
REPORT

Changing Mindsets:
The Missing
Ingredient to Digital
Transformation
Modernizing Software
Creation for Large
Enterprises

Michael Coté

Compliments of

https://tanzu.vmware.com/tanzu

Michael Coté

Changing Mindsets:
The Missing Ingredient to

Digital Transformation
Modernizing Software Creation

for Large Enterprises

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-10580-8

[LSI]

Changing Mindsets: The Missing Ingredient to Digital Transformation
by Michael Coté

Copyright © 2021 Michael Coté. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editor: Jill Leonard
Production Editor: Kristen Brown
Copyeditor: nSight, Inc.

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

May 2021: First Edition

Revision History for the First Edition
2021-05-12: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Changing Mind‐
sets: The Missing Ingredient to Digital Transformation, the cover image, and related
trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

This work is part of a collaboration between O’Reilly and VMware. See our state‐
ment of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Changing Mindsets: The Missing Ingredient to Digital Transformation. . 1
If It’s Not Working, Change Your Mindset 1
“Mindset” 2
How This Report Is Structured 5
The Goal: A Culture of Innovation 5
The New Meatware 12
Give Yourself Permission to Change 48

v

Changing Mindsets:
The Missing Ingredient

to Digital Transformation

If It’s Not Working, Change Your Mindset
For many years, I’ve studied how organizations think about and use
their own, in-house software to run their business and achieve their
goals. Successful, high-performing organizations rely on software
for their day-to-day operations. For these organizations, software is
the primary engine of business innovation: delivery in retail, teleme‐
dicine, autonomous vehicles, and new methods of banking. These
organizations think about software like toothpaste. Well, like a
toothpaste company would think about toothpaste: their primary
product, the thing that is the business and deserves considered
attention and innovation. Better software keeps those organizations
sparkling clean and fresh.

Joking-by-analogy aside, by “software,” I mean the custom-written
apps and services used for internal functions and customer-facing
apps as well. More broadly, when I talk about how an organization
“does software,” what I’m talking about is the complete, end-to-end
process, set of tools, processes, and infrastructure used to govern,
build, run, and manage all that software.

1

1 This is a term borrowed from lean manufacturing where it means something much
more precise and manufacturing specific. As with most adopted language and concepts
in software development, the phrase is much looser when it comes to software.

2 From “Improving Customer Experience and Revenue Starts with the App Portfolio”,
Forrester Consulting study commissioned by VMware (March 2020).

This all-in set of practices, governance, stages, and tools goes by
many names: a value stream,1 a build pipeline, a supply chain, or, as
I prefer to call it, a path to production.

As I’ve discussed in my previous two reports—Monolithic Transfor‐
mation and The Business Bottleneck—using software as the primary
enabler of how your organization functions day-to-day is a critical
part of how organizations grow and thrive, rather than stagnate and
decline. Often, all of this is pulled under the word “culture.” Hence,
in discussions of DevOps becoming “tech companies,” and other‐
wise changing how your software organization operates, people will
say you must change your “culture.” I have mixed feelings about that
term, but it’s an industry favorite.

Of course, not all organizations operate and think of software this
way. Most large organizations have enclaves of change, but few have
scaled this new way of thinking to the entire organization. For
example, one survey found that 48% of executives said they hadn’t
made improvements to their software portfolios in a year or more.
This is despite 82% of them agreeing that improving customer expe‐
rience was directly tied to revenue growth.2 These lagging organiza‐
tions think about software as a once-and-done project, not an
ongoing stream of work and adaption to customer needs.

“Mindset”
When it comes to improving how organizations think of software,
for many years I’ve focused on what I call “tactics”: actual practices,
technologies, and organizational patterns. These tactics are the
actions, policies, programs, and practices that management at large
organizations put in place to improve how they do software. Also,
my interest has always been on provable tactics: using case studies
and before/after numbers to demonstrate that the tactics work. I rel‐
ish persuasive arguments over inspirational declarations.

2 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/i73Tf
https://oreil.ly/se3R8
https://oreil.ly/se3R8
https://oreil.ly/OFaDz

To go back to toothpaste, dentists always annoy me. After they look
at my teeth or my kid’s teeth, they scold me and tell me we need to
brush more. “You should only floss the teeth you want to keep,”
they’ll say, giving me a tongue-lashing. Well, of course, we want to
keep all our teeth—is this kind of advice I should be paying people
to give me? Knowing the “what” that needs to happen is rarely the
problem. Figuring out “how” we can get ourselves to start brushing
and flossing more is the problem.

Similarly, over the years, I’ve found much of the discussion about
agile software development, then DevOps, and now “digital trans‐
formation” frustrating. That discussion focuses a lot on the desired
end state, not how to get there from here. Hence, my focus on
actionable advice that can be proven upfront.

I’ve realized focusing only on actionable advice isn’t enough. Chang‐
ing how you think of and use software as a strategic tool in your
organization isn’t just flossing your teeth. Recently, as I’ve talked
with more and more executives with titles like Head of Transforma‐
tion, I’ve realized that one of the most actionable tactics people need
to take is to think differently, to change their mindset. It’s as if they
first need to decide to take care of their teeth, never mind giving
them actual tactics, such as the specifics of how and when to floss.

This shift in my thinking happened during the height of the COVID
pandemic. The way organizations needed to operate changed
quickly. I saw this when I talked with Heads of Transformation types
who told me amazing stories of rapid app deployments. For exam‐
ple, banks needed to service emergency loan programs, medical
equipment distributors needed new supply chain processes, and
grocery stores needed to sell in new ways, just to name a few “over‐
night” changes. In each case, the original needs for quality, gover‐
nance, security, and customer experience existed: the apps just
needed to be done quickly. The pandemic environment created a
whole new set of “headwinds,” business jargon for pesky threats to
how an organization operates that are unexpected, outside of its
control, and needing to be addressed. These headwinds often
exposed how far organizations needed to go to modernize their
approach to software. For example, the time it took to get even the
most minor changes made to their software often took months, if
not much, much longer.

“Mindset” | 3

Many organizations changed quickly, however. They had to get new
functionality and apps out the door in record pace. For example, as
documented in an excellent case study by Jana Werner and Barry
O’Reilly, one UK bank put in place changes needed for contactless
payment in days, instead of what would usually take months, and
introduced new call center software used for working at home in less
than four weeks. There are so many other “just get it done” stories
that come from organizations like Albertsons that experienced, and
successfully handled, a 450% increase in digital and e-commerce
sales. These companies put in new practices, governance, and tools
that sped up their path to production and improved the design of
their applications.

These companies all knew that they should be flossing more, so to
speak, but they hadn’t figured out how, or even whether they had
decided to start. The pandemic forced them to shift their mind,
though: it made the need to change immediate and real, not just
future-looking. Using a crisis to get the wheels of change going is a
tried-and-true practice, but it can be exhausting to live in that mode
forever. The exhaust that this way of operating blows out, like tech
debt and staff burnout, will damage your long-term health as well,
metaphorically and literally speaking.

What these examples made me realize, though, is that what’s missing
for most organizations that want to improve how they do software is
changing their mindset. The people that make up these organiza‐
tions need to shift their collective minds from the old way of think‐
ing about software to a new way of thinking about the purpose of
software in their organization. Do you celebrate the completion of a
software project, or celebrate when the business runs better because
of your software? Do you spend weekends deploying software relea‐
ses with hundreds of new features, or deploy a handful of small
changes each day and then spend your weekends learning to tie new
balloon animals? Do you spend most of the time in your status
meetings talking about delays and bugs, or discussing new customer
problems that developers have discovered?

This report is my attempt to catalog some of those mindset shifts.
What does it mean to think in terms of products versus projects?
How can we motivate people to change how they work? How can
managers change the way they think about their daily tasks, goals,
and their staff?

4 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/g0qrF
https://oreil.ly/g0qrF
https://oreil.ly/q3MEX

Of course, dear reader, I can’t resist the urge to get as practical as
possible and convert these mindsets into “next steps” and, indeed,
tactics...maybe even a few before/after case studies and anecdotes
here and there. My goal, though, is to help motivate you, maybe
even give you some therapy, to start thinking differently. Hopefully,
as you read the following, you’ll get a sense of what it feels like to
think differently, and also how to shift you and your organization’s
mindset. That shift is just the first step, though: then you have to do
the actual day-to-day work of constantly improving your software
and, thus, improving the business. Maybe you’ll even get the time to
finally learn how to twist a balloon into more than just a snake.

How This Report Is Structured
This report has three sections. You’ve just read the first! In the intro‐
duction, we defined our space and demonstrated the need for shift‐
ing your mindset. The second section covers the goal of changing
your mindset, shifting from thinking about software as a project to
thinking about software as a product. Here, you’ll learn how to think
about the nature of software in a new way. The third section is a col‐
lection of mindset shifts, practices, and “thought technologies” to
help you think and act differently.

Also, I keep saying “you.” Who is, er, “you”? When it comes to
change, I’ve found that the most important role in a large organiza‐
tion is management, “executives.” They’re the ones who own the sys‐
tem, the “code” of an organization. They’re also the ones who have
the authority and budget to change the culture. They’re my first
“you.” I also believe that individuals need to approach culture
change with a cautious, even jaundiced eye. When individuals are
asked to dramatically change, they also need help changing and,
more so, trusting management’s declarations. Those are the “yous,”
and hopefully you’re one of them. Everyone has a stake in improv‐
ing how software is done at large organizations, and I hope this
report will help those of you working in large organizations improve
how you do software and make life a little better.

The Goal: A Culture of Innovation
I’ve used the word “culture” already as if it’s a well-understood
notion. You’d assume it was by how frequently it comes up in the
discussion around digital transformation and organizational change.

How This Report Is Structured | 5

3 It’s difficult to back up this assertion since it covers so much subjectivity and so many
teams across organizations and the world. However, a Forrester survey conducted in
the middle of 2020 found that “[t]wenty-seven percent [of respondents] reported hav‐
ing a product team structure based on long-lived, cross-functional teams….Organiza‐
tions still favor functional specialization (43%) and project management (30%) over
product teams.” From Charles Betz et al., “The State of Modern Technology Opera‐
tions, Q4 2020”, Forrester report (November 2020).

Indeed, changing the “culture” is often management’s entire focus.
“Culture eats strategy for breakfast,” Peter Drucker’s well-known
phrase goes. More recently, us tech-world people like to reformulate
the phrase as “DevOps won’t fix your broken culture.”

I use a very pat definition of culture: how we do things around here.
There’s a lot of excellent work in defining and categorizing culture
beyond this out there, but let’s use this simple version in this report.
What “culture” means then, are the practices, technologies, behav‐
iors, reward, rules, and systems that an organization follows. These
can be either purposefully in place, a company’s stated policy and
way of operating, or “how things actually work around here.” All
that makes up culture.

When we’re talking about getting better at software so that it
becomes a core tool for business innovation and strategy, most of
what’s going on here is shifting from a project-driven culture to a
product-driven culture.

So, let’s start by comparing these two types of culture, these two
mindsets, project versus product. If we’re looking to think and act
differently, we need to understand what we’re shifting from first.

