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About TigerGraph 
TigerGraph is the only scalable graph database for the enterprise. Based on the 
industry’s first Native and ParallelGraph technology, TigerGraph unleashes the power 
of interconnected data, offering organizations deeper insights and better outcomes. 
TigerGraph fulfills the true promise and benefits of the graph platform by tackling the 
toughest data challenges in real time, no matter how large or complex the dataset. 
TigerGraph’s proven technology supports applications such as fraud detection, customer 
360, MDM, IoT, AI and machine learning to make sense of ever changing big data, and is  
used by customers including Amgen, China Mobile, Intuit, Wish and Zillow. 

The company is headquartered in Redwood City, California, USA.  
Follow TigerGraph on Twitter at @TigerGraphDB or visit www.tigergraph.com
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Disclaimer
Although the results described in this report are derived from Linked Data 

Benchmark Council (LDBC) standards, they should not be considered 

to be LDBC benchmark results, since the current results have not been 

audited and approved by LDBC yet.
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Executive Summary 
We recently measured TigerGraph’s performance using the respected 

Linked Data Benchmark Council (LDBC) Social Network Benchmark (SNB) 

Scale Factor 30k dataset (36TB raw data, with 73 billion vertices and 534 

billion edges). 

To the best of our knowledge, this is the first benchmark test using the 

LDBC-SNB SF-30k BI workload on a distributed graph database. 

The study clearly demonstrates TigerGraph’s ability to handle a big graph 

workload in a real production environment, where tens of terabytes of 

connected data with hourly or daily incremental updates is the norm—

no other graph database vendor or relational database vendor has 

demonstrated equivalent analytical capabilities on such a large  

dynamic graph. 

We focused on testing TigerGraph’s performance on Business Intelligence 

(BI) workloads over a sequence of batch-refreshed big graphs using a 

distributed cluster of 40 machines in Google Cloud Platform (GCP).  

The BI workload included:

•	 20 Read Queries—the majority of OLAP-style iterative and deep-link graph 

queries were answered in a few minutes or less. Some queries require compute 

the edge weights first and then compute the top-k weighted shortest paths 

between two vertex sets to find the answer, which is very challenging. 

•	 Batch Updates—the graph is mutated by a set of insert and delete operations.  

The data to be inserted or deleted are batched for a period of one day, and we run 

the BI queries after seven consecutive batches.

We did not include interactive complex (IC) and interactive short (IS) query 

workloads in this benchmark effort as the data generator is not ready yet 

for them in the latest LDBC SNB version. See here for more information.

 

TigerGraph’s ability 
to handle a big graph 
workload in a real 
production environment, 
where tens of terabytes of 
connected data with hourly 
or daily incremental update 
is the norm

https://github.com/ldbc/ldbc_snb_interactive/issues/173
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Benchmark Setup
This document describes an implementation of the LDBC Social Network 

Benchmark Scale Factor 30k (version 0.4.0) on a distributed cluster.  

The implementation used GSQL, a query language developed by 

TigerGraph. The queries were compiled and loaded into the database  

as stored procedures.

The data schema follows the property graph data model. We measured 

the loading time, storage size, and query latency of the 20 BI queries on 

a cluster of 40 machines. All benchmark scripts are publicly available on 

GitHub for reproducibility purposes. To the best of our knowledge, this 

is the first benchmark test using the LDBC-SNB SF-30k BI workload on a 

distributed graph database.

Machine Overview

We used 40 Google Cloud Platform (GCP) machines for benchmarking 

LDBC-SNB Scale Factor 30k. Table 1.1-1.3  shows the operating system 

and hardware used. 

Number of Virtual Machines 40

Instance Type m1-ultraman-40

Operating System CentOS Linux 7

Kernel linux 3.10.0-1160.41.1.el7.x86_64

Table 1.1: Overview of the testing cluster.

CPU Details

The following table provides the CPU and cores specifications.

Architecture x86_64

Number of CPUs (threads) 40

Model Name Intel Xeon E7 @ 2.20GHz 

Socket(s) 1

Cores per Socket 20

Threads per Core 2

Cache Size per CPU 55MB

CPU Max (GHz)  3.3

Table 1.2: CPU details for each machine.

