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1. What is a Graph Embedding?

2. Advantages and Use cases

3. Optimizing with Hardware Acceleration 

4. Demo - Detecting cryptocurrency fraud

5. Demo - Finding similar healthcare providers

Outline
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Richness of graph data is a double-edge sword:

Challenges of Graph ML
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● Expresses a wealth of information

● Full-graph analytics can be expensive

● Conventional ML techniques need 
matrices, not graphs

courtesy: graphistry
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Embedding transforms high-dimensional data into a lower-dimension.
● May not preserve 100% of details, but captures what is most important

● Tradeoff between accuracy, format, and efficiency

Enter: Embedding
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Two examples of embedding a 3-D object into 2-D space.

Map Projections. DOI:  10.22224/gistbok/2017.2.7
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, 

Using Graph Embeddings
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Perform
Analysis / ML

perform
embedding

vertex
embeddings

Graph Embedding transforms graph structure into a compact set of vertex vectors.
● Captures the essence of a vertex's "nature" as a set of latent features
● Enables graph data to run efficiently on non-graph neural networks

Works for numerous cases
● Recommendation (similarity)
● Fraud detection (classification)

Compact →
scalability

Set of vectors →
compatibility,
reduced complexity
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DeepWalk Embedding 

7



 |  GRAPHAISUMMIT.COM  |  #GRAPHAISUMMIT

Node2Vec
● Goal: Improved accuracy, semantics
● Intuition: Neighbor exploration isn't random
● Answer: biased random walk

3 types of steps, with different probabilities:
1. backwards (retrace your step)
2. breadth (a neighbor of where you were)
3. depth (a new neighbor)

● Con: Slower than DeepWalk

Improvements: Node2Vec and FastRP
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FastRP
● Goal: Scalability, size and speed
● Intuition: skipgrams compute a vertex 

similarity matrix that is n2 (non scalable)
● Answer: use sparse random projection to go 

directly to a n × d matrix, where d << n

● Con: May have reduced accuracy, too much 
sparsity

Last step was 
A–> C

courtesy: 
https://www.groundai.com/project/random-projections-of-mel-spectrogram
s-as-low-level-features-for-automatic-music-genre-classification/1

https://www.groundai.com/project/random-projections-of-mel-spectrograms-as-low-level-features-for-automatic-music-genre-classification/1
https://www.groundai.com/project/random-projections-of-mel-spectrograms-as-low-level-features-for-automatic-music-genre-classification/1
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Optimizing Graph Analytics
1. Graph Database & Analytics Platform

2. Accelerated Graph Analytics

3. Compute Server 
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1. TigerGraph: Scalable Graph Platform
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Feature Design Difference Benefit

Real-Time Deep-Link Querying

  5 to 10+ hops

● Native Parallel Graph design
● C++ engine for high performance
● Storage Architecture

● Uncovers hard-to-find patterns
● Operational, real-time
● HTAP: Transactions+Analytics

Massive Scale ● Distributed DB architecture
● Massively parallel processing
● Compressed storage reduces footprint 

and messaging 

● Integrates all your data
● Automatic partitioning
● Elastic scaling of resource usage

In-Database Analytics & 
Machine Learning

● GSQL: High-level yet Turing-complete 
language

● User-extensible graph algorithm 
library, runs in-DB

● ACID (OLTP) & Accumulators (OLAP)

● Avoids transferring data
● Richer graph context
● Graph-based feature extraction for 

supervised machine learning
● In-DB machine learning training



 |  GRAPHAISUMMIT.COM  |  #GRAPHAISUMMIT

Signals our commitment to serving the needs of data scientists

TigerGraph In-Database
Graph Data Science Library

In-Database 
● No export needed
● Live, updatable data
● Scaleable, Ultra-fast engine
● GSQL query language

For Data Scientists
● easier and faster to run
● include ML, such as graph embeddings
● will integrate with feature & model management
● will integrate with Graph+ML Workbench

● More algorithms (15 released this week)
○ Graph Embedding - node2vec, fastRP
○ Topological link prediction
○ Similarity
○ Centrality

● More than just algorithms
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2.                    FPGA-based Graph Analytics Acceleration

U50 U200 U280U250

Cloud On-premise

Louvain 
Modularity 

TigerGraph

Vitis core 
development kit

compilers 

Cosine 
Similarity 

Vitis accelerated 
libraries

Vitis drivers & runtime (XRT)

analyzers debuggers

Vitis target platforms

Graph Algorithms 
and User Defined 
Functions (UDFs)

Fraud Detection Product 
Recommendation

Documentation 
and Starter Kits

Cosine 
Similarity 
REST API

Louvain 
Starter Kit 
Example >400 

times 
faster

>20 
times 
faster
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Cosine Similarity TCO 12X Cost Reduction