Software as a Project
Most organizations think about software as a tool for achieving fixed
goals, ideas, and daily operations.3 Software is an imposing and
incomprehensible mechanism that runs the existing state of the
business machine, changing rarely and at great expense. Think of a
cash register, or “point of sale” (POS), to use the term from retail. It
stays pretty much the same, you can even order one from Amazon if
you don’t want to get too fancy. When you need a cash register, you
don’t pull together a team of people and create it from the ground

6 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/yCOlp
https://oreil.ly/yCOlp

4 For those of you out there saying “yeah, but”: sure, if you’re trying to launch a revolu‐
tionary, self-service checkout store experience, perhaps you’ll develop the POS on your
own. You’ve found the outlier! (Even then, I suspect you won’t be creating the scanner
that goes beep-boop yourself.)

up: it’s a predefined set of needs, budget, and schedule; and it just
gets delivered.4

Traditionally, software has been managed as a project. You come up
with a list of features and screens you think you need, project man‐
agers create documents and project plans to give to developers who
code up those specifications, and operations people run the soft‐
ware. A project is delivered! When the way your organization func‐
tions is fixed and rarely changes, thinking about software as a
project works well enough: it’s gotten us to where we are today, after
all! This mentality has several benefits:

• Software as a project is psychologically comfortable. For man‐
agement, we’ve specified exactly what needs to happen, when it
will happen, and how it will happen. A decision has been made;
we can stop having all these meetings and late-night arts and
crafts sessions with PowerPoint. People implementing the
project have been told exactly what to do and can go off and do
it. There are no questions left to chance for managers or staff.

• Software as a project can be managed by numbers and status
meetings. You can always know the state of the project and get
the opportunity to intervene as needed, the familiar tools of tra‐
ditional corporate management.

• Much work can be done in parallel. For example, because we’ve
prespecified the feature set and use cases, while development is
writing the software, the infrastructure people can start building
out production. The security people can sleep well at night
because they’ve specified how developers need to write their
software so that it’s secure.

• Software as a project can be outsourced, removing the costs of
in-house developers from your balance sheets. Maintaining
developers is expensive, and once you’ve delivered the core soft‐
ware, you may not need to keep that many around. Over the
past 30 years, many CIO careers have been made on these
strokes of managerial brilliance.

The Goal: A Culture of Innovation | 7

https://oreil.ly/v9ojO
https://oreil.ly/v9ojO

5 This is my rough estimate based on Standish Group numbers that I could find publicly
available online. For a similar discussion of these numbers, see The Cost of Poor Soft‐
ware Quality in the US: A 2020 Report, which has even more software project failure
numbers as well.

Of course, dear reader, you can imagine that I’m now going to say
that these are all just illusions, comforting dreams. The Standish
Group has tracked software project success over the past few deca‐
des. By my analysis of the last 13 years of their surveys, around 60%
to 70% of software projects fail by the criteria of feature set, budget,
and schedule.5 So, those project dreams work out about 30% of the
time—or, perhaps, people just get lucky. It’s also hard to measure if
all those projects were a success based on “usefulness.” For example,
a 2009 Microsoft study found that only about a third of its applica‐
tions’ features achieved the team’s original goals—that is, were useful
and considered successful.

When you want to change the way your business functions more
frequently—whether by choice or because competition and wild
swings in the world’s state (those market headwinds!) force you to
change—a project mindset isn’t good enough: you’re always deliver‐
ing what was needed yesterday and, at best, what you thought you
needed today. A project mindset doesn’t adapt to new market
dynamics, to things you’ve learned, and then implement change.

Thinking about software as a “product” is what’s needed in this kind
of environment. You need to rely on software as the heart and brain
of your strategy, innovation, and even daily operations engines. Let’s
take a look at what it means to think of software as a product.

Software as a Product
A product mindset about software is much less focused on delivering
the planned feature set, budget, and schedule. A product mindset
focuses on continually learning what the product is and continually
delivering new features as determined by evolving customer and
business needs. This is much like most businesses nowadays that are
forced to evolve frequently rather than continue to sell buggy whips.
This may seem not that much different than a project mindset, but
it’s incredibly different when it comes to how you think of and man‐
age your software.

8 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/LJwhy
https://oreil.ly/LJwhy
https://www.standishgroup.com
https://www.standishgroup.com
https://oreil.ly/ILoGD
https://oreil.ly/XCuFq

6 I’ve covered the small batch cycle much more in-depth in Monolithic Transformation
with a few examples. I make no claims at all of having invented this concept, quite the
opposite: it’s just a simplification of lean product management as practiced by Tanzu
Labs (formerly named Pivotal Labs) and many other agile practitioners. Also, see Matt
Parker, Radically Collaborative Patterns for Software Makers (O’Reilly Media, 2020) for
more discussion.

Product-oriented teams focus less time on perfecting the
requirement-gathering and specification phases, and they handle
status reporting differently. Instead of focusing on project manage‐
ment, a product team uses a rigorous tool of customer-driven exper‐
imentation and learning what I call “small batch” thinking.6 This
feedback cycle requires close knowledge and study of the business
that the software is implementing and intimacy with the people
using the software (usually, either “customers” or employees using
internal facing software).

The goal of the small batch cycle is to verify the problem you’re fac‐
ing by creating a hypothesis, testing that hypothesis, and then
observing the results. Did we pick the right problem to solve, did we
create the right features in our software to solve it? Can we come up
with an even better way to solve the original problem? This overall
recalibration on learning what your software should do based on
what the people or organizations using your software actually need
or want is key to the product mindset. Often, people don’t even
know what they need. They have to go discover it. As Allianz’s Dr.
Poelchau comments on this:

Whenever I go to where the [employees] sit, it’s always interesting
to see the kind of Post-its they put on their screen, because this is
how the real process is run. But if you think about a waterfall
approach and you ask people to write down these requirements,
they would usually never have the idea to write down these kinds of
requirements. That they, for example, need a screen where they can
put their Post-its.

Time and again, it’s finding those sticky notes that lead to big wins,
for customers and the business. As another example, when The
Home Depot wanted to improve the performance of their custom
paint desk, they found that staff at those desks disliked the software
so much that they’d started using sticky notes instead. The product
team only discovered this when they went and observed the paint
desk in operation. We’ll see a similar story in “Case study: Measur‐
ing mayonnaise” on page 10.

The Goal: A Culture of Innovation | 9

https://oreil.ly/SdVV9
https://oreil.ly/nVnXb
https://oreil.ly/6U1or

A project mentality will have difficulty uncovering all of these
“implicit” features because the project mentality is prescriptive. For
example: “the software will allow you to search for three years of
billing history, put a calendar search in in the UI and then you’re
done.” A product mindset is more exploratory and focused on learn‐
ing what people need. For example: “We hypothesize that customers
will most often only want to see the most recent three bills. There‐
fore, we should prominently list links to the past three months bills
and de-emphasize the general, calendar search. Let’s use A/B testing
to deploy that new UI to production to a subset of users to validate
or invalidate our theory.”

And it’s not only the initial discovery of those implicit, sticky notes
—the learning never ends. When you’re doing things in a product
way, you’re not delivering static value, you’re delivering ongoing
usefulness, ongoing improvement, and ongoing understanding. This
ability to explore how customers are solving their problems with
your software is a positive, “leaky abstraction” back to the business.
Knowledge gained in the small batch cycle can be fed back to change
and improve business strategy: you’re finding new things the cus‐
tomers will buy, new reasons they will continue being customers—
and discovering new competitive advantages.

Shifting from software as a project to a product is what drives so
much of the operational change and so many of the mindset shifts.
Let’s look at an example of an organization that used a product
mindset.

Case study: Measuring mayonnaise
While you may not know about them, you likely benefit weekly
from food services companies. They deliver food to restaurants, run
campus and corporate cafeterias, and otherwise help with whatever
food and feeding needs you have. At one of these companies, man‐
agement wanted to lower costs and introduce more consistency in
meal preparation by putting recipe books on tablets. This would
lead to lower costs and better customer experience: following rec‐
ipes closer would match both ingredient portions and the delicious
recipes that headquarters was dreaming up. To do this, management
asked one of their software teams to digitize the recipes so they
could be viewed on tablets.

10 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/NKIzU

Thus far, this is a project mindset to software: the product team is
given a specific set of requirements to implement. Instead, this team
had a product mindset. The team’s approach was to first observe the
actual end users and research the problems they had. For a week, the
product team of developers, product managers, and designers
showed up early in the dark of morning to watch the kitchen staff
prepare and cook food. These product team members were curious
and people-centric—and had the autonomy to verify the problem to
solve.

The team observed that, for sure, recipe handling in three-ring
binders was not ideal. But the kitchen staff spent an incredible
amount of time on a different process: measuring the temperature of
mayonnaise, chicken, and other food that needed to stay at a specific
temperature. The process of measuring and recording the tempera‐
ture in binders interrupted staff frequently and simply took up a lot
of time.

Using a product mindset, this team had spotted a more important
need than management originally identified. The team worked on
digitizing the temperature-measuring process, saving staff a lot of
time, and also making it easier to pass health inspections. This deliv‐
ered on the original business goal of lowering costs and increasing
customer experience: failing health inspections can damage ongoing
business, preventing spoiled food that had to be thrown out, and,
not to mention, getting food poisoning probably is way up there in
poor customer experience.

This example shows that the initial ideas about what your software
should do are often not exactly right. Teams operating under a
project mindset would likely have just delivered what was asked, not
caring to discover what was actually happening in the kitchen. Sub‐
ject matter experts (SMEs) and business analysts who write up those
initial project specifications are relying on past experience. The
experience can be valuable, but they also need to continually update
their assumptions and discover new customer needs and opportuni‐
ties. The actual product team is often the best positioned to do this,
suggesting that those business analysts should work more closely

The Goal: A Culture of Innovation | 11

7 Thanks to Jon Osborn who raised this point about business analysts primarily drawing
on past experience.

8 This story is based on an interview with Jonathan Sirlin in Pivotal Conversations, Epi‐
sode 113, “Product Management, with Jonathan Sirlin” (September 2018).

9 These attributes are discussed in detail in Monolithic Transformation.
10 Historically phrased “peopleware” by Peter Neuman and later a book of the same title

by Tom DeMarco and Timothy Lister.

with the team, if not be part of the team in the role of a product
manager.7

The teams went on to digitize menus and do other apps. But this
approach to adapting your plans based on the measurable outcomes
of your small-batch process is key to understanding the difference
between the project and product mindset.8

The New Meatware
As we saw in “Case study: Measuring mayonnaise” on page 10,
teams that work on software as a product are less focused on imple‐
menting the exact feature set, expressed in a set of assumed require‐
ments they’re given and more on continually discovering how their
software can deliver business value. They follow the hypothesis-
code-release-observe-verify small batch process. This is “innova‐
tion,” creativity.

As such, people on these teams tend to have different mindsets than
project-driven teams. Participants tend to be innovative, risk-takers,
and people-centric.9 To support these types of teams, management
tends to have a different mindset to software as well. In IT, we’re
always thinking about technology improvements: faster and cheaper
hardware, and software that makes us more productive and runs the
business. Technology is always important, but what we need to focus
on more right now is the third technology: meatware. That’s the
tongue-in-cheek phrase I like to use for the way an organization
operates, thinks, the practices they follow, and, I suppose, “culture”
as defined earlier.10

Let’s look at some of the new mindsets and meatware needed to shift
to a product-oriented way of doing software.

12 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://www.linkedin.com/in/jonosborn
https://oreil.ly/Ie8pK
https://oreil.ly/Ie8pK
https://oreil.ly/ftwP7

Failure == Learning
The most important mindset shift you and your staff must make
first is how you think about failure. How your organization’s culture
thinks about failure will determine your success in transforming to
the product mindset. Not all failure is good, to be sure. Some failure
comes with harmful side effects and some failure is catastrophic. But
there is a type of failure that you should seek: learning.

