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What is a Graph Embedding?
Advantages and Use cases
Optimizing with Hardware Acceleration

Demo - Detecting cryptocurrency fraud
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Demo - Finding similar healthcare providers
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Challenges of Graph ML

Richness of graph data is a double-edge sword:

own 0 4/ A o

woecr ' W O o

e Expresses a wealth of information
e Full-graph analytics can be expensive

e Conventional ML techniques need
matrices, not graphs
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Enter: Embedding

Embedding transforms high-dimensional data into a lower-dimension.
e May not preserve 100% of details, but captures what is most important

e Tradeoff between accuracy, format, and efficiency

Map Projections. DOI: 10.22224/gistbok/2017.2.7

Two examples of embedding a 3-D object into 2-D space.
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Using Graph Embeddings

, Graph Embedding transforms graph structure into a compact set of vertex vectors.
e Captures the essence of a vertex's "nature" as a set of latent features
e Enables graph data to run efficiently on non-graph neural networks

—) — [ An:I(;gic;r;nML J

perform

. vertex
embedding embeddings
Compact —
Works for numerous cases -
scalability
e Recommendation (similarity) Set of vectors —
e Fraud detection (classification) compatibility,

reduced complexity
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DeepWalk Embedding
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Improvements: Node2Vec and FastRP

Node2Vec

e Goal: Improved accuracy, semantics
e Intuition: Neighbor exploration isn't random
e Answer: biased random walk
3 types of steps, with different probabilities:
1. backwards (retrace your step)
2. breadth (a neighbor of where you were)
3. depth (a new neighbor)
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Last step was
A—>C

e Con: Slower than DeepWalk
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FastRP

Goal: Scalability, size and speed

Intuition: skipgrams compute a vertex
similarity matrix that is n? (non scalable)
Answer: use sparse random projection to go
directly to a n x d matrix, where d << n

courtesy:
https://www.groundai.com/project/random-projections-of-mel-spectrogram
s-as-low-level-features-for-automatic-music-genre-classification/1

Con: May have reduced accuracy, too much
sparsity


https://www.groundai.com/project/random-projections-of-mel-spectrograms-as-low-level-features-for-automatic-music-genre-classification/1
https://www.groundai.com/project/random-projections-of-mel-spectrograms-as-low-level-features-for-automatic-music-genre-classification/1

Optimizing Graph Analytics
1. Graph Database & Analytics Platform

2. Accelerated Graph Analytics

3. Compute Server
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1. TigerGraph: Scalable Graph Platform

Real-Time Deep-Link Querying ® Native Parallel Graph design e Uncovers hard-to-find patterns
e C++ engine for high performance e Operational, real-time
5 to 10+ hops e Storage Architecture e HTAP: Transactions+Analytics
Massive Scale e Distributed DB architecture e Integrates all your data
q} % q} QJ q) e Massively parallel processing e Automatic partitioning
e Compressed storage reduces footprint e Elastic scaling of resource usage
« » and messaging
In-Database Analytics & e (GSQL: High-level yet Turing-complete e Avoids transferring data
Machine Learning language e Richer graph context

Q3 0. * l.Jser-extensi.ble graph algorithm e Graph-based feature extraction for
: library, runs in-DB supervised machine learning

* ACID (OLTP) & Accumulators (OLAP) e In-DB machine learning training
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TigerGraph In-Database
Graph Data Science Library

Signals our commitment to serving the needs of data scientists

e More algorithms (15 released this week)
o Graph Embedding - node2vec, fastRP
o Topological link prediction
o  Similarity
o Centrality

e More than just algorithms

In-Database For Data Scientists
e No export needed e easier and faster to run
e Live, updatable data e include ML, such as graph embeddings
e Scaleable, Ultra-fast engine e will integrate with feature & model management
e GSQL query language e will integrate with Graph+ML Workbench
0 eGRAPH+AI
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2.&. XILINX FPGA-based Graph Analytics Acceleration

Product _ Fraud Detection
Recommendation
Cosine Louvain 18000 16,900 2000
Documentation Similarity Starter Kit 16000 400 1800 =5 1,800
and Starter Kits REST API Example 14000 . 1600 :
times 1400 times
————————————————————————————— 12000 faster faster
1200
10000
1000
8000 800
Graph Algorithms 6000 600
and User Defined 4000 400
Functions (UDFs) 2000 200 85
TigerGraph 0 0
——————————————— 1 1
. EAlveo U50 ECPU EAlveo USO ECPU
V|t|sI %cce.lerated Cosine Louvain
ibraries Similarity Modularity

wgn CO pe S analyzers debuggels i
250 U280

development kit NIMBIX

Vitis drivers & runtime (XRT)

Vitis target platforms
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Cosine Similarity TCO 12X Cost Reduction

7 Target Performance

0 <100ms latency
0 100 queries/second
0 15M patients

1 TCO

0 w/o Alveo: $1,092,972
0 With Alveo: $82,266

1 Savings: $1M

Feature Tigergraph  Tigergraph + US50
Xeon-Platinum 8153 | Xeon-Platinum 8153

Server Configurati
i 2x16cores/socket 2x16cores/socket
Measured latency per query (ms) 1584 33
# of queries/sec can be achieved per system 063 30
# of systems required to meet the target perf 159 4
# of accelerator cards required per server - 5
Total # of servers required 159 4
Server power without PCle cards (W) 700 700
Power per solution (W) 700 1,000
Total Cost of Acquisition (TCA) $636,000 $56,000
Maintenance Cost (10%) per yr for 3yr $190,800 $16,800
Total Power (KW) 111 4
3yr Power Cost ($0.07KWH) $204 747 $7,358
Datacenter PUE 1.30 1.30
3yr Cooling Cost $61.424 $2.208
Total Cost of Ownership (TCO) $1,092,972 $82,366
TCO Savings $1,010,606
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3. HPE REFERENCE ARCHITECTURE FOR SINGLE NODE
Proliant DL385 Gen10 Plus server v2

