

Smarter Al with Analytical Graph Databases

Dr. Victor Lee Head, Product Strategy TigerGraph

Gaurav Deshpande VP, Marketing TigerGraph "Graph analysis is possibly the single most effective competitive differentiator for organizations pursuing data-driven operations and decisions after the design of data capture."

AGENDA

- What is a Graph Database?
 What is an Analytical Graph Database?
- Why Graph + AI?
- Three Basic Approaches for Graph + AI, with Use-Case Examples

- Unsupervised Learning
- Feature Enrichment from Graph Features
 - In-Database Learning

Types of Graph Databases

Semantic (RDF) Knowledge Graph:

- Collection of facts (RDF triples)
- Ontology to model concepts & rules
- Pattern matching
- Logical inference
- Standards-based

Property Graphs:

- Node and Edge objects
- Higher performance for queries, transactions, and advanced analytics
- Pattern matching
- Schema-free or Schemabased
- Schemas allows application-specific tuning

TigerGraph is a High-Performance and Scalable Property Graph, for both Analytics & Transactions.

Why Graph? Why Graph + AI?

Richer, Smarter Data

- Connections-as-data
- Connects different datasets, breaks down silos

Deeper, Smarter Questions

- Look for semantic patterns of relationship
- Search far & wide more easily & faster than other DBs

More Computational Options

- Graph algorithms
- Graph-enhanced machine learning

Explainable Results

- Semantic data model, queries, and answers
- Visual exploration and results

@data<mark>sci</mark>salon

Real World Better Outcomes from Graph+Al

Healthcare: Real-time recommendations

- 1.3TB graph brain
- Real-time care recommendations
- Improving healthcare, lowering cost

Industrial Supply Chain: Analytics for decisions

- Analytics: weeks \rightarrow minutes
- Reveal opportunities, optimize tactical & strategic decisions
- Saving \$25M+/yr

Financial Services: Real-time fraud detection

- Integrates multiple tools
- "Magical" real-time visual results for investigators
- Scalable for growth

Case 1: Analytical Queries & Graph

Algorithms

Types of Graph Algorithms

- Path Finding
- Clustering / Community Detection
 - Lenient clustering connected component: one connection
 - Strict clustering clique detection: every possible connection
 - **Relative density** more connections in-group than between-group

Ranking and Centrality

- PageRank, HITS
- SimRank, RoleSim
- Closeness, Betweenness
- Similarity
- Frequent Pattern Discovery

BOLD indicates more complex tasks, with iterative algorithms, which can be considered **unsupervised learning**

Finding the Most Influential Health Care Providers in a Community

- Who is the **most influential** provider in each region for a particular medical condition?
 - ⇒ Use **PageRank** to rank each provider based on the relative importance of their referrals
- Who is influenced by these leaders (e.g. other doctors, chiropractors, physical therapists, facilities)?

⇒ **Use Community Detection** to find the groups surrounding Influencers

Graph with Patients, Providers, and Service Claims

Finding Similar Cases to deliver better healthcare

- Seamlessly integrate multiple sources of data to provide unified and comprehensive view for each journey among 50M Medicare members
- Find similar members with a click of a button in real-time
- Deliver care path recommendations for similar members

🏠 Me	powered by	er Jouri	ney		1	X		A		Q	
Men Doris	nber Nam s Smith	Gender: Fer Age: 78 DOB: 04/17	nale /41	Phone Number: (650) 888-9090 Email: dsmith41@gmai	I.com	ne Address: ain St. wood City, CA 9	4065		Fin	d Similar Mem	bers
VENTS			May	Jun	e	July	Augus	t Septe	ember Octo	ober No	vember
Enrollment Pharmacy Claim Presciber Claims		Enrollment	P)							
Veniess Check Dental Claim Testing & Procedure Claims Healthcare Advisor Visits	W	ellness Check		e		1			(2	
Behavioral Claim Labs Admissions	Pre	sciber Claims									
Program Outreach Outbound Call Inbound Call	Testi	ng & Procedure Claims				<i>6</i> 3				the the	
IMELINE	Pha	armacy Claims				8				8	
] Last 7 Days] Last 30 Days] Last 90 Days] Last 1 Year	Hea	lthcare Advisor Visits			\$ #	St.		•		ه ن	
Custom	0	nbound Call		9		9			9	2	