As an example, over the past few years my kids and I have been
learning the norms of biking in the Netherlands. They are much dif‐
ferent than American norms, mainly in that bikes rule the road
instead of cars. Often, myself or my kids will do something wrong: a
common one at first was coming to a complete stop at an intersec‐
tion with oncoming cars. We’d stop at the intersection, the bikes
behind us would stop, the cars would stop, and we’d deadlock the
entire intersection. People got upset and us Texans were left baffled.

What we needed to learn was the more fluid nature of an intersec‐
tion, to recognize when cars needed to yield and when not and build
up the intuition of how all these moving parts fit together. Things
get more complicated when two–or more!—bike lanes intersect. We
often failed at this, and my kids would get very upset: sometimes
they would get off their bike and throw it down, storming off. I’m
not sure where they learned this from...ahem. I’ve been telling them
that this is a great learning moment, that they’ve gained valuable
knowledge. And, indeed, after many initial “failures,” they’re much
better at fitting into the flow of biking now—and me, too!

Equating failure to learning seems cutesy, sure. However, when you
think that some idea or task has “failed,” catch yourself and ask if
this failure is actually just the part of learning or, less likely, cata‐
strophic failure. There are types of failures that are clearly bad—pro‐
duction crashes, security breaches, running out of printer paper
before the big meeting, and so on. But if a new feature you’ve intro‐
duced in your app isn’t getting the result you expected, think of that
kind of failure as learning. Even in the case of “bad” failure, there’s
often much to be learned for next time.

One of the favorite mindset-shifts product people like to point out is
that a series of small learnings controls the risk of big, fatal failure.
Figure 1 illustrates this concept.

The New Meatware | 13

Figure 1. Trickle of risk versus big-bang risk

The zigzag line shows a series of small releases, each validating or
invalidating the theory of new features. If the feature turns out to be
not so useful, you’ve had a minimum amount of “failure” and can
move. This is in contrast to the straight line pointing up at a 45-
degree angle. Because you’re delaying releasing software, you accu‐
mulate more and more features which are assumptions of what’s
valuable. When you release this big batch, you have a pile of poten‐
tial “failures” that could create a much bigger pile of failure than that
trickle of learning with smaller releases. Doing frequent, small relea‐
ses lets you manage risk around learning and innovation.

This trickle of failures—ahem, pardon me—earning is exactly what
the product approach to software wants and is based around! Most
ideas will “fail,” to be sure, but if you don’t try new things, you’ll
never come up with apps and features that help your business and
customers.

14 | Changing Mindsets: The Missing Ingredient to Digital Transformation

11 This is translated from the original Dutch with Google Translate.

Leo Lawrence of Air France-KLM shows an example of this thinking
and the business benefits:

About 10 percent of the ideas actually end up on the market. A
recent example of this is the hand baggage check in the KLM app.
Travelers can use augmented reality to see whether their hand
luggage meets the set dimensions. This function went live last
month.11

When traveling, I’ve been stressed out by that problem many times,
and features like this improve my customer experience, or put more
simply, make my life easier. Similarly, the company introduced 3D
views of the business class seats when checking in online “with the
idea of stimulating the sale of these chairs,” Lawrence says. Even if
90% of these teams’ ideas “failed,” they learned their way to several
good ones that directly improved the business and led to new
revenue.

Management needs to help change people’s mindsets over to
embracing learning, and also to feeling that it’s safe. For example,
executives can help out a great deal by simply asking “What did you
learn this week?” rather than “What’s the status of the backlog?”

As ever, with this kind of shift, management needs to be the first
ones to show the new way of thinking: they should start telling their
organization things they’ve learned, both “successes” and “failures.”
Finding these learnings should be easy: you’ll be experimenting with
all sorts of new ideas and trying out new practices and technologies
as you transform your organization. Sharing how these go with your
organization will show that your mindset has shifted “failure” to
“learning.” As Richard Watson puts it, this is shifting from defining
success as being right in our predictions to success in learning why
our predictions were wrong, and hopefully, eventually, right and
helpful.

Traditional finance models pose the next challenge to shifting to this
small learnings and pivots approach. Traditional corporate finance
requires up-front promises of return on investment and planning in
12-month increments. As I argued in The Business Bottleneck, when
you account for the preplanning and building up alliances for
annual budgeting, this window is actually more like 18 months. That

The New Meatware | 15

https://oreil.ly/bAWdh
https://oreil.ly/aBF5J
https://oreil.ly/aBF5J
https://twitter.com/richwatson
https://oreil.ly/s0osJ

period of time will be a waterfall that drowns out many of your
efforts.

Sadly, there are not that many happy stories about transforming
finance. That task is a new, ongoing challenge for organizations that
want to change to product-driven software. Short of solving the
problem, I’ve seen organizations do two things:

• Put in a layer of abstraction, a “facade” even, between your soft‐
ware organization and finance. You still plan for and take large,
annual chunks of money, but set up a more product-driven
compatible funding model. This doesn’t solve the problem, but
keeps you moving.

• The CEO or board approves mavericks to experiment with new
finance methods. You should probably not rely on this for more
than an experiment that, if successful, you’ll bring back to the
mainline business. Otherwise, as discussed in “Take everyone
with you” on page 46, this brings in the problem of creating a
“NewCo” that breeds jealousy and uncooperative staff in the
“legacy” business.

Finance is going to be a problem, no doubt about it. For further dis‐
cussion of how to try to change your finance people’s minds, see my
previous report, The Business Bottleneck.

Avoid over-learning; or, Zombie governance
While it’s important to understand and learn from “failure,” you
need to be careful of what I’ll call over-learning. You see this fre‐
quently when there’s too much governance leading to too many
meetings you need to go through to change something. This over-
learning means that you’re trying to prevent all problems you’ve
encountered in the past. After several years, the problems aren’t
likely to occur again and you’re spending time on irrelevant fears.

I think of this like mortgages. In the US at least, mortgage docu‐
ments go into what seems like hundreds of pages. If you take the
time to read them, you realize that they document every single
problem that’s ever occurred with a mortgage going back to Ham‐
murabi. These mortgage documents are accepted absurdities in
American life: no one reads them, you’re not going to get changes
made to them, so if you want a home loan, you just sign them.

16 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/KzmZJ
https://oreil.ly/FeVIo
https://oreil.ly/FeVIo

12 James Clear, Atomic Habits: An Easy & Proven Way to Build Good Habits & Break Bad
Ones (Avery, 2018).

13 As described in Radically Collaborative Patterns for Software Makers. See that book for
much more discussion on pairing, especially addressing that initial reaction many peo‐
ple have: “That sounds bonkers!”

Changing Habits
A lot of what we’re talking about when we discuss culture change is
changing habits. If you think about habits, they’ve been instilled
over time based on a reward cycle. You keep doing what works, or at
least because it worked well at some point. Because habits are
enforced by success, they’re like a river. There was first a little drip,
then a little flow of water that slowly, very slowly, carved out a chan‐
nel. Once that channel is carved out, it’s pretty much set in its ways.
When you’re changing habits, you’re trying to change the course of
a river, maybe even filling in a canyon!

And it’s really hard to divert and change it. So, think about that met‐
aphor when you’re trying to change the way that people operate and
change the way they think—you also need to slowly, but surely,
carve away at something. That is, when you’re transforming how
your organization does software, you need to create new habits with
positive reinforcement. You need to make doing the new things easy
and rewarding, slowly shifting from the old ways.

There’s been a lot of interest and research into habit-forming and
training recently. The book Atomic Habits12 is a great overview. As
the book discusses, when you’re trying to change a habit, what’s
important is to do small, incremental changes and new actions every
day. It doesn’t really matter if you’re successful or not at any given
time or task. But doing these habits daily is what lets you practice
and pick up those habits.

Pairing is a good example of this habit-forming loop. In pair pro‐
gramming, developers work in pairs: “two keyboards, two mice—
one computer.”13 Having two sets of ideas and brains working on the
wicked problems of coding has been shown to result in higher qual‐
ity, more frequent software. Pairing helps spread knowledge in the
team, preventing fief building, bottlenecking on The One Person
Who Knows How It All Works. Pairing is, as described in “Favor
seeding change over big bang change” on page 45, a key tool for
scaling up change with the seeding method.

The New Meatware | 17

https://oreil.ly/znqDp
http://jamesclear.com

Using the “start small” approach to building new habits, every day,
you could do a little bit of pairing: first thirty minutes, then a few
days later an hour, and so forth until you get up to four or five hours
a day. As you’re doing this, don’t focus on doing it “right,” focus on
learning and simply doing it every day. You’ll get better at it over
time. But more importantly, you’ll build up that habit.

This same starting small, but frequently, approach can be used to
shift mindsets, redirect, and carve new rivers.

Motivation Hacks
Your job when you’re leading a transformation is to change how
people behave. A key problem is that people don’t want to change.
The success of corporate change initiatives is hard to gauge, but the
success rate is rocky enough that it can seem scary to most employ‐
ees. Also, people may not believe that change is needed. The status
quo is there because it worked: the way people operate—your cul‐
ture—has gotten the organization this far. For most of the people in
that organization, things are going great. They get paid; their career
is advancing; they can take 90-minute lunches; their work is fulfill‐
ing. Whatever the case is, highly skilled knowledge workers tend to
be satisfied in their job. Skilled tech workers are in such high
demand that they can choose to leave. Some don’t, even if they’re
grumpy, because there’s little downside to staying in their current
job, but also because there’s little upside to changing.

Changing is difficult and carries risk. What if it doesn’t work? When
new corporate ideas have failed in the past, people were punished by
being passed over for promotions, and if things went especially
poorly, allowed to go “spend more time with family” or take on one
of those “strategic advisory” roles.

While upper-level management may see the danger of staying the
same in the face of fierce competition and market headwinds, most
people don’t care about “headwinds.” The tall walls of their cubicle
hold back the wind.

Finding ways to motivate people, then, is one of management’s chief
problems.

18 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/qzcXe

Positive feedback; or We can all agree on money
Industry folklore says that money isn’t the chief motivator. In my
experience, this is true once a baseline of compensation and career
management is in place. Many nontech companies I talk with regard
their IT workers as “cost centers,” ever on the lookout to outsource
them to bring down costs. Technical career ladders are often short.
The pay given in nontech companies is often much smaller than
actual tech companies. Staff at nontech companies are rarely given
large equity grants. Compared to the high pay and common practice
of equity grants in tech companies, IT staff at regular enterprises can
feel like they’re underpaid. Money only “doesn’t matter” to people
who already have it.

Let’s look at ways of using money to motivate.

Money. Monetary rewards are one of the better ways to motivate
people to change. First, it demonstrates that the organization is seri‐
ous about change. Changing compensation structures is difficult
and working on that will show management’s commitment to
change. Second, awards are a very clear way to give people feedback
that they’re doing the right thing. Third, everyone likes rewards,
especially money.

Revisit your awards. Most organizations already have a reward sys‐
tem in place. However, these systems usually only reward triumph
over adversity and short-term heroics. Tying rewards to delivering
actual business value doesn’t seem like a common practice when it
comes to IT staff. The culture of innovation we’re interested in con‐
sists largely of failure, or “learning,” as people in more caustic organ‐
izations always tell me to put it.

Rewarding the Boring. To motivate people in that system, you can’t
just reward the rare success and against-all-odds triumphs: We fixed
production at 3 in the morning! Even more than being thankful for
such efforts, you need to reward steady success with the process. If
you reward only the “heroics” of solving critical errors and prob‐
lems, you’ll probably encourage your staff to only focus on that type
of work, devaluing the work it would take to prevent such problems
in the first place.

