

Getting started with TigerGraph on GCP

Google Cloud


Speaker

Google Cloud

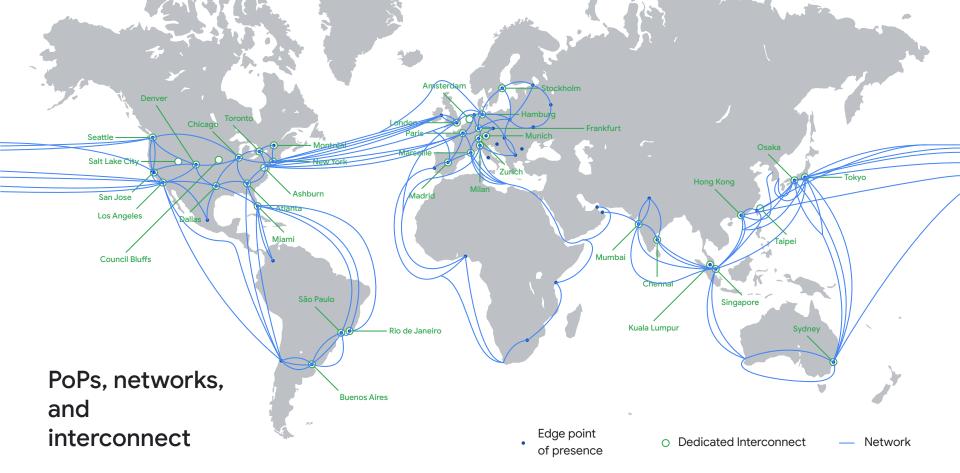
Bruce Hsu Google - Customer Engineer

Shuo Yang TigerGraph - Head of Cloud

Agenda

- Google Cloud Infrastructure Overview
- Google Cloud for Database Hosting
- TigerGraph, a Scale Out Graph Analysis Engine
- Demo Launch an Instance to Get Started

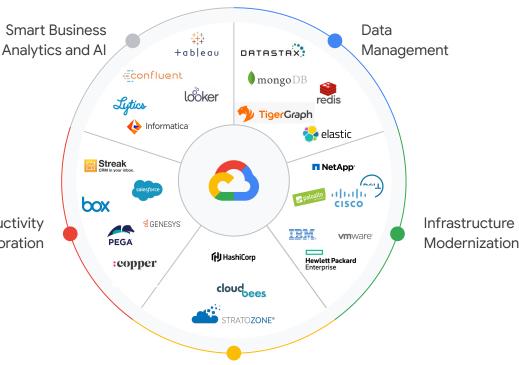
Google Cloud Infrastructure Overview


GCP Infrastructure Numbers

```
28 cloud regions (+10 announced regions*) url
85 zones url
146 edge locations <u>url</u>
100+ CDN locations url
100+ Dedicated Interconnect locations url
20+ Google data centers url
50+ renewable energy project locations url
18 subsea cable investments url
In 2021 we've launched 4 new regions.
```


Nine cloud products with 5 Billion users each

GCP Portfolio + Partner Solution

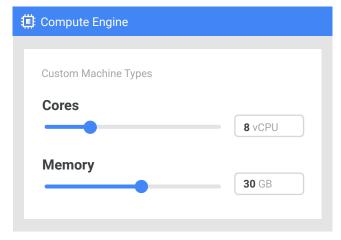


Google Workspace

Application Development

Google Cloud for Database Hosting

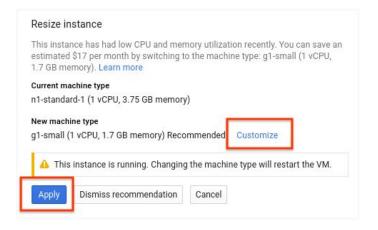
VM Families


General Purpose			Workload-Optimized			
 Web Serving Steady-state LOB apps Dev & Test environments 	Enterprise appsMedium databasesWeb & App Serving	 Scale-out workloads Wide variety of workloads used in cloud-native deployments 	HPC (Compute) EDA High Performance Web Serving Ad Serving Gaming Media Transcode Al/ML	 SAP HANA Largest in memory DBs Real-time data analytics In-memory cache 	HPC (GPU)MLMassive parallelized computation	
Cost savings a priority	Flexible, Complete Feature Set	Best Perf/\$ for scale out workloads	Highest performance CPUs	Most memory on Compute Engine	Highest performance GPUs	
Cost Optimized (E2)	Balanced (N2, N2D)	'Tau' Scale-out Optimized (T2D*)	Compute- Optimized (C2, C2D*)	Memory- Optimized (M2)	Accelerator- Optimized (A2)	

Custom Machine Type

Configure your own machine types, with average 19% savings

- Create a machine type with 1 vCPU and up to 96 vCPU
 - Or any even number of vCPUs in between
- Use Compute Engine stop/start feature
 - Move your workload to a smaller or larger Custom Machine Type instance or predefined configuration
- Priced by the resources they use (i.e. vCPU, memory)



Predictably calculate the cost of Custom Machine Type shapes in any configuration.