Memory Details

The memory size is 961GB for each machine (approximately 37.5TB for the 

complete cluster of 40 machines).

Disk and Network Details

The following table provides the disk information. 

Disk GCP regional persistent disk 

Device Size 4TB

IO Speed 30 IOPS/GB

Network Bandwidth 32 Gbps

Table 1.3: Disk details on each machine.

https://ldbcouncil.org/ldbc_snb_docs/ldbc-snb-specification.pdf
https://ldbcouncil.org/ldbc_snb_docs/ldbc-snb-specification.pdf
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_v3
https://cloud.google.com/compute/docs/memory-optimized-machines
https://cloud.google.com/compute/docs/disks
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TigerGraph Details

We used TigerGraph Enterprise Edition 3.2.2 throughout the  

benchmark test. 

Dataset Information    
Data Schema 

The data schema used in the benchmark test is shown in the  

following schematic.

Figure 2.1:  Data schema from LDBC SNB Spec. 

Dataset Statistics

The statistics of the initial state for each vertex and edge type is shown 

in the following table. (The data size was 10-20% larger after a refresh 

operation, and is reported in subsequent sections):

DYNAMIC STATIC
VERTEX TYPE 
NAME

CARDINALITY VERTEX TYPE 
NAME

CARDINALITY

(# OF VERTICES) (# OF VERTICES)

Comment 58,666,958,815 Company 1,575

Post 13,148,296,221 University 6,380

Forum 728,629,666 City 1,343

Person 74,689,437 Country 111

Continent 6

Tag 16,080

TagClass 71

Table 2.2:  Cardinality for each vertex type (total 72.62B vertices).

http://tigergraph-release-download.s3.amazonaws.com/enterprise-edition/tigergraph-3.2.2-offline.tar.gz
https://ldbcouncil.org/ldbc_snb_docs/ldbc-snb-specification.pdf
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EDGE TYPE NAME CARDINALITY (# OF EDGES)
CONTAINER_OF 13,148,296,221

HAS_CREATOR 71,815,255,036

HAS_INTEREST 1,747,667,501

HAS_MEMBER 90,652,090,014

HAS_MODERATOR 728,629,666

HAS_TAG 101,534,577,622

IS_LOCATED_IN 60,105,627,162

KNOWS 11,468,940,044

LIKES 123,425,491,642

REPLY_OF 58,666,958,815

STUDY_AT 59,758,459

WORK_AT 162,518,922

HAS_TYPE 16,080

IS_PART_OF 1,454

IS_SUBCLASS_OF 70

Table 2.3: Cardinality for each edge type (total 533.5B edges).

Initial Data Loading
The schema DDL and loading scripts can be found on GitHub. The scripts 

are organized in the following structure:

•	 gcp/ - sets up the GCP cluster.

•	 LDBC_10T/ - downloads and preprocesses data for SF 1k, 10k and 30k. 

•	 schema.gsql - defines the data schema.

•	 load.gsql - loads the initial snapshot of the social network.

•	 queries/ - runs queries in Interactive Workloads (14 IC and 4 IS queries)  
and Business Intelligence Workloads (20 BI queries).

•	 refreshes/ - performs micro-batches of insert and delete operations. 

•	 driver.py - the utility script to run the whole benchmark in a single 
command. 

•	 cypher/ - cypher scripts for cross validation at SF-1 (1GB).

The command for loading was: 

./driver.py load all [data_dir]

In the 36.1TB benchmark, the following configurations were updated on 

top of the default configuration: 

gadmin config group timeout

•	 Add “MVExtraCopy=0;”  //default is 1; - this turns off backup copy.

https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_v3


WHITE PAPER  |  BENCHMARKING TIGERGRAPH USING LDBC SNB (SF-30K) 7

gadmin config group timeout

•	 FileLoader.Factory.DefaultQueryTimeoutSec: 16 -> 6000

•	 KafkaLoader.Factory.DefaultQueryTimeoutSec: 16 -> 6000

•	 RESTPP.Factory.DefaultQueryTimeoutSec: 16 -> 6000

Table below reports loading performance of TigerGraph on a  

40-node cluster: 

Loading Time 35 hour and 30 minutes

Raw Size 36.13TB

Loaded Data Size on each Machine 454.2GB on average (and 17.7TB in 
total)

Compression Ratio 
(size of input data / size of TigerGraph 
store)

2.037

Loading Speed/Machine 26.06 GB/hour/machine (36.13TB/35.5 
hour = 1042GB/hour for 40 machines)

Table 3.1: Loading performance on a 40-node cluster. 