In addition to looking at what activities you reward, look at the
actual reward itself.

The New Meatware | 19

14 In the 2020 Stack Overflow developer survey, “better compensation” was the #1 reason
for looking for a new job.

Don’t just rely on gold stars. Many existing rewards are the equivalent
of gold stars in kindergarten: of no monetary value. I want to posit
the theory that in a for-profit organization, rewards that don’t
include money are not rewards. Ask yourself: Wouldn’t you like to
have money rather than a Galileo thermometer etched with the
phrase “Best Innovator of 2QFY23”? The same is likely true for non‐
profit organizations, but often people in these organizations really
are in it for something other than the money. Still, money never
hurts.14

Grant equity. Another monetary reward to consider is equity in a
company. Stock options of restricted stock units (RSUs) is a power‐
ful motivator. Plus, equity is long-term and business outcome
focused. Equity is worth more when the company as a whole is suc‐
cessful over the long-term, rather than just one part of the company
in the short-term. Senior executives and boards understand this
when they use huge equity grants as part of executive compensation:
they want executives to care for the entire company’s business out‐
comes. This works for employees as well. I’ve worked at tech compa‐
nies all my life where equity is a common type of compensation.
Over the years, my coworkers and myself were all very aligned to the
overall success of the company, to business outcomes.

Clearly, getting a budget for more monetary rewards and compensa‐
tion can be difficult. I have no balm for that. It is difficult. The only
guidance is to strongly connect metrics to the mechanisms that
drive bonus-funding and do the work to change compensation-
think if needed. Those market headwinds, though!

Beyond gold stars
There’s also what people call “soft compensation.” Mostly, this seems
to be “not money.” Software people are highly skilled workers and in
chronic short supply. They can demand a lot, and, if they’re not sat‐
isfied, can usually find another job quickly. So, job satisfaction is
something they can take seriously in addition to raw pay and simply
being employed.

Let’s look at some examples of nonmonetary motivators.

20 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/fiQdc
https://oreil.ly/fiQdc

Doing quality work. In my experience, the product-centric way of
working is very rewarding to people, boosting their job satisfaction.
Getting closer to the person using your software, seeing those users
benefit from the features that developers added is meaningful and
rewarding. The product team will also be elated to see the rest of
their organization jump with glee as they craft and ship software
that helps the business. Most people enjoy being useful. Very
quickly, the small batch process becomes a virtuous cycle. That rapid
feedback gives your product team a weekly sense of how all their
work is paying off and making people’s lives better.

Flow. People often underestimate the value of speeding up release
cycles, going from idea to coding to running in production. Techni‐
cal staff, especially developers, love removing toil and speeding up
releases. Like most people, software people enjoy being in a state of
“flow”: removing obstacles to doing their work and moving at a
slightly rapid, slightly challenging pace without having to bang their
head constantly against bureaucratic walls. This means speeding up
their path to production and eliminating as many meetings and gov‐
ernance checks as possible. As we’ll discuss later, this doesn’t mean
skipping such governance, but instead focusing on automating it. As
one of my past bosses, Andrew Clay Shafer, always put it, developers
love a small mean time to dopamine. Reducing that “mean time”
will be incredibly motivating.

Quality of life. Despite the stereotype of late-night coders who have
little interest outside of work, quality of life ranks high for IT staff.
While not complete, my definition of “quality of life” is “not working
more than I want to.” The more you work, the less time you have for
life. An easy type of reward, then, is to reduce the amount of over‐
time people work. In the 2020 Stack Overflow developer survey,
75% of developers said they worked overtime at least one to two
days per quarter, while 25% said they work one, two, or more days
over a week! It’s not just developers, of course, but everyone
involved in your software’s end-to-end process.

To motivate people to change, start pointing out how the new prac‐
tices, tools, and even enterprise governance results in less overtime
and less time working. Be careful, though, to avoid falling into the
“work smarter, work longer” trap. Once you can do the same
amount of work in less time, don’t just pile on even more work! Few

The New Meatware | 21

https://oreil.ly/hq6La
https://oreil.ly/qDCIl

15 To be specific in what “top” means, the survey question “asked the survey respondents
if we control for compensation, benefits, and location, what three characteristics would
most influence their decision to choose one job offer over another.”

16 My friend Robert Brook, enterprise architect at UK Parliament coined this phrase over
a breakfast of oatmeal and blood pudding a few years ago.

people will be motivated to change if it means they need to work
more.

Open source contributions. When it comes to developers, you can also
use the soft compensation of working on open source projects.
Building up a track record in open source projects is both good for
developer’s career management and also gets them positive praise
and attention from other developers. Squirrelly as they may be about
it, like anyone else, developers appreciate praise from their peers.

Autonomy. Unless you’re a golem, you probably don’t like people
telling you what to do. Your staff are the same. They, of course, want
to work toward the common product goals you have and collabo‐
rate. But most of the people involved in your software’s end-to-end
process would like a huge degree of freedom in choosing the tools
they use. Looking at the Stack Overflow survey again, “languages,
frameworks, and other technologies I’d be working with” is the top
“soft benefit” in choosing a job:15 every craftsperson values their
tools. Now, allowing each product team to choose their different,
unique tools is a quick trip to disaster-by-variability. Organizations
need to balance limiting choice and chaos, putting in place guard‐
rails within which staff can choose what to use. Autonomy doesn’t
just mean tool choice, though. In fact, the more valuable type of
autonomy is the autonomy given to figure out which problems to
solve and how, as we say in “Case study: Measuring mayonnaise” on
page 10.

Reward moving pixels on the screen. When it comes to open source
and autonomy, there are two traps to watch out for with developers.

First, you need to make sure that developer’s spend time on what’s
valuable to the business: their product. When it comes to customer-
facing apps, I like to think of this as “moving pixels on the screen”:16

changes made to customer-facing applications likely directly drive
business value. As a rule of thumb, then, try to focus developers on
moving pixels rather than building frameworks and infrastructure.

22 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/Cxf4u
https://oreil.ly/kVvHZ

17 No generalized statement goes without back-peddling. Yes, there’s a tremendous
amount of “back-end” code that helps move those pixels on the screen, especially per‐
formance and security. Working on developer tools that improve developer productiv‐
ity is valuable. However, if you find that each of your developer teams is working on
such code, something is likely going wrong.

Developers often can’t help themselves, though, and tend to favor
writing code that has little to do with pixel moving. Indeed, the most
respected developers tend to work on back-end frameworks and
systems: that is, the very tools other developers use.17

Second, when it comes to autonomy, you can’t have each product
team choosing their own stack of software. In a large enterprise, var‐
iability is a productivity and resilience killer. Centralizing and stand‐
ardizing the back-end code and systems creates many, many of the
productivity and security benefits you’ll need. Indeed, at revered
companies like Facebook, Google, and Netflix, developers are typi‐
cally not free to choose the programming languages or frameworks
and software development tools they use. These companies main‐
tain a good, often updated stable of tools and services, but develop‐
ers are required to choose from that stable. They say that constraints
drive artistic creativity, and the same is true for the creative act of
making software.

Management’s New Mindset for Staff
In a product-focused organization, you’re setting up each product
team to be the “owners” of the software or the product they’re build‐
ing. Following part of lean manufacturing thinking, the idea is that
those closest to the work are the ones who know how to best do the
work. And, once you’ve connected the product team closely to the
“customers” of the software, they’re even more situated to know
what’s best for the software. The product team may even know bet‐
ter than the business, as examples like “Case study: Measuring
mayonnaise” on page 10 show.

As a manager, this means shifting how you think about your work‐
ing relationship to staff. In the project-mindset, management is
“herding cats,” trying to control a chaotic, resistant group of people
to a specified end—often, feature set, schedule, and budget. Over the
years, we’ve made this notion of “herding cats” into a cutesy phrase
but packed into that little phrase is an exasperated manager who’s

The New Meatware | 23

18 These are recommended in DORA’s 2018 Accelerate: State of DevOps report. Also, see
further discussion of these three items in Monolithic Transformation.

actually saying, “I can’t get these developers to do what I tell them!”
And it’s that mindset that must change—perhaps you’re not there to
tell them what to do.

Prescribing how to get to that management mindset is fuzzy, but
there’s a short list of what it looks like once you’ve stopped thinking
about your teams as unruly cats. There are three things you give
over to product teams:18

Trust
A manager trusts that the teams will solve the right problems in
a way that meets the business goals. This can be the most diffi‐
cult mindset for management to make; management is often
used to command-and-control where people are told exactly
what to do—that project mindset. With the kitchen example,
management trusted that the team could discover the most use‐
ful problem to address—measuring the mayonnaise. This trust
isn’t blind or free of responsibility. Management’s ongoing trust
is based on the team’s accountability to producing business
value. Both management and the team need to establish the
appropriate metrics to constantly reinforce this trust.

Voice
The product team is given the ability to speak up about what
they think is the right next step, the right focus, or just an idea
to experiment with—and even to object to what management is
telling them, without fear of punishment. In the kitchen exam‐
ple, the team was given a voice to speak up and say that digitiz‐
ing recipes books wasn’t as important as measuring the
mayonnaise.

Autonomy
Management allows—trusts!—that the product team can oper‐
ate on their own and make their own decisions, without micro‐
managing their every move. Management is, perhaps, more
interested in verifying that the customer and business benefits,
rather than exactly how the product team writes software and
manages their process. Management also needs to clear the way
and time for that autonomy by removing barriers for the team.

24 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/H9SaV
https://oreil.ly/xFjwc

Take on the mindset that you’re constantly clearing the field for
the team to work in rather than controlling the work they do.

You’ll have to keep a close watch on your default management
reflexes as you cede this much control over to your staff. In fact, try
to train yourself to be comfortable with delegating. You can start
with small decisions at first, and then slowly go up to larger and
larger decisions.

The fish smells from the head
Pushing down all these responsibilities can seem disempowering for
some managers, scary even. You’ll have to work with “middle man‐
agement” to get over this fear. Look at yourself and other executives
and make sure they’re being genuine about shifting responsibilities
down. Management needs to change over from the idea that they
know and control everything into the mentality of a learning organi‐
zation, as we’ve been discussing here.

“I’ve learned this funny sentence living in the UK: ‘The fish smells
from the head,’” as Jana Werner, then Head of Transformation at
Tesco Bank, started describing this mindset shift to me recently.
Leadership has “to ask questions and to not know the answer, and
get comfortable with uncertainty. The big switch is from thinking
that a leader needs to be seen to know everything, understand
everything, and have an answer to everything.” That’s a lot to ask for
individual staff, but especially for managers who’ve built their career
on those three everythings. Leadership needs to demonstrate this,
even contrive situations that show them acting in this new way.

“The people working for these leaders also think they need to know
everything and understand everything and have everything in con‐
trol,” Werner goes on, describing how important it is for upper man‐
agement to model this mind shift. “If you [upper management] can
be seen as vulnerable and comfortable with uncertainty,” she goes
on, “and with finding your way through it, then the people that work
with you can get into that same space and be more comfortable
sharing.”

Otherwise, you’ll quickly encounter the infamous “frozen middle”:
an obstinate middle-management layer that blocks your dreams of
change because they don’t believe it, or maybe even fear the change.

