
@datascisalon

Smarter AI with Analytical
Graph Databases

Dr. Victor Lee
Head, Product Strategy
TigerGraph

Gaurav Deshpande
VP, Marketing
TigerGraph

1

“Graph analysis is possibly the single most effective
competitive differentiator for organizations pursuing

data-driven operations and decisions after the
design of data capture.”

@datascisalon

● What is a Graph Database?
What is an Analytical Graph Database?

● Why Graph + AI?

● Three Basic Approaches for Graph + AI, with Use-Case Examples

○ Unsupervised Learning
○ Feature Enrichment from Graph Features
○ In-Database Learning

AGENDA

@datascisalon

TigerGraph is a High-Performance and Scalable Property Graph, for both Analytics & Transactions.

Types of Graph Databases

@datascisalon

Transactional

Analytics

Property Graphs:
• Node and Edge objects
• Higher performance for

queries, transactions, and
advanced analytics

• Pattern matching
• Schema-free or Schema-

based
• Schemas allows

application-specific
tuning

Semantic (RDF)
Knowledge Graph:

• Collection of facts
(RDF triples)

• Ontology to model
concepts & rules

• Pattern matching
• Logical inference
• Standards-based

Richer, Smarter Data
● Connections-as-data
● Connects different datasets, breaks down silos

Deeper, Smarter Questions
● Look for semantic patterns of relationship
● Search far & wide more easily & faster than other

DBs

More Computational Options
● Graph algorithms
● Graph-enhanced machine learning

Explainable Results
● Semantic data model, queries, and answers
● Visual exploration and results

Why Graph? Why Graph + AI?

@datascisalon

Customer

Supplier

Location 2

Product

Payment

PU
RC

H
A

SE
D

RESIDES

SH
IPS

 TO

PURCHASED

SHIPS FROM

ACCEPTED

MAKES

Location 1

NOTIF
IES

Order

KNOWS

Real World Better Outcomes from Graph+AI

@datascisalon

Healthcare:
Real-time recommendations

● 1.3TB graph brain
● Real-time care

recommendations
● Improving healthcare,

lowering cost

Industrial Supply Chain:
Analytics for decisions

● Analytics: weeks→ minutes
● Reveal opportunities,

optimize tactical & strategic
decisions

● Saving $25M+/yr

Financial Services:
Real-time fraud detection

● Integrates multiple tools
● "Magical" real-time visual

results for investigators
● Scalable for growth

Case 1: Analytical Queries & Graph
Algorithms

@datascisalon

Types of Graph Algorithms
● Path Finding
● Clustering / Community Detection

○ Lenient clustering - connected component: one connection
○ Strict clustering - clique detection: every possible connection
○ Relative density - more connections in-group than between-group

● Ranking and Centrality
○ PageRank, HITS
○ SimRank, RoleSim
○ Closeness, Betweenness

● Similarity
● Frequent Pattern Discovery BOLD indicates more complex tasks, with

iterative algorithms, which can be
considered unsupervised learning

Finding the Most Influential Health Care
Providers in a Community

@datascisalon

● Who is the most influential provider in each
region for a particular medical condition?

⇒ Use PageRank to rank each provider based
on the relative importance of their referrals

● Who is influenced by these leaders (e.g.
other doctors, chiropractors, physical
therapists, facilities)?

⇒ Use Community Detection to find the groups
surrounding Influencers

Graph with Patients, Providers,
and Service Claims

Dr. Thomas

Finding Similar Cases to deliver better
healthcare

@datascisalon

● Seamlessly integrate
multiple sources of
data to provide unified
and comprehensive
view for each journey
among 50M Medicare
members

● Find similar members
with a click of a button
in real-time

● Deliver care path
recommendations for
similar members

Graph-Based Structural Similarity

@datascisalon

Use a vertex's neighbors as its feature set
● Cosine: Use edge weights to each neighboring vertex