The compression ratio is shown in the following figure:

As the figure shows, a 2.04x compression ratio was achieved when loading 

the raw data into TigerGraph native graph storage. And on average, we 

experienced a 26GB loading speed per hour per machine. The total end-

to-end loading time was approximately 35.5 hours.

 

Figure 3.1: The disk space consumed by the dataset was 2.04 times smaller once loaded  
   into TigerGraph. 
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Cross-validation At SF-1
Before we conducted the LDBC SNB benchmark on SF-30k, we ran the 

same workloads using Neo4j on 1GB data (SF-1). The Neo4j Cypher 

queries are based on the implementation by LDBC (we made some 

modifications to support a different format of timestamp), which has 

been  cross-validated against  PostgreSQL. We used it as a sanity check 

to ensure different query language (GSQL, Cypher, SQL) implementations 

are logically equivalent and generate the same result on the same data set 

and query parameter input. 

For both TigerGraph and Neo4j on SF-1, we completed the following 

workflow: first, we loaded the initial snapshot of the social network data 

dated 2012-09-13; next, we mutated the loaded graph by running insert 

and delete operations batched by each day. 

•	 Insert operation is either insert a vertex or an edge

•	 Delete operation is either delete a vertex or an edge; vertex deletion 
triggers cascade deletion

After every 30 batch updates, we cross-validated the query results 

and also reported the number of vertices and edges of the graph. The 

TigerGraph query results on four different dates are validated against 

the results using Neo4j. All results are the same across the two graph 

databases. We reported below the cross validation between TigerGraph 

and Neo4j.

•	 Validate the graph statistics -  we cross validated the number of vertices 
and edges for some of the dynamic vertex and edge types

•	 Validate the query results - the results for all 20 BI queries are cross 
validated per 30-day  sequential updates

Figure 4.1: Deleting one Person vertex triggers the deletion of some connected vertices and edges according  
	 to the LDBC spec.

https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_v3/cypher
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_v3/cypher
https://github.com/ldbc/ldbc_snb_bi
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Table 4.2: The cardinality of selected vertex and edge types after each batch update, cross validated    
 between TigerGraph and Neo4j at SF-1. 

SF1 TG3.2

date Comment nPost Forum Person HAS_TAG LIKES KNOWS REPLY_OF

2012-09-13 1,116,485 999,664 90,227 9,884 2,471,902 1,265,881 120,835 1,116,485

2012-10-13 1,355,849 1,055,204 95,012 10,159 2,820,506 1,471,700 138,487 1,354,664

2012-11-12 1,645,123 1,111,077 99,994 10,422 3,194,742 1,715,430 159,946 1,642,590

2012-12-12 2,060,884 1,168,357 104,997 10,693 3,710,874 2,043,627 2,056,633

SF1 Neo4j

date Comment Post Forum Person HAS_TAG LIKES KNOWS REPLY_OF

2012-09-13 1,116,485 999,664 90,227 9,884 2,471,902 1,265,881 120,835 1,116,485

2012-10-13 1,355,849 1,055,204 95,012 10,159 2,820,506 1,471,700 138,487 1,354,664

2012-11-12 1,645,123 1,111,077 99,994 10,422 3,194,742 1,715,430 159,946 1,642,590

2012-12-12 2,060,884 1,168,357 104,997 10,693 3,710,874 2,043,627 188,572 2,056,633

Micro-batch Insert and Delete 
Performance At SF-30K
The initial snapshot of the graph is dated 2012-11-29 (the data set’s 

timestamp). BI queries for read operations were performed after every 

seven-day (or seven batch) updates of insert and delete operations. 