Graph-Based Structural Similarity

Use a vertex's neighbors as its feature set

• **Cosine**: Use edge weights to each neighboring vertex

A's weighted neighbors = $\{4,1,2,0\}$ B's weighted neighbors = $\{0,2,3,1\}$

$$Cos(A,B) = 8 / [\sqrt{21}\sqrt{14}] = 0.4666$$

W,X,Y,Z represent feature vertices, different vertex types than A,B

Entity Resolution using Similarity Scores

Entity Resolution using Similarity Scores

Apply a scoring system for comparing entities:

- Similar attribute values (e.g. name)
- Similar relationships (school, work, activities, ...)

Entity Resolution using Similarity Scores

Case 2: Graph Feature Extraction

Customer: China Mobile

Challenge

Find and report fraudsters among billions of calls per week.

Solution

- **Build graph**: Real-time operational graph with 600M phone nodes & 15B call detail records.
- Get features and labels: Domain experts write GSQL queries to extract 118 features/phone. Some past calls are labeled for 3 types of unwanted calls.
- **Train**: Feed machine learning with training data for fraud detection with 118 features/phone for 30M calls.
- **Deploy**: For each incoming call, extract the current 118 features (subsecond) and apply model for real-time answer.

Results

- If unwanted call is predict, display alert on recipient's phone
- Process 2000+ calls/sec
- Improved customer satisfaction

Case 2: Graph Feature Extraction

(a)data**sci**salon

Powering Explainable AI with Graph Database

Graph Powers Explainable AI Task Training Data Training Data Training Process Task Training Process

Graph based feature computation

DATASCIENCE

Explainable model with graph based visualization, exploration and features

Human Readable Interface

Dr. UptoNoGood does not see patients for a common group of healthcare conditions despite being a general practitioner

Average cost of care for treating opioid addiction for this prescriber and their referral network is 180% of the average for the area

Dr. UptoNoGood shares an address with the owner & administrator of "New Day" opioid treatment facility

Case 3: In-Graph Database Machine Learning

- Training: flow-control, accumulator, pattern match
- Model validation

DATASCIENCE

In-Database ML for Movie Recommendation

	All Critics Top Cr	itics All Audience	TigerGraph C L O U D			
VENGERS	Users	Ratings	Low-Rank Approximation Machine Learning v3			
MARVEL'S THE AVENGERS	Danny D	How many movies did it take to come up with this mundane plot ?				
Action & Adventure , Science Fiction & Fantasy Directed By: Joss Whedon In Theaters: May 4, 2012 Wide On DVD: Sep 25, 2012 Walt Disney Pictures	Benjamin C	 Goals: Predict users' ratings for movies based on previous ratings 	, TigerGraph GraphGurus			
1 minute 55 seconds Added: Apr 24, 2018 The Avengers: Trailer 2 2 minutes 22 seconds Added: Apr 24, 2018	Martyn K	 Recommend movies to users based on rating prediction 	EPISODE 28 An In-Database Machine Learning Solution For Real-Time Recommendations			
Movie features DATASCIENCE SALON VIRTUAL	j					

User—Rates—Movie Graph

DATASCIENCE

MovieLens dataset

https://grouplens.org/datasets/movielens/

- 100K ratings and 40K tags that 1K users gave to 17K movies
- Ratings are from 0 to 5 stars

Recommendation Approaches

- Collaborative filtering
- Content based method
- K-nearest neighbors
- Latent factor (model-based)
- Hybrid method

...

