

BrainGraph: A Novel Visualization of MRI Data as a 3D Graph to Reveal Temporal Features of Disease Progression In Patients with Multiple Sclerosis

P0552

David Hughes BSN¹, Weidong Yang PhD², Kelly Leyden MRes¹, Michael Iv MD^{1,3}, Anisha Keshavan PhD¹

¹Octave Bioscience, Menlo Park, CA, United States of America, ²Kineviz, San Francisco, CA, United States of America ³Stanford University, CA, United States of America

DISCLOSURES

Weidong Yang, PhD CEO Kineviz Inc.

Kelly Leyden, MRes Product Lead - MRI Insights Employee of Octave Bioscience

David Hughes, BSN Principal ML / Graph Data Engineer Employee of Octave Bioscience

Anisha Keshavan, PhD

Senior Data Scientist Employee of **Octave Bioscience**

Michael Iv, MD

Neuroradiologist Octave Bioscience Clinical Associate Professor of Radiology Stanford University

Contribution to this study was as a paid consultant, and was not part of his Stanford University duties or responsibilities

Data Visualization leads to insights

- Novel, interactive visualization of neuroimaging data can advance:
 - Patient education
 - Clinical insights
 - Image analysis capabilities

OBJECTIVE

Reveal the topology and temporal nature of MS disease progression

- increase in lesion count:
 - A new lesion, OR
 - A lesion partially remyelinating and splitting

• decrease in lesion count:

- A remyelinated lesion, OR
- Two lesions merging together
- 3D temporal model could resolve ambiguity \rightarrow

:.

APPROACH

Represent imaging data as a graph

- Explicitly encode spatial and temporal relationships between voxels
- Exposes method for efficient queries of these relationships
- Leverages analytics that are uniquely enabled by graph algorithms

Internal graph representation of an MRI: voxel at x,y,z=1,1,1 is a neighbor of voxel 1,1,2

IMPLEMENTATION

Graph modeling and analysis on the cloud

- Graph modeling strategy:
 - X, Y, Z and time relationships encoded on a per-voxel basis
 - Extract spatial and temporal lesion communities
 - Graph queries to identify lesion surface nodes and connect lesions over time
- Benefits of the cloud:
 - Analyze data at scale
 - Access visualization on the browser from any device
 - Can support multiple users at once

Lesion community

Lesion surface

Lesion shell

RESULTS

Lesion evolution over time

- Enables user to view and interact with lesion changes over time
- See how lesions change relative to one another and relative to brain anatomy

RESULTS

Lesion evolution over time: alternate view

DISCUSSION

Graph visualization resolves lesion count ambiguities

- Can *quickly* resolve temporal lesion count ambiguities visually
- Can also compute metrics:
 - Volumetrics per lesion
 - Shape Analysis per lesion
 - Texture Analysis per lesion

NEXT STEPS

Visualizing quantitative lesion metrics in the clinic

- Educational tool for patients
- Improve understanding of quantitative metrics in MRI reports (see poster P0590) with an accompanying visualization for neurologists

lesion evolution over four time points show consolidation

Questions?Contact us: dhughes@octavebio.com, akeshavan@octavebio.comVisit additional posters with Octave BioscienceP0055P0063P0082P0091P0583P0590