Insert/Delete Implementation

In the LDBC SNB benchmark, BI workloads also included the micro-

batches of insert and delete operations. The insert and delete data was 

batched for a time period of one day. The initial data set was the graph 

snapshot dated on 2012-11-29. Then, after each day, we inserted a batch 

of vertices and edges and then deleted a batch of vertices and edges. 

After seven batch operations, we evaluated the query results. The 

reported insert and delete times shown in Table 5.1 are the total times  

of seven batch operations of insert and delete, respectively.

The inserted data was equally distributed on each machine and the insert 

operations were executed by running a loading job. This loading job 

was similar to the one that loads the initial snapshot, but only loaded the 

dynamic vertices and edges files.   

The vertex delete was specified in the LDBC SNB v0.4.0 section 6.2.2. 

When a vertex (Person, Forum, etc.) was to be deleted,  the related 

vertices were also required to be deleted (cascading delete). Vertex 

deletion was accomplished using GSQL queries. The vertex data was 

Figure 5.1: Workflow of LDBC SNB BI workloads with batch inserts and deletes

https://github.com/tigergraph/ecosys/blob/ldbc/ldbc_benchmark/tigergraph/queries_v3/refreshes/insert.gsql
https://ldbcouncil.org/ldbc_snb_docs/ldbc-snb-specification.pdf
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_v3/refreshes
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loaded into the queries using “LoadAccum” function in GSQL and did  

not support distributed loading. We maintained the same copy of the  

delete data on all the nodes. The edge deletion was accomplished by 

running a loading job. Edge deletion operation was performed in a 

distributed way. 

In summary, the insert operations and edge delete operations were 

distributed but the vertex delete specified in LDBC specification was  

more complicated (see Figure 4.1) and was not distributed in the  

current implementation. 

The delete data set was much smaller than the insert data set and, 

therefore, the graph size increased after each batch update.

DATE COMMENT PERSON LIKES KNOWS INSERT 
TIME(S)

INSERT TIME(S)

2012-

11-29

58,666,958,815 74,689,437 123,425,491,642 11,468,940,044 0 0

2012-

12-06

60,357,657,600 75,152,321 125,962,466,995 11,737,818,931 2693.37 2693.37

2012-

12-13

62,146,221,013 75,621,563 128,626,905,655 12,035,032,350 3102.28 3102.28

2012-

12-20

64,044,718,098 76,087,874 131,355,659,487 12,360,433,612 3326.13 3326.13

2012-

12-27

66,129,264,865 76,551,431 134,356,124,333 12,770,202,615 3643.33 3643.33

Total Time (s) 12765.11 7141.06

Speed 25.99 GB/hr/

machine

138,806 operations/

sec

Table 5.1: Selected vertex and edge type cardinality at checkpoint dates; the batch insertion and deletion aggregate time 
at each checkpoint dates; and the total average speed of insertion and deletion. Note that since delete vertex 
triggers cascading delete, we are showing the number of delete operations per second (not counting the cascading 
operations). The first row insert and delete time is zero, since this was immediately following the initial loading, no 
insert and delete operations were performed.

Query Performance at SF-30k
Query Implementation

After cross validation of the GSQL query implementation of the BI 

benchmark queries, we ran them across the SF-30k data. The driver 

automatically generated the valid input parameters for the benchmark 

queries. The queries were written in GSQL v2 syntax using multi-hop 

pattern matching style. All of the queries ran in a distributed manner to 

obtain a scalable performance on the 40-node cluster.

We only ran BI workloads in the LDBC-SNB version 0.4.0. We are able to 

run IC and IS queries but the data generator developed by LDBC was not 

ready yet for IC and IS workloads for scale larger than 1000. 

Since the graph is updated after the insert and delete operations, we 

developed a parameter generator to get valid query input parameters.  