The New Meatware | 25

https://oreil.ly/E0De1

Trust Your Team
To risk being political, management’s higher pay and taller career
ladder than for individual contributors shows that most organiza‐
tions value management far more than individuals. As an individual
contributor, at least, it feels like that. Whether we try to be progres‐
sive or not, this HR signaling can create the HiPPO antipattern: the
Highest Paid Person’s Opinion wins the meeting, no matter how
ornate and empirical the slides and charts from the “lower-level”
staff are.

Relinquishing that unconscious mindset is extremely difficult, but
it’s key to getting people on your product team to take ownership of
their software and start innovating, instead of just doing what
they’re told. I’m not saying that you, management, shouldn’t give
input and direction—indeed, I’m a huge fan of management enforc‐
ing the terms of the system, setting the constraints. You’ll need all
the ideas, experiments, and tenacity you can get, so make sure you
encourage thinking, ideas, and contribution from all your team.

For building and maintaining that trust, see “Use Metrics to Build
Trust” on page 35.

Servant Leadership
The concept of “servant leadership” is very popular now. The idea of
managers enabling, rather than, well, “managing” the staff on their
team is clearly key to the type of culture we’re shooting for here.
Don’t tell anyone, but, despite many people giving me the, uh,
“opportunity,” I don’t actually like managing. Giving advice to man‐
agers, for sure! So, to go over what servant leadership is, I asked one
of the best servant leaders I know, my boss, Tasha Isenberg, to
explain her mindset and, of course, the related management tactics.

Case study: Servant leadership according to Tasha, by Tasha
My job as a manager is to ensure my people succeed. If my people
succeed, everyone wins. The company’s objectives are more likely to
get met, my people are happier and satisfied, and I’m more fulfilled
when my people get credit for the meaningful work they do!

So, everything I do is to ensure my people have the tools needed to
be successful. What does it mean to ensure your people have what
they need to succeed? What do you actually do? Here are a few

26 | Changing Mindsets: The Missing Ingredient to Digital Transformation

things I have been practicing through the years that have made a
difference.

1. Trust your people. This is the most important thing to remember
and do. I make every decision with the belief that my people will do
the right thing.

I get that it’s easy to say you trust your team, but what does that
really mean? First, I don’t just blindly trust someone; I establish and
foster mutual trust with them over time. But how do you start with a
new hire, or if you are starting with a new team?

I think the key to building trust, if you don’t know how to start, is
simply to give your person a project. Lay out key objectives and
timelines together, then keep tabs on their progress. I don’t mean
micromanaging here; I mean leading with empathy. Believe in them
and encourage them; check in and see how you can help them; talk
with them about how they are struggling and then help them find an
answer. Even if you don’t know the answer, give them resources or
access to people who would know the answer. Equally important:
give them time and permission to figure it out. Trust is a mindset; if
you don’t trust your people, why are you even a leader in the first
place? Put another way, establishing trust with your people is part of
your core job: you have to work at it, rather than just expect it to
happen or be plopped on your lap.

2. Clear the crap. If you want your people to succeed, you need to
give them the time to do that. One of the most important parts of
my job is protecting my people’s calendars. I act as a filter between
my team and the rest of the organization, and, really, the rest of the
world. At all times, I know who is working on what, who is over‐
whelmed, who wants more work, and I adjust projects and requests
for their time as needed.

Another part of this is helping my people keep up with what’s going
on in our organization. In an organization as big as ours, there’s
always a lot going on. I consume as much knowledge as I can when
it comes to general company updates, strategy, policy, and other
company goings on, so that I can filter it to fit what is important to
my team and keep them updated. Because of this, my team goes to
less meetings, freeing their time to be productive with their latest
project they are working on. They’re able to spend their time creat‐
ing the most value for the company.

The New Meatware | 27

19 Coté: This is slightly contradictory with my “moving pixels on the screen” imploring.
However, I believe Tasha is right here: you need some “fun” projects and autonomy for
your developers and other staff. Many of these can be carefully directed into being
overall helpful for the business, for example, publishing design guides and contributing
to open source that fills a gap in infrastructure you use, such as for compliance.

3. Give people passion projects. Do you want developers to be happy?
Give them support and time to work on their passion projects.
Whether that is contributing to an open source project or working
on something completely not related to their actual work, acknowl‐
edging their passion projects, taking an interest in them, and most
importantly, giving them time to work on them is an investment that
will pay off in your team’s job satisfaction and retention.19

4. Share feedback. In my experience, showing my people how their
work is actually making a difference is incredibly motivating. So, I
make it a point to seek out feedback and then share it with them.
Give concrete, consistent examples of how they are moving the
company needle and delighting people, whether it’s coworkers, peo‐
ple in their community, or customers. If people outside your team
aren’t offering that feedback, go find it yourself. Be your people’s
strongest advocate. Hold them up on your shoulders so they can
shine the brightest.

5. Offer incentives. At the end of the day, people want money. That’s
what’s most important. Does your company have an incentive pro‐
gram like an on-the-spot award? Find out what rewards and incen‐
tives are available and always work to get your team those awards.
Tell everyone to expense their lunch sometimes, help them get the
equipment they need to perform at their best; when there are stress‐
ful events and times give your people work flexibility or time off. It
may seem like adding all these little things up will cost too much,
but in fact, all these small things add up to a happy, motivated, dedi‐
cated, harder-working team that you can trust to do the right thing
for the company.

6. We Are Family! (You know, the song!). Your team is dedicating most
of their time to this job. They interact with others on your team
sometimes more than they do with their own family. You need to
create a team environment where people actually want to be around
one another. Your team should be built around supporting each

28 | Changing Mindsets: The Missing Ingredient to Digital Transformation

20 The definition of the bozo bit is attributed to Jim McCarthy and Denis Gilbert, in
Dynamics of Software Development (Microsoft Press, 1995).

other, wanting to share ideas, and work together. Create time for
watercooler talk and virtual team events where everyone can get to
know one another on a personal level, outside of work. Find out
what each person likes and create a small team event around that
topic and have that person take the lead!

Just recently, for example, one of my people who is an Australian
and passionate foodie, organized for everyone to get an Australian-
themed treat box. He hosted an online event where he told us about
each treat as we ate them together. It was a blast! Events like this
make the team happier and stronger. After all, when your team has
eaten vegemite together, few things will be able to pull them apart.

Revisit Your Bozo Bits
I’ve noticed that management often holds a dim view of staff as well.
They wouldn’t put it this way—but, you know me, if nothing else,
I’m expert at turning anything into a cynical view. You see this dim
view of staff year after year, survey after survey, about new technol‐
ogy adoption: each year, management says that lack of skills is one
of their top three barriers to change.

Most of the people responding to these surveys have lost trust and
belief in their staff. It’s as if management has flipped the bozo bit on
their own staff. The bozo bit is an unforgiving pattern described
early in the software development lore. It says that once a person
commits some, well, stupid act, others will “flip the bozo bit” on
them, permanently thinking “anything this person does is stupid,
and they should be ignored: they’re a bozo.”20

The bozo bit is a wickedly funny bit of computer nerd humor (we’re,
you know, not a kind bunch, ahem...), but people often don’t look
past the punch line. The point of the bozo bit is that it’s an antipat‐
tern: it’s not good to write people off! My suggestion is that you sim‐
ply be aware of people who’ve flipped your bozo bit and force
yourself to revisit those bozos, maybe every 30 or 90 days.

If skills are such a problem, and hiring new staff is such a blocker,
you need to look at the existing staff you have as the best, easiest-to-
grow staff. This will mean trying out new programs rather than

The New Meatware | 29

https://wiki.c2.com/?SetTheBozoBit
https://oreil.ly/EgiM1

sticking with your current training program—it’s not getting results,
after all! As BT’s Rajesh Premchandran says:

You can’t have a top-down diktat saying “march towards the cloud
and let developers figure out their own learning part.” We’ve inves‐
ted heavily in certification programs, getting online e-learning plat‐
forms that allow career paths to be developed around the cloud and
agile and DevOps and all of the associated skills.

Indeed, isn’t one of management’s top responsibilities ensuring that
their staff have the tools, knowledge, and ability to do the best job
possible?

Trust Your System
Following the rigor of the small batch process provides a safety net
for trusting product teams. When you’ve put in place the mindsets
described in this report, in particular the rigor of the small batch
process, you can trust the small batch model, along with trusting
that the team is following it.

The small batch process recursively proves itself in each cycle: did
something valuable occur with each release, or are we still confused
about the value of any given feature? If you have no idea, you can
see if the steps in the process were followed: find a problem, create a
theory of how to solve that problem, specify how you would meas‐
ure success, write and deploy code to actual users, measure the
success of the theory or not. If the product team is not following
those steps, then you’ve found a fix, and can try it again. Over time,
if the small batch process doesn’t get results, then you’ve proven that
it doesn’t work in your organization—you can try something else! If
the process does work, you’ve got proof that trusting your staff is a
good idea.

To sum up: by trusting the system, you can trust the staff.

Shift Everything Left; or, the End-to-End Mindset
Value streams are one of the key insights and tools software thinkers
plucked from lean manufacturing. In software the lean concept of
value streams has come to mean something more general than in
manufacturing, but plenty helpful: all the activities performed go
from a feature idea to people using that feature in your software. We
sometimes call this a “build pipeline,” “software supply chain,” or a

30 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/YfniT

“path to production”...whatever you like: the industry plays around
with new terms every few years.

For us, the important part of a value stream is the big-picture, end-
to-end mindset. In my estimation, each time the software develop‐
ment process takes on more activities in the path to production,
software quality and overall usefulness improve. Agile software
development and DevOps are examples of this effect.

Around the year 2000, agile practices like Extreme Programming
(XP) and Scrum widened the end-to-end view beyond just coding.
Agile brought in project and product management (developers
worked on stories and embedded product managers on their teams)
and QA (developers not only wrote unit tests but started working on
acceptance tests). Next, early DevOps thinking in the late 2000s
introduced the idea that all the configuration, monitoring, and even
infrastructure needed to run an application in production was part
of the application itself. This was the notion of “infrastructure as
code.” Now, the end-to-end view has come to encompass everything:
building, running, and managing software.

At first, you may think that this means that the product team con‐
trols and does the work for that entire process. While small startups
or isolated teams in large organizations can be full-stream owners,
in large enterprises this isn’t practical. There are back-office and
enterprise resource planning (ERP) systems to integrate with, line-
of-business owners to work with, different geographic regions to
operate in, and so on. However, someone needs to “own” and tightly
manage the business outcome of application.

I rarely find a person or team who’s responsible for that outcome
end-to-end. For example, I was speaking with a group of ten or so
senior IT managers who represented a large bank’s various IT func‐
tions: everything from end-user computing, to networking, to devel‐
oper infrastructure. They each seemed to execute their
responsibilities well, but they complained that it was hard to coordi‐
nate across silos. There were too many hand-offs; groups couldn’t
coordinate technology decisions.

This complaining comes up all the time in discussions I have with
large organizations. To me, this smacks of a headless pipeline: there
isn’t anyone who owns and is responsible for discrete business out‐
comes and also can make management decisions about all the activi‐
ties in the path to production. No one seems to “own” the entire

The New Meatware | 31

https://oreil.ly/15KIo

21 For a starter kit, check out Matthew Gunter’s “Crossing the Value Stream.”

“factory,” so to speak. Sure, the CIO is ultimately responsible for
“everything,” but at a large bank, it’s unreasonable to think that a
CIO could actually be that hands on across hundreds of applications
while also worrying about every other IT concern.