� Target Performance
� <100ms latency
� 100 queries/second
� 15M patients

� TCO  
� w/o Alveo: $1,092,972
� With Alveo: $82,266

� Savings: $1M
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ARCHITECTURE

SOLUTION COMPONENTS
Hardware:
•1 x HPE ProLiant DL385 Gen10 Plus server 
v2 (2 x AMD EPYC 7713,  64 cores / 
processor, base frequency 2.0 GHz, 256 
MB L3 cache,
16 x 32 GB DIMMs)

•5 x Xilinx Alveo U50 Cards (SFF, 100 Gbps 
networking I/O, PCIe Gen4,  and HBM)

•Storage: 6 TB minimum up to 60 TB (depends 
on the size of the database);  SATA or NVMe

Software:
•OS: Ubuntu 20.04.1 LTS
•TigerGraph 3.1 Enterprise Edition
•HPE system ROM: A42 v1.24 April 
27, 2020 or later

•HPE iLO 5 version 2.15 pass6 or 
later

•HPE iLO Advanced 
Platform Management 
Link (APML)  version 
2.11.00.24 or later
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SOLUTION RESULTS
Use case: Patient360 / customer analytics
Data set: Synthetic patient data generated by Synthea™
Algorithm: Cosine similarity
Results:
•Optimized algorithm
•Improved prediction performance
–48x faster compared to CPU-only solution for 15 million 

patients1

–Linearly flat versus exponential growth

3. HPE REFERENCE ARCHITECTURE FOR SINGLE NODE
         Proliant DL385 Gen10 Plus server v2

1 Based on HPE internal testing done on HPE hardware in 
May 2021.

•Reduced computational 
burden

CONFIDENTIAL | HPE AUTHORIZED PARTNER USE 
ONLY

14
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● HPE REFERENCE ARCHITECTURE FOR ACCELERATED GRAPH ANALYTICS
○ HPE ProLiant DL385 Gen10 Plus v2 server
○ Xilinx Alveo U50 Data Center Accelerator (x7)
○ TigerGraph Analytics Platform

Hardware Acceleration
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Graph Embedding Demos

1. Predict fraud, from a cryptocurrency transaction graph

2. Identify similar healthcare providers, from a  
Provider-Specialization graph



 |  GRAPHAISUMMIT.COM  |  #GRAPHAISUMMIT 17

Detecting 
Cryptocurrency Fraud 
with Graph Embeddings
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Overview
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Ethereum 
Transactions

TigerGraph 

Graph 
Embedding
Algorithm

Graph 
Embedding

Neural 
Network

Fraud 
Prediction
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● Ethereum: platform of the second largest cryptocurrency, Ether (ETH).
● Transaction network of Ethereum

○ Vertices: wallets, i.e., accounts on the platform
○ Edges:  transactions between the accounts

● Statistics
○ 2,973,489 vertices
○ 5,355,155 edges
○ 1,165 phishing (fraudulent) vertices

● Data source: http://xblock.pro/ethereum/#EPT

Data

19
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● Goal: Predict phishing accounts in the transaction network

● Traditional approach
○ Rule based: if … then ...
○ Manually created features + ML

● Our approach
○ Phishing accounts might share similar

network structures
○ Graph embedding + ML

Method
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● Graph embedding algorithms
○ Node2vec
○ FastRP

● Neural network model
○ Input: node embedding
○ Output: whether a node is a phishing account
○ 3 fully connected layers
○ RELU activation
○ Cross entropy loss

Method

21
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Predictive Performance

● Node2vec embedding
○ 91% accuracy
○ 90% recall

● fastRP embedding
○ Low accuracy
○ High recall

Results

22
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Github repo: 
https://github.com/TigerGraph-DevLabs/detect-cryptocurrency-fraud

Demo

23

https://github.com/TigerGraph-DevLabs/detect-cryptocurrency-fraud
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Healthcare Provider 
Recommendation with Graph 
Embeddings and Hardware 
Acceleration
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Overview
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Provider 
Data

Graph 
Embedding

Cosine 
Similarity

Graph 
Embedding
Algorithm

Accelerated 
Cosine Similarity 

Algorithm 
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● All Healthcare Providers have a National 
Provider Identifier (NPI)

● NPIs are associated with a provider’s 
specialty

● Specialties are arranged in a taxonomic 
hierarchy

Data
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● Create FastRP embeddings for each vertex in the graph
● Cache embeddings in Xilinx Alveo U50 Data Center Accelerator (x7)
● Given an input embedding, compare against 5.3 million others

○ Use Cosine Similarity
○ 200-dimensional embedding vector

Method
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