ARCHITECTURE SOLUTION RESULTS

B on-Prem Datacenter Use case: Patient360 / customer analytics
il ﬁ Y Data set: Synthetic patient data generated by Synthea™
@  10g switch Algorithm: Cosine similarity
@ This can be dedicated switch or part of corp Results:
TTE S S s = = = soaaaa] network with isolation used for server access . : .
twork with Isolation used f +Optimized algorithm *Reduced computational
modet : — G) US50 CARD for acceleration «Improved prediction performance burden
s HU —48x faster compared to CPU-only solution for 15 million
This is used as acceleration card for graphDB tient31
H and for communication between the cards pa .
N J
SOLUTION COMPONENTS Xilinx Alveo scales with the number of patients
Hardware: Software: :":
*1 x HPE ProLiant DL385 Gen10 Plus server *0S: Ubuntu 20.04.1 LTS & 1400
v2 (2 x AMD EPYC 7713, 64 cores / *TigerGraph 3.1 Enterprise Edition -~
processor, base frequency 2.0 GHz, 256 *HPE system ROM: A42 v1.24 April . ':{:}
MB L3 cache, 27, 2020 or later
16 x 32 GB DIMMs) *HPE iLO 5 version 2.15 pass6 or = ,”
5 x Xilinx Alveo U50 Cards (SFF, 100 Gbps later 0 —
networking /O, PCle Gend, and HBM) *HPE iLO Advanced N i e’
+Storage: 6 TB minimum up to 60 TB (depends | pjatform Management
on the size of the database); SATA or NVMe Link (APML) version L T A
2.11.00.24 or later

1 Based on HPE internal testing done on HPE hardware in
I I May 2021.

CONFIDENTIAL | HPE AUTHORIZED PARTNER USE
ONLY



Hardware Acceleration

e HPE REFERENCE ARCHITECTURE FOR ACCELERATED GRAPH ANALYTICS
o HPE ProLiant DL385 Gen10 Plus v2 server
o Xilinx Alveo U50 Data Center Accelerator (x7)
o TigerGraph Analytics Platform

—

Hewlett Packard
Enterprise

@ TigerGraph &7 XILINX
O «GRAPH+AI
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Graph Embedding Demos

1. Predict fraud, from a cryptocurrency transaction graph

2. ldentify similar healthcare providers, from a
Provider-Specialization graph
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Detecting
Cryptocurrency Fraud
with Graph Embeddings



Overview

[Ethereum } —>

Transactions

: Graph : Neural : Fraud
[Embedding} [Prediction }

kTigerGraph/

Graph
Embedding
Algorithm
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Data

e FEthereum: platform of the second largest cryptocurrency, Ether (ETH).
e Transaction network of Ethereum
o Vertices: wallets, i.e., accounts on the platform
o Edges: transactions between the accounts
e Statistics
o 2,973,489 vertices ; Normal ACounS...op i
o 5,355,155 edges TS G
o 1,165 phishing (fraudulent) vertices & LS TGSy
e Data source: http://xblock.pro/ethereum/#EP‘lf‘iﬁ I SRR b <323

-
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Method

e Goal: Predict phishing accounts in the transaction network

e Traditional approach
o Rule based: if ... then ...

o Manually created features + ML - Normal Account
Fraudulent Account

e Our approach
o Phishing accounts might share similar
network structures
o Graph embedding + ML

0 eGRAPH+AI
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Method

e Graph embedding algorithms
o Node2vec
o FastRP

e Neural network model

Input: node embedding

Output: whether a node is a phishing account
3 fully connected layers

RELU activation

Cross entropy loss

O O O O O
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Results

Predictive Performance

e Node2vec embedding
o 91% accuracy
o 90% recall

Score

e fastRP embedding
o Low accuracy
o High recall

O'eGRAPH+AI
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Demo

Github repo:
https://aithub.com/TigerGraph-Devl abs/detect-cryptocurrency-fraud

s GRAPH-+AI
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https://github.com/TigerGraph-DevLabs/detect-cryptocurrency-fraud

Healthcare Provider
Recommendation with Graph
Embeddings and Hardware
Acceleration
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Overview

= ) = )
Hewlett Packard Hewlett Packard
Enterprise Enterprise
Provider : : Graph : : Cosine
[ Data } @ [Embedding} @ [ Similarity }
k(Z XILINX ) k(I XILINX )
Graph Accelerated
Embedding Cosine Similarity
Algorithm Algorithm
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Data
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Method

e Create FastRP embeddings for each vertex in the graph
e Cache embeddings in Xilinx Alveo U50 Data Center Accelerator (x7/)
e Given an input embedding, compare against 5.3 million others

o Use Cosine Similarity

o 200-dimensional embedding vector

n
AiBi
A-B 2
|A[[B] n ‘
E 2 B}

similarity = cos(f) =
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