If heads of departments keep complaining about silos and can’t seem
to coordinate, you probably have a headless pipeline. Rather than
create yet another silo to solve this problem, you should be the first
owner for the end-to-end process. This starts with putting in the
work to discover and document the path to production. First, pick
an important application, like search on retail, loan applications in
banking, or one-off unemployment payments in government. Then,
get a large whiteboard and chart out every activity required to get a
simple feature, maybe even just one line of code, out the door. Key
to this is finding out and tracking how long each activity takes,
including hand-offs between groups. This will take time: you’ll have
to go rustle the bushes to find these numbers and verify them.21

Once you’ve drawn this entire flow, you’ll likely find that there is, as
one executive put it, “a whole lot of stupid up there.” You are the
owner of that stupid and you are the one who can manage and
direct fixing it. If you assign that task to one of your staff, or worse,
one of the groups in your organization, they won’t get beyond their
own department. The critical mindset shift here is twofold:

• There is an end-to-end path to production, and likely no one
has ever discovered and charted it.

• That path to production must be owned, and activity managed
to perfect how software delivers business value.

More than likely, you’ll have a few optimization epiphanies:

• Despite years of automation, we still have so many manual and
ticket-driven processes. Each silo may be optimized and auto‐
mated (or not!) but connecting all that automation together is
often lacking.

• We have excessive governance, resulting in long wait times
between activities in the path to production.

32 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/D2Wk1

• While valuable, security checks and policy slow down our pro‐
cess, especially when security is prescribed at the beginning and
then verified at the end of the process.

Recently, I’ve noticed the last two the most. As organizations are
scaling up their new method of doing software, they’re banging up
against those last two points—governance and security. These two
functions have yet to fully “shift left” like QA and operations in agile
and DevOps. In each case, successful organizations are spending the
time to work with auditors and security staff earlier in the process,
hence, “shift left.” While these relationships have been oppositional
in the past, working together earlier in the process removes much of
that opposition and serves both the needs of the auditors and the
product team.

Cloud-native technologies and practices like Kubernetes and build‐
packs are also helping speed up and make better security and gover‐
nance. With these new platforms, you can tightly control and verify
what code goes into production, giving security more control and
assurance over your software. Using cloud-native technology like
this to put up guardrails and automate governance enforcement is
broadly called “DevSecOps” and has many successful examples to
draw from, including from high-security organizations like the US
Department of Defense.

Start Small, Stay Small
Without exception, every executive I talk to thinks they have a key,
unique problem that’s preventing them from changing: their portfo‐
lio of apps, their organization, everything about them is much too
big to hope to change. Many people at large organizations that I talk
with are experts at telling me why their size and organization’s age
makes it too hard for them to change how the organization operates.
They follow Eeyore’s maxim: “it’s not much of a tail, but I’m sort of
attached to it.”

Being an outsider, my perspective is that, actually, every executive at
every organization thinks they’re the only Eeyore in the world. In
fact, the impossibility of change is a universal “problem.” I put the
word problem in scare quotes because the successful organizations
had and have these same problems. The successful organizations fig‐
ured out how to move past Eeyore’s defeatist attitude.

The New Meatware | 33

https://oreil.ly/A2Jx7
https://oreil.ly/A2Jx7
https://oreil.ly/5AG7d

22 My therapist would likely want me to say “...to know that we’re important…,” but I’d like
to keep them employed longer so I’m not ready for that healthy diction yet.

Being too big should never prevent you from being successful. In
fact, large organizations have huge advantages: well understood
businesses and existing customer bases, competitive advantages,
large pools of money and funding, brand names that drive aware‐
ness, easy credit and fundraising abilities, and scale that means even
small improvements drive large revenue and profit improvements.

When it comes to software, the mindset shift successful organiza‐
tions go through is thinking much smaller than they’re used to.
Large, mature organizations are used to large projects. They start off
by telling you their customer base size, the number of employees
they have, their large revenue, the number of applications they man‐
age, how many petabytes of data they process. Organizations like to
boast about how big of a deal they are. This is fine: it’s healthy for us
all to think that we’re important.22

This mindset, however, is once again a leaky mindset: your sense of
bigness will negatively affect the way you think about your software
portfolio and, worse, about your abilities to improve.

First, you tend to think that you need to do everything at once. At
the very least, you get stuck in analysis paralysis again by the sheer
scope of everything: how could we possibly replatform all that
COBOL to Rust?

Second, your friends in finance also will cause problems. Changing
how you do software is expensive, but only in the short term.
Finance will want you to put together a business case that shows an
excellent profit versus alternatives, including doing nothing. As
you’re putting together your annual financial planning spreadsheet,
late at night, eating another round of kapsalon with your team,
you’ll eventually give into the urge to show that changing over all
those COBOL apps in the first year will result in tremendous pay‐
offs. Only paying attention to short-term return on investment
(ROI) will limit you to short-term success.

Third, your organization may be tempted to just cart the whole
project off to an outsourcer who promises skills and risk manage‐
ment at tackling such a large portfolio at a lower cost than your
employees. What was once an Azathoth-scale problem is now

34 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/USa8Q

someone else’s problem. The last thirty or more years of outsourcing
this scale of a portfolio has mixed results. There are plenty of good
staff working at outsourcers, but what you’ll find when you adopt a
product mindset is that you want to employ staff ongoing, as part of
your organization, rather than being dependent on another organi‐
zation whose incentives are not aligned perfectly with yours. Rather
than focusing purely on cost, begin every outsourcing strategy and
discussion with the assumption that the outsourcers are there to
help transform your organization, to teach you by working with you
on applications. Once your staff are skilled, the outsourcers should
leave. Don’t cry for the outsourcers: there are plenty of other organi‐
zations that need such help.

Successful organizations change their mindset to start and stay as
small as possible. They follow the maxim that a journey of a thou‐
sand miles starts with one step. Management at these organizations
pick one app to develop from scratch or modernize, then another,
then maybe two more, then five more, and so on. This gets them
boot-strapped and gets them started.

More importantly, it allows the management to learn what works.
When you’re switching over from a project to a product mindset,
you won’t know exactly what to do, both meatware- and software-
wise. You’ll need to apply the small batch process to learn. This is
especially true for learning the truly unique needs of your
organization.

Use Metrics to Build Trust
Metrics are an important tool for transforming your organization.
As with any type of management, metrics will often be one of the
primary, consistent types of feedback you get about how your orga‐
nization is functioning and how your change initiatives are doing.
Metrics will tell you, in short, how you’re doing at your job. Let’s
look at three ways to use metrics and then a few examples of metrics
specific to culture change.

Three types of metrics
First, metrics show progress on the path to your new way of operat‐
ing. How much value are we contributing to the business? How
much easier are we making the lives of our users? See “Business suc‐
cess is the ultimate measure” on page 37 for more.

The New Meatware | 35

23 This point comes from Rich Lane et al., “Measure What Matters in Modern Technology
Operations”, Forrester report (February 2021). That report has more suggestions on
helpful metrics, including business value-related ones.

Second, metrics give you feedback on which changes work and don’t
work. This is core to the small batch loop and being a learning orga‐
nization. Not all learning can be quantified with before/after metrics
or even hypothesis-driven change but try to measure and quantify
operating changes as much as possible to track what works and
doesn’t work.

Third, and maybe most importantly, you can use metrics to build
trust. When you’re transparent with the reasoning and evolution of
your metrics, staff will feel more comfortable and safer. They’ll
understand how they’re being managed, but also see that you’re
adapting to what works. When you share why you’ve chosen each
metric and how you evolve them, staff will see that you too are
learning and adapting: you’re doing what you’re asking them to do.
Don’t just publish dashboards, publish explanations of what’s on
them. These metrics are for you, management, but your staff are key
stakeholders for the metrics—often, the metrics are about them in
the first place!

Of course, you’ll still use metrics for the traditional reasons: to know
how your organization is functioning, report up the management
chain, and find trouble areas that need more attention. Since you’re
already gathering and reporting on metrics, you can use the habit-
stacking trick to change behavior: you’re already collecting all sorts
of metrics, so it’s easy to add metrics.

A word of caution here: be sure to prune the metrics you collect reg‐
ularly, maybe even every six months when you’re getting started.
Large organizations tend to pile on more and more metrics over the
years, as if those gauges and charts are soft bedding to promote bet‐
ter sleep. Each metric is costly. Think of the cognitive load and time
it takes to gather the data needed for a metric, remembering what it
means, interpreting the metric, and making a decision based on that
metric. Even worse, older metrics are often no longer relevant to
your current goals but will still drive your current behavior. Make
sure that you frequently prune and remove metrics that no longer
apply or that are not worth your organization’s time to keep alive.23

36 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/L5oJq
https://oreil.ly/L5oJq

24 Twenty-four percent of surveyed global developers say that their teams focus develop‐
ment teams on business value metrics like sales influenced, revenue generated, or costs
avoided today, while 19% of global developers say that their teams use business value
metrics like earned value or ROI to measure success and progress. From Jeffrey Ham‐
mond, Diego Lo Giudice, and Christopher Condo, “Digital Transformation Requires
Development Transformation”, Forrester report (December 2020).

Finding the exact metrics that work for you will be a small batch,
learning process. Let’s look at three metrics and walk-through exam‐
ples of shifting your mindset about using metrics.

Business success is the ultimate measure
Usually, the most important type of metric to track is how you’re
positively affecting the business. Is customer satisfaction up because
your software is easier to use? Are changes to your software making
it easier for people to open new accounts? Do people buy more air‐
line seat upgrades after you’ve deployed that 3D seat view? People
often describe this type of metric as “business outcomes.”

Find and use these metrics to report on your software capabilities
and changes you’re implementing. This “tip” may seem so obvious
as to be useless, but one Forrester survey estimated that just 24% of
developers measure their success in terms of business value metrics
such as customer satisfaction.24 In some cases, measuring outcomes
can be very binary. In an omni-channel strategy, your grocery store
can either do curbside returns, or it can’t.

Using revenue is often the best business metric to track, but it’s not
always easy to connect revenue (or savings) to the software used in
those businesses. You could track increases in sales or account sign-
ups after new features are added to your app, but without proper
A/B testing you’re playing with correlation fire.

When tracking revenue generation directly isn’t possible, many
organizations use proxies like the time it takes a “customer” to com‐
plete a workflow. Usually, a metric like this is easy to track in soft‐
ware because you can note the time a task was started and the time it
was completed. Depending on the task, it could be days, or just
minutes. Workflow productivity metrics like these are handy for
government agencies that don’t really track “revenue.” Instead, they
can track how long it takes to fulfill various services, like barber
license renewals, records requests, and so on: “time to delight

The New Meatware | 37

https://oreil.ly/Y317S
https://oreil.ly/Y317S
https://oreil.ly/C1y1a

25 See Chapter 9 in Digital Transformation at Scale (London School of Economics and
Political Science 2018) by some former UK Digital Service Department staff for more
discussion of government metrics.

26 The results were good. The industry average rate for sticking to a prescription plan is
somewhere between 50% and 60%. After applying the product-approach to software,
Shields saw an 83% efficiency improvement in the patient sign-up process, measured a
46% average increase in patient enrollment rates, and an average adherence rate of 92%.
See more in the Shields case study.

27 For much more discussion and advice on these types of metrics, see Nicole Forsgen, Jez
Humble, and Gene Kim, Accelerate: Building and Scaling High-Performing Technology
Organizations (Revolution Press, 2018).

citizens” to put it into fun phrasing.25 These metrics, of course, work
well for for-profit organizations also.