A

OrderY

B

ZW X

2

3 12

14 A's weighted neighbors = {4,1,2,0}
B's weighted neighbors = {0,2,3,1}

Cos(A,B) = 8 / [√21√14] = 0.4666

W,X,Y,Z represent feature vertices, different vertex types than A,B

PERSON

PERSON

Features

Entity Resolution using Similarity Scores

@datascisalon

a

b

d

c
e

f

g

Entity Resolution using Similarity Scores

@datascisalon

a

b

d

c
e

f

g

0.91

0.95
0.89

0.93

0.95

0.65 0.89

0.9

0.95
0.6

same

same

same
same

Apply a scoring system
for comparing entities:

● Similar attribute
values (e.g. name)

● Similar relationships
(school, work,
activities, …)

Several scoring systems:
Jaccard, Cosine similarity,
Kolmogorov distance, etc.

Entity Resolution using Similarity Scores

@datascisalon

a

b

d

c
e

f

g

0.91

0.95
0.89

0.93

0.95

0.89

0.9

0.95

same
same

Barry Markin

Beryl Markham

Case 2: Graph Feature Extraction

@datascisalon

Challenge
Find and report fraudsters among billions of calls per week.

Solution
● Build graph: Real-time operational graph with 600M

phone nodes & 15B call detail records.
● Get features and labels: Domain experts write GSQL

queries to extract 118 features/phone. Some past calls are
labeled for 3 types of unwanted calls.

● Train: Feed machine learning with training data for fraud
detection with 118 features/phone for 30M calls.

● Deploy: For each incoming call, extract the current 118
features (subsecond) and apply model for real-time
answer.

Results
● If unwanted call is predict, display alert on recipient's

phone
● Process 2000+ calls/sec
● Improved customer satisfaction

Customer: China Mobile

Case 2: Graph Feature Extraction

@datascisalon

Powering Explainable AI with Graph Database

@datascisalon

Case 3: In-Graph Database Machine Learning

@datascisalon

● Native graph storage
● Coded once, auto scale-out & scale-up
● Real-time updates
● GSQL Turing-complete language

○ Preprocess data
○ Training: flow-control, accumulator, pattern match
○ Model validation

Applications:
● Entity resolution
● Recommendation
● Fraud detection
● ...

1. Create
Graph with
360° Data

GSQL ML
Algorithm

3. Train

4. Deploy

Model Prediction

Query

2. Enrich
with Graph
Features

In-Database ML for Movie Recommendation

@datascisalon

Movie features

Ratings

Goals:
● Predict users' ratings for movies,

based on previous ratings
●Recommend movies to users

based on rating prediction

Users

User—Rates—Movie Graph

@datascisalon

Recommendation Approaches

● Collaborative filtering
● Content based method
● K-nearest neighbors
● Latent factor (model-based)
● Hybrid method
● ...

rating: 5

rating: 5

ra
tin

g:
?

Toy story
● Disney
● ...

Iron man
● Marvel
● Action
● ...

Alice
● Disney fan
● Marvel fan
● ...

Bob
● Marvel fan
● ...

MovieLens dataset
https://grouplens.org/datasets/movielens/
● 100K ratings and 40K tags that

1K users gave to 17K movies

● Ratings are from 0 to 5 stars

Movie Rating Prediction (Latent factor model)

@datascisalon

Movie Alice Bob Carol Dave

Love at last 5 5 0 0

Romance forever 5 _ _ 0

Cute puppies of love _ 4 0 _

Toy story _ _ _ 5

Sword vs. karate 0 0 5 _

Nonstop car chases 0 0 5 4

θ(1) = [5, 0]

● Each movie has a latent
factor vector: θ(j)

● Each user has a latent
factor vector: x(i)

● Predict the user j’s rating to
movie i by: (θ(j))Tx(i)

