada et al. 
1994; Takayama et al. 2014); however, to date limited 
donor comparisons in 3D models have shown significant 
differences (e.g. Sison-Young et al. 2017 and Bell et al. 
2018). As such inter-donor variability warrants further 
investigation.

5. More recently, significant investigations have been con-
ducted into the utility of 3D hepatocyte cultures, which 
have been shown to maintain liver phenotype, allowing 
for longer compound exposure, to predict DILI. Recent 
advances in cell culture techniques such as the hanging 
drop method or the use of ULA plates have made the 
creation of 3D cell culture models much more amenable 
to screening in drug discovery (Proctor et al. 2017 and 
Bell et al. 2017).

6. The use of extended exposure with repeated dosing regi-
mens appears to be a key in improving the prediction 
of human DILI (Bell et al. 2016; Proctor et al. 2017), 
as it is a basic tenet that toxicity is a function of dose 
(or exposure) and time: DILI in humans often manifests 
itself following chronic exposure.

7. In general, incorporation of plasma exposure levels 
(Cmax.tot) with in vitro data improves DILI prediction (a 
notable exception being Proctor et al 2017), emphasising 
the importance of early estimates/simulations of human 
PK and exposure in drug discovery (Yoon et al. 2012). 
The technical feasibility of testing compounds at multi-
ples of human exposure (e.g. 100 × Cmax.tot) should also 
be considered. For example, a compound which requires 
an unbound Cmax for efficacy of 300 nM and is 99% 
bound to plasma proteins would require testing at 3 mM, 
which will likely be impacted by its solubility.

With these considerations in mind, a multi-parametric 
HCI approach in 3D liver models is compared to recent pub-
lications (see Table 3 and below). Some of these emerging 
themes and their rationale are expanded in the next section.
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Assay formats and endpoints (lethal 
or pre‑lethal/mechanistic)

As summarised in point 3 the reason that multiplexed 
approaches have gained such momentum is that it is widely 
acknowledged that DILI can occur via a number of mecha-
nisms; hence, the industry has responded in developing 
appropriate test systems in drug discovery.

Given the pathological complexity of human DILI, exam-
ples of mechanistic endpoints include

• Reactive metabolite formation/conjugation with GSH
• Mitochondrial dysfunction
• Changes in calcium homeostasis
• Bile transporter interactions/regulation
• Immune-mediated effects

o Immune activation
o TNF receptor sensitivity

As discussed within this review, global comparisons of 
DILI strategies are confounded by limited overlap in com-
pound reference sets and Cmax.tot ambiguity (use of total or 
unbound and absolute values reported) which becomes fur-
ther confounded by variable DILI classifications and assay 
significance cut-offs utilised. In this regard, Table 2 sum-
marises a 54-compound reference set (from 10 publications) 
simplified in terms of positive (most DILI severity and less 
DILI severity) or negative (no/ambiguous DILI severity) as 
classified by Chen et al. (2016). Dawson et al. (2012) and 
Schadt et al. (2015) used BSEP inhibition or metabolism-
based approaches to achieve 39% and 76% accuracy, respec-
tively. The higher predictive power reported by Schadt et al. 
(2015) is likely the result of the multiplexed assay approach 
utilised, this has been further developed by utilising model-
ling and Bayesian machine learning to move beyond binary 
predictions from multiplexed assays (Aleo et al. 2019 and 
Williams et al. 2019, accuracy of 59–81% and 90%, respec-
tively). O’Brien et al. (2006), Tolosa et al. (2012) and Xu 
et al. (2008) all utilised HCI-based approaches and reported 
similar accuracies (88%, 89%, and 67%, respectively). Inter-
estingly, Xu et al. (2008) utilised primary human hepato-
cytes in their approach as opposed to HepG2 and ultimately 
achieved the lowest accuracy perhaps suggesting that data 
from 2D in vitro cultured primary human hepatocytes are not 
able to translate fully to in vivo (although compound over-
lap is poor). Comparison of 3D hepatotoxicity approaches 
shows differing accuracy across these approaches, however, 
with the largest overlap of reference compounds [Proctor 
et al. 2017; 67% (µM cut-off) or 76%  (Cmax.tot cut-off), Vor-
rink et al. 2018; 93%, HCI-hLiMTs; 91% and HCI-HepaRG 
spheroid; 93%]. Vorrink et  al. (2018) using chemically 