For example, in healthcare, you might track people’s ongoing com‐
pletion rate of refill prescriptions as Shields Health Solutions did.
Shields helps hospitals and others fill prescriptions. A shocking
number of people, about 50% to 65%, don’t stick to their prescrip‐
tion schedule, sometimes because it’s hard to get a refill. So, when
Shields was looking for a product-centric metric to track, they
tracked adherence to plan rate, as well as the related metrics that
tracked how quick it was to sign up for prescriptions and overall
enrollment rates for patients. Using these metrics, the product teams
could judge the success of each feature and modification they added,
but management could also track the success of their new practices
and technologies.26

Taking another step back further from measuring business value
directly, organizations also use productivity and technical metrics.
For example, metrics that track how much work developers are
getting done, how few defects get into production, mean time to
repair, and other metrics that show the “health” of your software
capabilities.27

More than likely, you should be tracking these metrics to know your
organization’s functional health. However, be careful that you don’t
assume these metrics are sufficient to measure business value. It’s
easy to use productivity and technical metrics to talk about how
skilled your organization is at the work tasks it does, not whether all
that work amounts to anything valuable for the business and cus‐
tomers. If you’re really fast at delivering garbage, you’re still deliver‐
ing garbage. This is true for measuring culture change as well. For

38 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/F7k2j
https://oreil.ly/BuvFL
https://oreil.ly/ycOZT
https://oreil.ly/ycOZT

28 The mechanics of NPS are slightly more complex than a yes/no question, but we’ll keep
it simple here.

example, one popular metric, training and certifications, “doesn’t tell
me whether we work in a different way,” as Jana Werner says.

eNPS
Employee Net Promoter Score (eNPS) asks employees a simple
question: would you recommend this job to your friends? It meas‐
ures employee satisfaction, more or less, and its simplicity makes it a
handy tool.28 I like eNPS because it adds in more nuance than a sim‐
ple one-to-five rating. When people answer NPS, they’re putting
some skin in the game (will my friend regret taking my advice?)
which gets them to think more.

You should use eNPS to monitor employee satisfaction, but you can
also use it as part of your own experimenting with new meatware.
Comcast’s Neville George explains with an example:

We brought in a whole bunch of people from different teams to
work on a project for a short period of time. And when that project
ended, the eNPS rating was through the roof, people loved it. And
it was an indicator for us to say these are things that we should
invest in. Because it certainly felt like people loved doing things,
learning things new.

As a cautionary note, people who don’t want to change and find all
this transformation business annoying will give a lower eNPS score.
Hopefully, this will be a minority of responses, but be aware that
“sticks-in-the-mud” will give low scores.

Staff churn rate
Measuring your organization’s retention rate is another useful met‐
ric for tracking culture change. If you’re building a good organiza‐
tion, more people will want to stay than leave. Monitoring churn
will not only tell when things are going wrong, but when the deci‐
sions you’re making are working.

There’s a certain level of churn that you want, though. While I’m not
suggesting practices like stack ranking, where you force a ranking of
employees and, commonly, layoff something like the bottom 10%,
allowing for a small number of employees coming and going has a
positive effect on your culture. The positive aspect is getting new

The New Meatware | 39

https://oreil.ly/0V7P6
https://oreil.ly/emSSO
https://oreil.ly/hpkQ1
https://oreil.ly/mLnpd

29 This story comes from JT Perry.

people, new ideas, and new practices into the system. These are
especially helpful if your organization’s culture has been isolated and
unchanged for years. Indeed, one of the ways to scale change in
large organizations is to encourage internal churn: taking select peo‐
ple from teams and seeding them into new teams, as discussed in
“Favor seeding change over big bang change” on page 45.

One large organization put in place an extreme version of churn for
their long-term staffing plans. This organization encouraged new
college graduates to work on a three-year term to build up their
technical skills and get experience with a product-driven mindset.
The company couldn’t compete with the salaries of tech companies
or local companies with deeper pockets, so they used this training as
incentive. In fact, the organization expected that many of these
three-year employees would churn out to better-paying jobs with
this experience. Often, that experience was more training and expe‐
rience for the person, and several came back to the organization to
fill leadership positions. Of course, several of these three-year term
people ended up staying as well. This gardening and growth pay off
in the long-term, not only bringing in new ideas and people, but
also seeding the skill sets needed in the local pool of hires.29

Vision, Mission Statements, and Other Things
That Should Be Tools
I’m not a big fan of corporate vision and mission statements. They
have great intentions, but the need to be all things to all the people
often leaves the statements vapid and not useful for daily decision
making. They seem like gold plating, even if sincere.

And yet, vision and mission statements are inescapable. If we must
have them, you should think about them as tools. Doing so requires
shrewd thinking to get the tool just right. As with most things, when
it comes to building a product-centric culture, rigorous testing and
adapting as you learn what works and doesn’t work is key.

Vision
An organization’s vision can be a tool used to make decisions. Your
vision should describe the problem you’re solving for existing

40 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://www.linkedin.com/in/jtperry

30 Well...mostly. As if to be the exception that proves the rule, Picnic, a Netherlands-based
grocery delivery company, has highly specialized delivery trucks that are tailored to
their delivery-only business model.

31 The Playbook covers additional ideas for crafting a vision, I’ve only listed a couple here.

customers and new customers. It should guide how people choose
between different options.

First, vision can be a shorthand for strategy, telling people what
industry or realm of concerns they work in. When it comes to
deciding what features to have in your software, what kinds of apps
to work on, this filtering out is incredibly powerful.

Developers are always trying to build software that has nothing to
do with the business of moving pixels on the screen. They’ll tell you
they need to build their own middleware, their own build pipelines,
and, nowadays, their own Kubernetes platforms. This is—I’ll say it—
flat-out wrong. If your company’s vision and strategy is to supply
people groceries, you can exclude “build and maintain a multire‐
gion, general purpose Kubernetes cluster management backplane.”
That software is available from numerous other sources: you don’t
need to spend time and money building and maintaining it on your
own. That software doesn’t move pixels on the screen, food in the
supply chain, or tasty food into customer’s mouths. Similarly,
grocery stores don’t build their own refrigeration systems, cash reg‐
isters, or delivery trucks.30

Second, when your product teams are working on the relevant
things, vision should help them decide between different options,
breaking any deadlock or analysis paralysis. I like to cast this vision-
utility into an extreme example: vision should help the product team
decide the best of two bad options. That’s where a good decision-
making tool shines. Choosing between two good options always
results in a, well, a good result. When it’s a choice between a good
and a bad option, there’s little thinking needed. But when you have
to choose the least worst option you need a precise tool. We’ll see an
example in “Case study: Better banking by banking less” on page 42.

Third, when crafting your vision, put it in terms of your software’s
users, not your organization’s goals. As the VMware Tanzu Labs
Product Manager Playbook31 puts it:

The New Meatware | 41

https://oreil.ly/jOiQt

The product vision should answer who the product is intended for,
what needs or desires the product satisfies for its users, and what
benefit(s) those users can expect to experience by using the
product.

The Playbook also notes that your vision should be iterative: “[i]f
your vision is no longer aspirational or motivational, or if it doesn’t
ring true for customers, articulate a new and better vision state‐
ment.” This agility of your vision statement, and even mission state‐
ment, is key to evolving. If they stay static or are set in stone (often
literally!), changing will always be more difficult.

Finally, your vision and strategy should be achievable. “Don’t make
it too long-term,” Jana Werner says, “it needs to be clear that some‐
thing can be achieved by people in that strategy, and that’s not some‐
thing that the next generation does.” Certainly, you can think in the
five-year blocks what traditional strategy-think emphasizes but fig‐
ure out a way to give your team short-term wins as well. “Winning”
early is key to changing habits, even small wins.

Use your vision to focus the product teams on how your software,
your business, is making your user’s lives better, even if that’s just to
order food when they don’t want to cook.

Case study: Better banking by banking less. The vision I always hold up
as an example here is from DBS Bank in Singapore: “we are the bank
that wants you to live more, bank less,” as Siew Choo Soh put it.

This is a very practical tool because it says, “do the thing that makes
our customer’s interaction with us as quick as possible.” People don’t
want to hang out in their online banking system like they might in a
WhatsApp thread or in Instagram. And, when dealing with money,
you often want to act quickly with little hassle. The longer a retail
banking transaction takes, the poorer the customer experience.
Adding in an address book of previous transfer recipients is helpful
—automatically saving previous recipients and auto-completing
their information as the user types would be even more helpful.

This “live more, bank less” vision can also drive security decisions as
much as feature decisions. First, security is a feature for retail bank
customers. To make sure they don’t lose money, they’ll put up with a
lot more annoying security features (like two-factor authentication)
than in, say, photo-sharing applications. But those security features
should also be driven by the live more, bank less vision.

42 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/Ie1rU
https://oreil.ly/A1oDB

For example, some banks use a bizarre handheld device for two-
factor authentication. In recent years, some of those banks have
moved to QR scanning, coupled with a pin number for authentica‐
tion and authorization. Once banks add in Apple Face ID to this
workflow, secure banking becomes even faster, allowing you to get
busy living instead of having to get busy banking.

Mission statements and values
If I’m skeptical of vision statements, I’m even more skeptical of mis‐
sion statements and corporate values. Mission statements and values
are supposed to be another compass, almost a set of morals that the
organization lives by. Committees and corporate virtue-signaling
too easily turn mission statements and values into facile, laminated
badge-holder inserts. Of course, my skepticism comes from how
many bad vision and mission statements I’ve encountered. Done
well, these statements are powerful tools that act as direction for
daily actions.

Decision-making tools. I’m sure it’ll rankle some of the mission state‐
ment warriors out there, but you should probably start by making
your vision and mission statement the same thing. Keeping track of
two different things, with one cascading from the other, is a lot to
keep track of. Pop quiz! Can you recite your organization’s mission
statement and vision? If you can, it’s probably because it’s carved in
the wall opposite your desk right now.

Second, make values into operating principles: a list of detailed and
prescriptive norms. There’s a place for values that speak to character
and overall good corporate behavior. Sure, we all value being virtu‐
ous, integrity in business, and making people happy, not least of all
ourselves. Unless your C-suite was recently carted off to jail for
forgetting basic, universal values, use most of your values more as
principals: tools for directing how people should make decisions.

For example, the UK’s Government Digital Service (UK GDS) docu‐
mented 10 design principles for software:

1. Start with user needs.
2. Do less.
3. Design with data.
4. Do the hard work to make it simple.

The New Meatware | 43

https://oreil.ly/K2MhZ

5. Iterate. Then iterate again.
6. This is for everyone.
7. Understand context.
8. Build digital services, not websites.
9. Be consistent, not uniform.

10. Make things open: it makes things better.

If you’re used to the usual corporate values, these may seem too “low
level”...which is the point! Higher-level values are noble, but often
lack the utility that lower-level values do. As some former UK GDS
staff wrote in Digital Transformation at Scale:

[T]he principles were not written to replace the civil service’s own
four long-established and admirable values: honesty, integrity,
impartiality, and objectivity. They were written to do something
those values were not designed to do—provide instructions for how
to actually deliver things.

Values-as-principles should, once again, help product teams make
decisions.

Filter talent and retain employees. Mission statements and values can
be used to filter the employees you’re hiring and reinforce the loy‐
alty and churn of your employees. Because software talent is so rare,
employees are obliged to spend a lot of time catering to their
employees’ identities: software people have so many options for
employment that they don’t have to take a job just to have a job.
They can choose a job because they believe in their employer’s pur‐
pose and the work they do there. This means that staff can just as
easily leave that job when they stop identifying with their employer.
Employees’ alignment with those values becomes part of their
compensation.