Movie Rating Prediction (Latent factor model)

_		$\theta^{(1)} = [5, 0]$	romance			
	Movie	Alice	Bob	Carol	Dave	action
$x^{(1)} = [0.9, 0]$	Love at last	5 <mark>4.5</mark>	5	0	0	
$x^{(2)} = [1, 0.1]$	Romance forever	5 <mark>5.0</mark>	-	-	0	
$x^{(3)} = [0.9, 0]$	Cute puppies of love	- 4.5	4	0	-	Fach movie has a latent
$x^{(4)} = [0.1, 1]$	Toy story	- 0.5	-	-	5	factor vector: $\theta^{(j)}$
$x^{(5)} = [0.1, 1]$	Sword vs. karate	0 0.5	0	5	- •	Each user has a latent factor vector: x (i)
$x^{(6)} = [0, 0.9]$	Nonstop car chases	0 0.0	0	5	4	Predict the user j's rating to
						movie i by: $(\theta^{(j)})^{T} x^{(i)}$

Fig. 2: Network Embedding v.s. Graph Neural Networks.

https://medium.com/@terngoodod/a-comprehensive-survey-on-graph-neural-networks-part-1-types-of-graph-neural-network-1dd93b823c70

Basic Neural Network

Hidden Layer H1 = Activation_Function(X*P), Hidden Layer H2 = Activation_Function(H1*P)

Graph Convolutional Neural Network

Deep Learning Neural Network

A = Adjacency Matrix (Graph Edges)

Hidden Layer H1 = Activation_Function(A*X*P), Hidden Layer H2 = Activation_Function(A*H1*P)

The TigerGraph Difference

Feature	Design Difference	Benefit		
Real-Time Deep-Link Querying 5 to 10+ hops	 Native Graph design C++ engine for high performance Storage Architecture 	 Uncovers hard-to-find patterns Operational, real-time HTAP: Transactions+Analytics 		
Handling Massive Scale	 Distributed DB architecture Massively parallel processing Compressed storage reduces footprint and messaging 	 Integrates all your data Automatic partitioning Elastic scaling of resource usage 		
In-Database Analytics & Machine Learning	 GSQL: High-level yet Turing- complete language User-extensible graph algorithm library, runs in-DB ACID (OLTP) & Accumulators (OLAP) 	 Avoids transferring data Richer graph context Graph-based feature extraction for supervised machine learning In-DB machine learning training 		
DATASCIENCE SALON	 No-code migration from RDBMS No-code Visual Query Builder 	 Democratize self-service analytics Derive new-insights from legacy/external data stores 		

Summary for "Why Graph for ML/AI"?

- Natural Data Model Graph is how we think
- **Richer Data** connections between entities, graph-based features
- Graphs have always had a **natural role in machine learning**:
 - Unsupervised learning through graph algorithms, frequent pattern mining
 - **Graph features** provide richer training data
 - Learning through **graph neural networks** and deep learning
- Graph data models are uniquely qualified to provide **explanatory AI**.

Native Graphs with Massively Parallel Processing like TigerGraph enable large
 DATASCIENGECALE feature extraction and in-graph analytics
 SALON
 VIRTUAL
 @datascisalon

Starter Kits and Developer Portal for Graph+ML

- 1. Content-based movie recommendation: *similarity*, k-nearest neighbor + latent factor
- 2. Entity resolution: Link & merge similar entities, based on *similar* properties and neighbors
- 3. Low-rank approximation of graph relationships
- 4. Graph feature engineering for anti-fraud ML

Select a Starter Kit *

Pick a Starter Kit with sample graph data schema, dataset, and queries (e.g. Fraud Detection, Recommendation Engine, Supply Chain Analysis, etc.).

Additional information including overview video at <u>tigergraph.com/starterkits</u>

In-Database Machine Learning

Recommendation

dev.tigergraph.com

Learn > Machine Learning

- 1. Unsupervised Learning with Graph Algorithms
- 2. Feature Set Extraction for Machine Learning
- 3. ML Enrichment with Graph Features
- 4. Graph Enrichment with Machine Learning
- 5. In-database ML Techniques for Graphs

Get Started

START FREE

Start in minutes, build in hours and deploy in days with the industry's first and only distributed graph database-as-a-service.

tigergraph.com/cloud/