θ(2) = [5, 0] θ(3) = [0, 5] θ(4) = [0, 5]

x(1) = [0.9, 0]

x(2) = [1, 0.1]

x(3) = [0.9, 0]

x(4) = [0.1, 1]

x(5) = [0.1, 1]

x(6) = [0, 0.9]

action
romance

4.5

5.0

4.5

0.5

0.5

0.0

The Future of In-Graph ML

@datascisalon

Neural Networks for Graphs

https://medium.com/@terngoodod/a-comprehensive-survey-on-graph-neural-networks-part-1-types-of-graph-neural-network-1dd93b823c70

https://medium.com/@terngoodod/a-comprehensive-survey-on-graph-neural-networks-part-1-types-of-graph-neural-network-1dd93b823c70

Basic Neural Network

@datascisalon

Propagation P =
weighted edges

Input layer = X
= Feature Vector
for each graph
vertex

Hidden Layer H1 = Activation_Function(X*P),
Hidden Layer H2 = Activation_Function(H1*P)

Graph Convolutional Neural Network

@datascisalon

A = Adjacency Matrix (Graph Edges)
Hidden Layer H1 = Activation_Function(A*X*P),
Hidden Layer H2 = Activation_Function(A*H1*P)

Propagation P =
weighted edges

Input layer = X
= Feature Vector
for each graph
vertex

The TigerGraph Difference

@datascisalon

Feature Design Difference Benefit

Real-Time Deep-Link Querying

5 to 10+ hops

● Native Graph design
● C++ engine for high performance
● Storage Architecture

● Uncovers hard-to-find patterns
● Operational, real-time
● HTAP: Transactions+Analytics

Handling Massive Scale ● Distributed DB architecture
● Massively parallel processing
● Compressed storage reduces

footprint and messaging

● Integrates all your data
● Automatic partitioning
● Elastic scaling of resource usage

In-Database Analytics & Machine
Learning

● GSQL: High-level yet Turing-
complete language

● User-extensible graph algorithm
library, runs in-DB

● ACID (OLTP) & Accumulators
(OLAP)

● Avoids transferring data
● Richer graph context
● Graph-based feature extraction for

supervised machine learning
● In-DB machine learning training

● No-code migration from RDBMS
● No-code Visual Query Builder

● Democratize self-service analytics
● Derive new-insights from

legacy/external data stores

Summary for "Why Graph for ML/AI"?

@datascisalon

● Natural Data Model - Graph is how we think

● Richer Data - connections between entities, graph-based features

● Graphs have always had a natural role in machine learning:

○ Unsupervised learning through graph algorithms, frequent pattern
mining

○ Graph features provide richer training data
○ Learning through graph neural networks and deep learning

● Graph data models are uniquely qualified to provide explanatory AI.

● Native Graphs with Massively Parallel Processing like TigerGraph enable large
scale feature extraction and in-graph analytics

Starter Kits and Developer Portal for Graph+ML

@datascisalon

1. Content-based movie recommendation: similarity,
k-nearest neighbor + latent factor

2. Entity resolution: Link & merge similar entities,
based on similar properties and neighbors

3. Low-rank approximation of graph relationships

4. Graph feature engineering for anti-fraud ML

dev.tigergraph.com

Learn > Machine Learning
1. Unsupervised Learning with Graph Algorithms

2. Feature Set Extraction for Machine Learning

3. ML Enrichment with Graph Features

4. Graph Enrichment with Machine Learning

5. In-database ML Techniques for Graphs

https://dev.tigergraph.com/learn/l-ml/
https://dev.tigergraph.com/learn/l-ml/
https://dev.tigergraph.com/learn/l-ml/
https://dev.tigergraph.com/learn/l-ml/
https://dev.tigergraph.com/learn/l-ml/
https://dev.tigergraph.com/learn/l-ml/

Get Started

@datascisalon

tigergraph.com/cloud/

Start in minutes, build in hours and deploy in days with
the industry’s first and only distributed graph database-as-a-service.

START FREE

@TigerGraphDB /tigergraph /TigerGraphDB /company/TigerGraph

https://www.tigergraph.com/cloud/