The parameter generator used GSQL queries to get candidate values for 

https://github.com/tigergraph/ecosys/blob/ldbc/ldbc_benchmark/tigergraph/queries_v3/refreshes/del_Edge.gsql
https://github.com/tigergraph/ecosys/blob/ldbc/ldbc_benchmark/tigergraph/queries_v3/driver.py
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_v3/queries
https://github.com/tigergraph/ecosys/blob/ldbc/ldbc_benchmark/tigergraph/queries_v3/parameters/sf30k.json
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input parameters (country names, tag names, Person IDs and city IDs, 

etc.). We then chose one value from the candidates at random and passed 

it to the BI queries. The parameters (stored in JSON format) can be passed 

to driver.py with “-p” options. This allows the repeatability of queries with 

the same parameter as the previous runs.

Query Performance 

The following table shows the query elapsed time at batch update 

completion points.

QUERY TIME (S) 2012-11-29 2012-12-06 2012-12-13 2012-12-20 2012-12-27

BI 1 38.44 142.76 127.78 135.59 153.28

BI 2 13.04 74.57 89.73 70.68 144.19

BI 3 44.12 179.29 874.02 75.97 86.03

BI 4 139.45 244.46 339.52 375.07 359.66

BI 5 6.87 8.64 12.37 13.66 14.6

BI 6 27.76 31.07 32.98 34.88 33.78

BI 7 8.88 10.76 11.48 13.43 15.18

BI 8 9.6 10.33 11.11 14.62 16.51

BI 9 89.42 108.2 133.84 105.15 138.55

BI 10 333.17 588.69 869.56 473.58 485.22

BI 11 9.21 14.45 15.84 15.71 15.33

BI 12 10.76 33.05 23.55 25.42 27.02

BI 13 65.3 88.71 89.11 104.6 505.27

BI 14 614.47 1039.34 1344.96 2127.02 4128.6

BI 15 68.46 673.23 709.47 722.63 693.71

BI 16 205.13 233.01 246.13 258.18 271.73

BI 17 40.42 39.83 41.39 44.75 44.7

BI 18 7.21 6.94 7.11 7.09 7.31

BI 19 1373.93 1997.92 882.47 2608.47 1320.73

BI 20 43.92 35.55 41.36 47.18 49.86

Total Average 

Time (s)

236.06 273.71 372.11 369.36 293.54

 
 
Remarks:

•	 All the queries were written in the distributed mode and in v2 syntax

•	 Input parameters of queries were different for different checkpoints

•	 BI 19 is a heuristic approximation query. This is a new query pattern, 
which required us to compute top-k weighted shortest paths between 
two vertex sets using derived edge weights.  At SF-30k this query is too 
expensive. We used a heuristic approximation and only searched for 
paths within length 2—this provided the correct results for LDBC SNB 
36TB data, but may not achieve the correct results for smaller data size 
(e.g. SF-1 and SF-100). The exact solution of BI 19 took about one minute 
for SF-100 data, but yielded “out-of-memory” errors at SF-30k.

Table 6.1: The time spent by the BI read queries in the LDBC BI SF-30k benchmark in seconds.  
	The BI 19 query is a new query pattern which is very expensive at SF-30k.
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TigerGraph can run deep-
link OLAP style queries on 
this mutable big graph of 
72 billion vertices and 533 
billion edges, returning 
results on data-intensive 
queries in a few minutes  
or less.  

Conclusion
The benchmark test described in this report demonstrates TigerGraph’s 

capability in handling large scale updatable connected data with a set of 

demanding graph benchmark queries. 

The LDBC SNB new version (0.4.0) BI workloads included two  

new challenges:

•	 Micro-batch of insert and delete operations to mutate the current graph

•	 New query patterns that require compute top-k cheapest paths between 
two vertex sets, where the edge weights are derived from the graph

TigerGraph can run deep-link OLAP style queries on this mutable big 

graph of 72 billion vertices and 533 billion edges, returning results on 

data-intensive queries in a few minutes or less. 

The study clearly demonstrates TigerGraph’s ability to handle big graph 

workload in a real production environment, where tens of terabytes of 

connected data with hourly or daily incremental update is a norm. No other 

graph database vendor or relational database vendor has demonstrated 

equivalent analytical and operational capabilities on this large scale 

updatable graph to the best of our knowledge. 