modified culture conditions for PHH spheroids and a single 
cytotoxicity endpoint  (IC20 < 20 × Cmax.tot cut-off) showed 
improved sensitivity in comparison to hLiMTs also using 
an ATP endpoint (Proctor et al. 2017;  IC50 < 100 × Cmax.tot 
or  IC50 < 100 µM). The authors mention certain cell cul-
ture media may downregulate CYP activity; however, as 
the media composition was not specified, any difference 
between the two studies would be speculation. Interestingly, 
the higher assay accuracy is also confirmed in both HepaRG 
spheroids and hLiMTs using multiple-HCI and ATP end-
points with defined media. In all 3D approaches, bosentan 
and sitaxsentan were both positive but not in PHH assays. 
Both compounds have been implicated in BSEP transport 
inhibition and mitochondrial toxicity leading to cholestasis 
and hepatocellular injury (Fattinger et al. 2001 and Kenna 
et al. 2015), indicating spheroid models may be effective 
tools to identify the contribution of bile-acid transport inhi-
bition in hepatocellular injury. Multiplexed in vitro assays, 
including 3D models in addition to physicochemical descrip-
tors could lead to the most encompassing DILI strategy as 
it builds on many of the strategies outlined above (e.g. Wil-
liams et al. 2019).

A multiplexed approach appears the optimal way to detect 
multiple DILI mechanisms. An approach such as HCI poten-
tially allows for the detection of multiple DILI mechanisms 
within a single cell (e.g. Saito et al. 2016). HCI offers the 
ability to detect cellular pathways associated with sub-lethal 
toxicities allowing a sensitive early indication. Many con-
ventional cytotoxicity assays (e.g. LDH release, MTT, cel-
lular ATP) may well be less sensitive as these endpoints are 
typically cell health markers. The combination of multiple 
endpoints not only allows for a much better understanding 
of the mechanisms involved, but, with well-chosen drug 
exposure times (and potentially the use of live cell imag-
ing), it also permits an insight into the sequence of events 
and mechanisms leading to toxicity. This is not always pos-
sible with conventional cytotoxicity assays, most of which 
are terminal in nature. In addition, the possibility to meas-
ure multiple endpoints simultaneously with live HCI using 
cellular dyes in a high-throughput manner could dramati-
cally decrease the number of assays, experiment time and 
therefore experimental cost. Indeed, HCI approaches have 
been used to profile cells morphologically (Cell Painting), 
whereby 8 cellular components or organelles are imaged 
simultaneously, measuring size, shape, texture, intensity, 
etc. leading to over 1500 morphological features (Bray et al. 
2016); however, this approach has not yet been applied in 
DILI strategies.

Many pharmaceutical strategies reviewed here describe 
the development of mechanistic multi-endpoint-based 
assays in 2D cellular models. To date, only limited stud-
ies have combined multi-parametric analysis combined 
with 3D approaches (e.g. Williams et al. 2019). Often only 
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Table 2  Distribution of drug-induced liver injury (DILI) in vitro assay prediction across 8 literature references using either hLiMTs or HepaRG 
spheroids normalised against Chen et al. (2016) DILI severity category (color table online)
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biochemical endpoints such as ATP have been adopted. As 
a proof of concept Proctor et al. (2017) evaluated dose- and 
time-dependent release of α-GST, total levels of HMGB1, 
and relative expression of miR-122 in the supernatants of 
individual spheroids; however, responses were observed 
to coincide with ATP content. In our laboratories, a com-
bined HCI 3D approach has been developed, which allows 
the simultaneous assessment of multiple markers of cell 
health alongside a terminal measure of cellular ATP fol-
lowing chronic compound exposure. 3D spheroid models 
consisting of either primary human hepatocytes with non-
parenchymal cells (hLiMT’s) or HepaRG cells (HepaRG 
spheroids) were assessed for size (MS), oxidative stress 
(OS), MMP, mitochondrial mass (MM), GSH and cellular 
ATP content following drug exposure. Fluorescent images 
are acquired using the confocal mode of an ArrayScan™ 
XTI HCI reader (ThermoScientific) following which cel-
lular ATP was measured using 3D CellTiter-Glo (Promega). 
One of the disadvantages levied at this type of approach 
is its relative expense (Proctor et al. 2017). However, this 
approach can be performed using automated 96- or 384-well 
plate formats making it amenable to early-stage screening 
assessment.