You can use values as a way to signal the types of people you want,
and those you want to exclude. Do you want hard chargers who will
chase business opportunities? You value growth, entrepreneurialism,
people who want to “build the future,” and solve problems with non‐
conventional approaches. Do you want people who take a slower,
more considerate approach? You value empathetic people who want
to learn and investigate, helping the customers enrich their family
and lead better lives.

44 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/4SXXc

32 This idea of using mission statements for staff recruitment and retention comes from
an interview with Brian Armstrong, Conversations with Tyler, Episode 115 (February
2021).

To start, I suggest looking at how you operate today and the type of
people you employ. What ways of working are most effective at ach‐
ieving your goals and create the kind of day-to-day work environ‐
ment you want? Use those characteristics as your values. If those
values seem reprehensible, then, you know—fix them.

Next, think about how you would like to operate, what you aspire to.
For example, if you want to shift from the project to product mind‐
set, as outlined earlier, you want your people to be curious, innova‐
tive, people-centric, and to take risks. These are things you value.
Put those two lists together and see what you have.

As ever, when you’re starting, revisit this list often and see if it’s
working. You could be overly empirical and apply the small batch
loop to the values, assigning measurements to take to see if they’re
“working.” I wouldn’t have enough passion or energy to do that, but
perhaps that’s why I’m not management material. In the first year, I’d
revisit these values and principles at least every quarter. After that,
figure out how often to visit them—twice, or just once a year. Never
forget that in the first year, and perhaps beyond, you’re learning and
adapting.

Using mission statements and values like this will allow you to select
out people who don’t share your mindset and help keep staff that do
have the right mindset.32

Scaling Change
In every discussion I have with executives about digital transforma‐
tion, the same question comes up over and over: how do we scale
change? As you know by now, I never pass up on the chance to
avoid giving just one answer. In this case, I give three.

Favor seeding change over big bang change
First, as already covered, you have to start small (“Start Small, Stay
Small” on page 33). In the context of scaling change, starting small is
important because you’ll build up an understanding of what works
in your organization, but also because you’ll “train the trainers.” For

The New Meatware | 45

https://oreil.ly/VoCvX
https://oreil.ly/YT9j2
https://oreil.ly/YT9j2

33 The 2019 Accelerate State of DevOps Report has some relevant analysis worth looking at
of how effective this seeding practice is versus other practices like big bang (all at once),
bottoms up, and center of excellence.

your initial two or five apps, you should purposefully choose some
team members who are, at least, mildly outgoing and interested in
helping other people. Often, this tutelage tendency is a prerequisite
for more senior roles, so you likely know who these people are.

After some definitive, clear success on your initial projects, take
these people and use them as “seeds” for new teams. These seed peo‐
ple will be trusted advocates and trainers for your new practices and
technologies. Hopefully, coworkers will trust the peers at their same
level, and your seed people will have firsthand experience changing
from the “as is” to the “to be” state. And, of course, when new people
are trained, you get more seed people who can help transform more
teams, and so on.33

Take everyone with you
Second, focus on transforming your existing organization rather
than leaving behind your “legacy” organization. Too often, when IT
departments are changing how they do software, they create a differ‐
ent organization, set apart in a different building with much better
lighting and pale wood desks. This in itself is fine. However, man‐
agement needs to be very careful—and genuine!—to make people
understand that this sunlight and attractive office furniture is for
everyone, not just the chosen few. Moving everyone over may take
time, but the intention isn’t to leave people behind.

Aside from being, well, humane, there are tactical reasons to do this:

• Hiring new staff is difficult. Hiring new staff that want to work
on your “legacy” platforms and frameworks will be even more
difficult. If you’re worried about the ability to recruit the talent
you need, perhaps you shouldn’t be so quick to give up on the
people you already employ.

• Your new software will need to work closely with your existing
software, and slighted people will be the biggest barrier to that
integration work. If you’re working on a mobile app for chang‐
ing seats on a train or automating grocery returns, you’ll need
to work with the teams that own the backend systems that

46 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/D955Q
https://oreil.ly/KWeNg

34 This pattern name can be a bit worrisome for your legacy staff if they think too deeply
about it. It’s named after the strangler fig that slowly covers and then kills the “legacy”
tree underneath the new vines. That said, regardless of the name, the mechanics and
intention of the pattern are good and proven out.

handle those requests. If those teams, understandably, don’t like
you because they feel like you abandoned them in those old,
poorly lit cube farms...are they going to make things easier for
you? The answer is left as an exercise for the reader.

• The legacy teams will become the new bottleneck in your end-
to-end process. Even if the people on the legacy teams share
your mindset, having to follow the older process and use the
older technology will slow down anything new you try. There
are ways of jerry-rigging the interaction between new and old,
like putting API facades in place and applying the strangler pat‐
tern;34 but don’t get too dependent on short-term fixes.

It may take years to change over all the teams, and perhaps you
never will. But don’t fall into the trap of thinking about “NewCo”
versus “OldCo.” You don’t really need to prove that the NewCo
model will work. As Richard Watson put it, we know that starting
from scratch without the constraints of the existing organizations
works—that’s what a tech startup is!

Instead of focusing on just a “NewCo,” create an “AllCo.” Your goal
should always be to improve everything, lest you create resentful
staff ready to nudge a monkey wrench into your gears of digital
transformation.

Marketing and training
After your initial few teams have proven out your new practices and
technologies, you’ll need to start thinking about training new teams.
But it’s not just training, it’s marketing. When you’re scaling change
to hundreds of apps and thousands of staff, you’ll need to market
the change to them, explain the new practices and tools, and also
win them over.

At first, you should expect to dedicate at least one full-time person
to the role of traveling advocate for your new culture. I’ve seen this
at numerous companies, including BT Group (formerly British Tele‐
com), where the advocate arranged and put on day-long workshops

The New Meatware | 47

https://oreil.ly/QCqD8

on Canvas, BT’s brand for their new practices and application plat‐
form. As more and more teams transform, you should start doing
quarterly, internal conferences. These conferences should have that
training and education content from the advocate phase but need to
also contain talks from teams following the new culture.

What you’re doing here is following the classic marketing playbook:
win people over with case studies and the words of their peers
instead of the seller, here, management trying to win staff over. For
example, one common objection people have is that their app or ser‐
vice is too old and complex to apply a product approach to.

In addition to the pure business benefits, with these types of objects
in mind, you should pick some of those difficult applications early
on. When you successfully change that project, you can hold it up as
an example in your internal marketing and conferences. For exam‐
ple, in telling the story of modernizing their payment system, Air
France-KLM’s Oya Ünlü Duygulu says, “[f]rom the organization
side, there is no more fear of big changes. If such an old application
as EPASS can transform, then it’s possible for any application.”

The word “marketing” probably wasn’t on your list of skills when
you started climbing the IT department career ladder. But, when it
comes to transforming how you do software marketing, it’s vital to
scaling.

Give Yourself Permission to Change
This is the first time that we’ve been able to take control of our own des‐
tiny and actually go after what our customer needs...and making sure
that what we’re developing is actually going to have some benefit.

—Erika Green, Director of Technology Product Management,
Dick’s Sporting Goods

If you take nothing else away from reading this report, hear this: I
give you permission to change how you work. This is a cheap mind
trick, but it’s something you probably need to hear if you’re modern‐
izing how your organization operates. The people who you work
with likely also need to hear this: “Hey team, you have my permis‐
sion to change. You might even like it!”

For years we’ve all known how we need to operate day-to-day and
even why we need to change how we manage the software life cycle.
And yet, based on the conversations I’ve had, so many large organi‐

48 | Changing Mindsets: The Missing Ingredient to Digital Transformation

https://oreil.ly/YP63Y
https://oreil.ly/TjDoA
https://oreil.ly/TjDoA

zations have yet to change. The people I talk with aren’t, you know,
happy. They know they could be doing a better job; they just can’t
figure out how to collectively change. As a leader, you’ll have to
change their mindset, which means you’ll have to change yours as
well.

Rather than relying on external conditions to force change, wouldn’t
it be better to control and apply the change yourself? While the
heroic responses to pandemic conditions of the past year demon‐
strated that many organizations could rapidly solve business prob‐
lems with software, many of the people I spoke with said the pace of
change was unsustainable. They were seeing, or could see, their
organization getting burned out. If you decide to be proactive with
changing how your organization thinks about and produces soft‐
ware, you can escape the burnout that comes from being reactive to
external forces.

I’ve found that when I can’t change my habits or start living in a bet‐
ter way, my problem is all in my mindset. Before I can start improv‐
ing, I have to go get my mind right. More often than not, what I find
is that I have to give myself permission to think in a new way. I’ve
gotten stuck thinking that I’m not allowed to behave differently no
matter how poorly my current way of thinking is serving me.

For example, during the first part of the pandemic, I was going stir-
crazy at home with my family 24/7. I was used to traveling
frequently for work and spending long hours sitting at a keyboard
writing and reading about, er, “digital transformation.” Oh, and also
our third child was born. I felt a huge drive to be ever present, both
for work and family. One day, seeing me sitting on the edge of the
bed, just staring off into nothing, my wife said, “you should figure
out getting some alone time.” She was right, and I’d been thinking
about that every hour of every day. But I didn’t think I could give
myself permission to be alone, even though I knew I needed it to
keep sane and functioning as a parent and partner. Even after she
told me this, I still had to build up the energy and will to give myself
permission to do it. It was a major mindset shift.

While I’ve never managed an IT organization, from what I can tell
it’s much easier than holding down a full-time job, administering
home schooling for two kids, caring for an infant, and maintaining a
long-term relationship, while all at the same time trying to avoid
getting coughed on to stay alive. So, if you need it for something as,

Give Yourself Permission to Change | 49

er, “easy” as completely changing over how your organization thinks
about and manages software, you can have it: you’ve got permission
to change. Be sure to tell your teammates too.

50 | Changing Mindsets: The Missing Ingredient to Digital Transformation

About the Author
Michael Coté works at VMware on the advocate team. He focuses
on how large organizations are getting better at building and deliv‐
ering software to help their businesses run better and grow. Most
recently, he’s published Digital WTF on this topic. He’s been an
industry analyst at RedMonk and 451 Research, worked in corpo‐
rate strategy and M&A at Dell in software and cloud, and was a pro‐
grammer for a decade before all that. Coté does several technology
podcasts (such as Software Defined Talk) and writes frequently on
how large organizations struggle and succeed with Agile develop‐
ment and DevOps. He blogs at cote.io, and is @cote on Twitter.
Texas Forever!

https://leanpub.com/digitalwtf/
https://oreil.ly/Z9FXx
https://cote.io
https://twitter.com/cote

	Cover
	VMware Tanzu
	Copyright
	Table of Contents
	Chapter 1. Changing Mindsets: The Missing Ingredient to Digital Transformation
	If It’s Not Working, Change Your Mindset
	“Mindset”
	How This Report Is Structured
	The Goal: A Culture of Innovation
	Software as a Project
	Software as a Product

	The New Meatware
	Failure == Learning
	Changing Habits
	Motivation Hacks
	Management’s New Mindset for Staff
	Trust Your Team
	Servant Leadership
	Revisit Your Bozo Bits
	Trust Your System
	Shift Everything Left; or, the End-to-End Mindset
	Start Small, Stay Small
	Use Metrics to Build Trust
	Vision, Mission Statements, and Other Things That Should Be Tools
	Scaling Change

	Give Yourself Permission to Change

	About the Author