The National Toxicology Program (NTP) of National 
Institutes of Health (NIH) in 2017 showed that HepaRG 
spheroids exhibit physiologically relevant levels of xenobi-
otic metabolism (CYP1A2, CYP2B6, and CYP3A4/5) using 
probe substrate activity assays and maintained a stable phe-
notype up to at least 28 days in culture (Ramaiahgari et al. 
2017). HepaRG 3D spheroids offer an alternative to primary 
human hepatocytes models which have limited cell batches 
and may exhibit donor variability as previously discussed. 
As we have seen hLiMTs display slightly lower sensitivity 
than HepaRG spheroids (87% vs 89% respectively), with 
high specificity (100% in both). A comparison of hLiMTs 
against HepaRG spheroids as shown in Fig. 1 highlights 
a good correlation between the models. A subset of com-
pounds, however, respond differentially, e.g. metformin 
and donepezil, both less severe DILI compounds that are 
predicted as positive for DILI potential in hLiMTs but not 
HepaRG spheroids. Isoniazid and erythromycin, less severe 
DILI compounds, and alendronate, a most severe DILI com-
pound, were positive in HepaRG spheroids alone, using the 
25 × Cmax.tot cut-off. Given the complexity of DILI, it appears 
multi-parametric assays combined with repeated dosing reg-
imens should improve cost-efficiency in early-stage screen-
ing and also sensitivity to DILI mechanisms, including reac-
tive metabolites, mitochondrial perturbations and cholestatic 
liabilities. If HCI is compared with the predictive strength of 
ATP alone (Fig. 2) for hLiMTs and HepaRG spheroids, an 
overall good correlation is observed. In the hLiMTs assay, 
however, HCI alone allows the detection of the in vivo posi-
tive DILI compounds methotrexate, dantrolene, donepezil, 

metformin and sitaxsentan which go unpredicted with ATP 
alone, whereas HepaRG spheroids’ HCI alone determines 
sitaxsentan and tamoxifen as positive. Many of these com-
pounds were also shown to be negative in hLiMTs with an 
ATP endpoint (Proctor et al. 2017).

Inter‑lab variability in applied human 
exposure estimates

As discussed several DILI strategies use Cmax.tot normalisa-
tion of in vitro data to improve in vivo extrapolation; how-
ever, there is a high degree of variability of plasma Cmax.tot 
values used. Figure 1 displays the distribution of Cmax.tot 
values and DILI categorisation for 45 compounds across 9 
literature references where in vivo exposure has been used 
for normalisation. Flutamide, for example, shows ambigu-
ous hepatotoxicity prediction across the literature, with a 
16.6-fold difference in Cmax.tot values utilised across studies 
(0.36 µM to 6 µM). Xu et al. (2008) predicted flutamide as 
negative for hepatotoxicity using normalisation to a Cmax.tot 
value of 0.36 µM, whereas O’Brien et al. (2006) predicted 
positive hepatotoxicity utilising higher Cmax.tot values of 
6 µM. For data analysis, the median Cmax.tot from the 9 litera-
ture references displayed in Fig. 1 was utilised in an attempt 
to minimise ambiguity often found across literature data nor-
malisation. To align closely in vitro analysis with Vorrink 
et al. (2018), a cut-off of  IC20 for the first responding assay 
endpoint was used and normalised to total average plasma 
Cmax.tot, to define the lowest therapeutic index (TI) (Table 3). 
Using an MEC < 25 × Cmax.tot cut-off, this approach resulted 
in sensitivities of 87% and 89% for hLiMTs and HepaRG 
spheroids, respectively, with specificities of 100% (Table 4; 
accuracy 91% and 93%, respectively), confirming the high 
specificity observed using 3D approaches (HCI methodology 
and data analysis previously described; Longo et al. 2019).

One current limitation of the methodologies used to trans-
late in vitro assay data is the continued use of Cmax.tot. As 
discussed Cmax.tot values are routinely used for data normali-
sation during validation of early-stage screening strategies 
incorporating the bound and unbound drug fractions in the 
clinic. However, it is becoming more widely accepted that 
this approach may lead to misprediction of potential DILI 
compounds. Drugs with promising therapeutic potential may 
have a high total plasma concentration but low plasma-free 
fraction (fu), therefore maybe less likely to ultimately cause 
DILI in the clinic. This situation is reminiscent of the jour-
ney for quantitative drug–drug interaction (DDI) analyses. 
After many years, several laboratories promoted the sci-
entific basis for consideration of unbound exposures (sys-
temic and/or liver) in such evaluations (see Riley and Wilson 
2015; Williamson and Riley 2017). Whilst the application 
of total exposures protected patients since it minimises 
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false-negatives, the potential exists to delay or even termi-
nate the progress of innovative therapies. The most recent 
regulatory draft guidance have recognised the progress in 
this area and now include algorithms incorporating unbound 
exposure (US Food and Drug Administration 2017). Investi-
gative DILI scientists may well benefit from a re-familiarisa-
tion of this area given the obvious corollaries. The prediction 
of DILI severity was evaluated further using the 3D com-
bined HCI assays using plasma-free fraction. The majority 
of fu values were obtained from literature, when unavail-
able in-house prediction was utilised. Unbound plasma Cmax 
concentrations (Cmax,u) were derived by multiplying total 
plasma Cmax with the corresponding free fraction (fu) for 

each compound. Normalising the in vitro data to 25 × Cmax,u 
reduced the overall sensitivity of both hLiMT and HepaRG 
spheroids to 45% and 40%, respectively, with no change in 
specificity (100% in both models; Accuracy 60% and 66%, 
respectively). Increasing the Cmax,u cut-off to 100 × increased 
the sensitivity slightly to 61% and 63%, respectively, how-
ever with a compromise on specificity falling to 86% and 
93%, respectively (Table 4 and Fig. 3; increasing assay 
accuracy to 67% and 71%, respectively). Similar findings 
have been shown in previous studies, with reduced sensi-
tivity observed with unbound concentration normalisation 
(e.g. Shah et al. 2015, Albrecht et al. 2019). However, as 
with DDIs, analyses using unbound exposure and in vitro 
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Fig. 2  a Global comparison of therapeutic index (TI) for hLiMT’s 
with hepaRG spheroids for 54 compounds, assigned DILI severity 
categories taken from Chen et  al. (2016) when available otherwise 
average literature category used. HepaRG spheroids plotted on the 
y-axis and hLiMT’s plotted on the x-axis. b Comparison of thera-
peutic index (TI) for high-content screening (HCS) endpoints alone 
with cellular ATP alone in hLiMTs c Comparison of therapeutic 

index (TI) for high-content screening (HCS) endpoints alone with 
cellular ATP alone in HepaRG spheroids. Open circle, most DILI 
severity; open square, less DILI severity; cross, no/ambiguous DILI 
severity. Axis crossing set at 25 to represent a 25 × Cmax.tot cut-off. 
MEC < 25 × Cmax.tot cut-off applied for DILI severity categories (color 
figure online)
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cytotoxicity revealed compounds with additional, contribu-
tory mechanisms (e.g. ximelagatran) and known substrates 
for hepatic uptake transporters such as OATP1B1 (bosen-
tan, sitaxsentan) and OAT2 (diclofenac, indomethacin, tol-
capone). It is likely that the hepatic exposure for the latter 
subset of compounds is under-estimated from plasma esti-
mates and a correction is needed to adjust the in vitro risk 
as demonstrated for CYP DDIs (Grime et al. 2008; Treyer 
et al 2019). An alternative to normalising in vitro DILI data 
to Cmax would be to link efficacious oral doses and associ-
ated blood concentrations of test compounds to the in vitro 
probability of hepatotoxicity, as recently proposed by the 
Horizon 2020 EuToxRisk project (Albrecht et al. 2019).

Future perspectives

Further complex endpoints, which can resolve subtle altera-
tions in cellular health or indeed the molecular initiating 
events (MIEs), may enhance DILI prediction using 3D mod-
els. Indeed, gene expression alterations specific for choles-
tasis, steatosis, or genotoxicity have been identified in PHH 
spheroids (Bell et al. 2017). Recently, the National Toxi-
cology Program (NTP) have further utilised HepaRG cells 
and combined with high-throughput transcriptomics (HTT; 
TempO-Seq) to evaluate 24 compounds. A positive was 
considered if ≥ 105 respective benchmark concentrations 
(BMCs) was observed in relation to 10 × human Cmax.tot. This 
approach identified six compounds associated with DILI, 
several of which have also been identified by PHH spheroids 
(troglitazone, acetaminophen, trovolfoxacin and rifampicin; 
Vorrink et al. 2018). Even though a larger reference set of 
compounds is warranted, linking gene signatures and path-
way analysis with mechanism of action will hopefully add 
further mechanistic understanding aiding DILI prediction 
and risk assessment especially if combined with 3D human 
hepatic models. Interestingly, one of the compounds that is 
consistently not picked up in any of the reviewed DILI strat-
egies is the idiosyncratic DILI (iDILI) drug ximelagatran. 
The thrombin inhibitor was removed from the market follow-
ing altered hepatic function in 7.9% of patients, with phar-
macogenomics data indicating immunogenic pathogenesis 
(Keisu and Andersson 2010). Idiosyncratic responses such 
as these are difficult to recapitulate in vitro; however, mono-
cyte-derived hepatocyte-like cells (MH cells), derived from 
patients diagnosed with iDILI, have showed concordance 
with in vivo (Benesic et al. 2019). As MH cells, however, 
are limited in production volumes it is difficult to envision 
how these cells could be applied routinely in early DILI 
screening strategies.

A natural evolution of 3D cellular models has been in 
the development of microphysiological cell-based systems 
which are, in simplistic terms, microfluidic devices designed Ta
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to support an in vitro physiological environment that repli-
cates human biology in vivo. As with the development of 
3D models from 2D systems the drive in this field has been 
to replicate more closely the structure and biology of that 
in human and so aim to improve translatability of in vitro 
models to the human responses. The use of perfused in vitro 
systems mimics the micro-environmental factors of the 
intact liver such as haemodynamics and sheer stress, both 

of which have been shown to improve hepatocyte functional-
ity, metabolic activity and morphology (Dash et. al. 2013). 
In addition, a non-circulatory approach could allow for the 
clearance of metabolised products as well as generating 
microenvironmental biomolecular gradients.

This emergence of microphysiological systems (MPS) 
as a potential model for the pharmaceutical industry is 
reflected in the number of recent publications and industry 

Fig. 3  Correlation of hLiMT 
and hepaRG spheroid mini-
mal effective concentration 
(MEC) of the first respond-
ing feature (µM) with either a 
plasma Cmax.tot (µM) or b Cmax,u 
(µM). Assigned DILI potential 
categories are taken from Chen 
et al. (2016) when available 
otherwise average literature 
category used. Squares are hep-
aRG spheroids and circles are 
hLiMTs, severe DILI potential; 
closed squares or circles, less 
DILI potential; grey squares 
or circles and no/ambiguous 
DILI potential; open squares or 
circles. Dashed line represents 
an MEC < 25 × Cmax.tot or 
100 × Cmax,u cut-off. Solid black 
line represents 1 × Cmax.tot or 
Cmax,u. Red shading highlights 
area of positive DILI potential. 
Non-responding compounds 
assigned an arbitrary value of 
20,000 µM (color figure online)
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perspectives in the field (Ewart et al. 2017, 2018). This has 
also been expressed in the increasing number of commercial 
companies in this field such as TissUse and Emulate, all of 
whom are focused on developing MPS. The approaches have 
focused on two types of systems: liver-on-a-chip devices and 
multi-organ linked MPS. For example, the National Cen-
tre for Advancing Translational Sciences (NCATS) has a 
major initiative termed ‘Tissue Chip’ which aims to develop 
organ-on-a-chip models for every major organ of the human 
body including diseased versions. Several NCATS supported 
teams are working on the liver-on-a-chip model, in particu-
lar, a team at the University of Pittsburgh have created a 
liver-on-a-chip model utilising fluorescent biosensor cells 
to relay visually changes in cellular function such as death 
or free radical damage following drug exposure. A recent 
publication by Ma et al. (2018) describes an alternative liver-
on-a-chip approach whereby a 3D hepatic spheroid in situ 
perfusion model has been designed and fabricated. They 
describe the development of a biomimetic microenviron-
ment which permits the high-throughput parallel perfusion 
of 1080 HepG2/C3A spheroids using a concave microw-
ell-based-PDMS-membrane multilayer chip. Utilising this 
model, they found improved longevity, cellular polarisation, 
liver-specific functions and metabolic activity of the sphe-
roids suggesting a closer correlation with in vivo cellular 
physiology than observed with traditional 2D methods. 
Examples of organ-linked approaches include systems where 
an integrated liver-kidney chip have been developed which 
have demonstrated characterisation of drug metabolism and 
assessment of subsequent nephrotoxicity (Li et al. 2018). 
In addition, functional coupling of multiple organ systems 
has been developed. Vernetti et al. (2017) recently reported 
on a multi-organ system representing the major absorption, 
metabolism and clearance organs along with skeletal and 
neurovascular models. They demonstrated organ-specific 
processing of three reference compounds whose data were 
consistent with clinical observations. Even though liver on 
a chip and multi-organ devices are still in the early phase of 
development, they do show promise in improving prediction 
of toxicity and show great applicability for use in preclini-
cal drug development (Starokozhko and Groothius 2017). 
To date a comprehensive DILI reference set of compounds 
has not been evaluated using an MPS system; therefore, the 
evaluation against current pharma DILI strategies is not yet 
possible. AstraZeneca evaluated the use of a human liver-
chip model versus a PHH liver spheroid model for aceta-
minophen (APAP) and fialuridine (FIAU). Similar to the 
finding reported here both “Most-DILI” compounds were 
detected in 3D microtissues and furthermore, both the liver-
chip model and microtissue exhibited comparable sensitivity 
(Foster et al. 2019).

All of the current published pharmaceutical company 
strategies to date have focused on NCEs, therefore, as the 

industry progresses with diversification into the develop-
ment of biological and non-biological modalities, the appli-
cability of these in vitro tools in safety assessment will need 
to be addressed, with emerging gaps filled.

Summary and conclusions

This review has focused on assessing the pharmaceutical 
led DILI strategies over recent years. This has highlighted 
challenges due to variable DILI classification; lack of over-
lapping reference compound sets; diversity in test systems 
and assay formats, including duration of exposure; differ-
ences in assignment of significance effects in assays; varying 
approaches to exposure normalisation. FDA initiatives such 
as the DILIrank dataset (Chen et al 2016) should aid stand-
ardisation. With this in mind, 3D liver models are showing 
early promise with overall improved DILI prediction accu-
racy, and combination with multi-parametric endpoint analy-
sis such as HCI or even high-throughput transcriptomics will 
improve mechanistic understanding and potential sensitiv-
ity to non-cytotoxic DILI mechanisms. Emerging trends in 
DILI strategies are starting to occur, with multi-mechanistic 
assays, combined with organotypic 3D models and physi-
ochemical descriptors, normalised to in vivo exposure. To 
improve extrapolation and translation to clinical DILI risk 
analysis it is important to contextualise these parameters 
with human (unbound) exposure. As the experience in the 
DDI arena has demonstrated this should provide confidence 
and ultimately acceptance by Regulatory authorities (US 
Food and Drug Administration 2017). The latter should 
evolve to encompass improved estimates of liver exposure 
accounting for altered intra-cellular concentrations due to 
drug transporters as established in the DDI field. Finally, 
modelling or Bayesian machine learning approaches should 
move us beyond binary endpoint analysis aiding our com-
pound selection in drug discovery.
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