Right Sizing Recommendations

- · Get insights into your usage
- Compute Engine recommends the exact fit
- · Optimize your cloud spend
- Avoid paying for idle and oversized resources

Pricing Advantage

Sustained Use Discounts (SUD):

- No upfront commitments
- Automatic Discounting
- Up to 30% discount

Committed Use Discounts (CUD):

- Purchase Aggregate Cores & RAM per region
- Flexible and Easy to manage
- Up to 70% discount

Rightsizing and Custom Machine Types:


- Deploy custom instances for your needs
- Recommendations based on utilization
- Average 20% savings (up to 40%).

Live Migration

Manage your infrastructure while business continues as usual

- VM instances keep running when a host event occurs
 - · Software or hardware update
 - · Switch to new configurations
- Live migrates your running instances to another host in the same zone rather than requiring your VMs to be rebooted
- Perform maintenance to keep your infrastructure protected and reliable without interrupting any of your VMs.

Storage Options

Google Cloud Storage

Exabyte-scale, feature-rich object storage Automatically scaling throughput

Persistent Disk

High-performance, replicated block storage (HDD/SSD) Up to 64TB per PD, Up to 1.2 GB/s per instance

Local Storage

Local SSD (NVMe), physically attached via PCIe Up to 3TB per Local SSD, Up to 2.65 GB/s per instance

Cloud Filestore

Highly available, durable, POSIX-compliant shared storage across tens of thousands of nodes

Partner, hybrid, and open-source

Storage solutions for NetApp, Elastifile, DDN, Lustre, and more

Compliance, Regulations & Certifications

Global	Americas	Europe, Middl	e East & Africa	Asia Pacific	
ISO 27001 ISO 27017 ISO 27018 SOC 1 SOC 2 SOC 3 PCI DSS CSA STAR MPAA Independent Security Evaluators Audit	FERPA Electro NIST 800-53 Docum Act NIST 800-171 Sarbanes- Oxley Argenti	Privacy Shield TISAX Germany BSI C5 Ball Data GDPR EU Model Contract Clauses Privacy Shield TISAX Germany BSI C5	Spain Esquema Nacional de Seguridad UK NCSC Cloud Security Principles NHS IG Toolkit	Australia Australian Privacy Principles Australian Prudential Regulatory Authority Standards IRAP Japan FISC My Number Act	Singapore MTCS Tier 3

Unlock More Data Insight

Session: Transform with Vertex AI

Benazir Fateh Al/ML Specialist

Same planet-scale core platform that powers all internal and Google Cloud observability

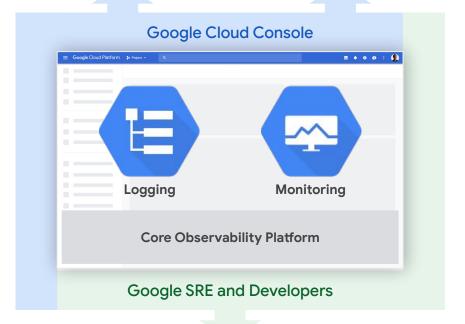
- 1.5 quadrillion metric points in memory
- 13 million queries per second

 >20 quadrillion metric points on disk • 2.5 EB / month logs

Built-in with zero config usage for all Google Cloud services

Powered by Google's SRE principles

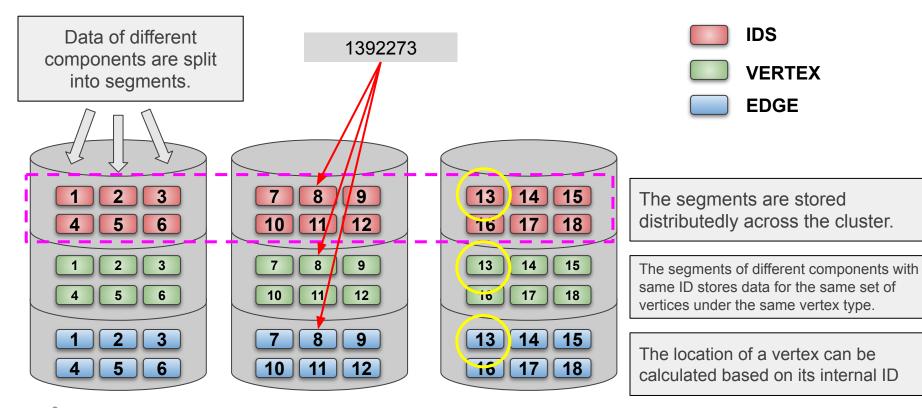
Defacto platform logging + metrics provider


 Powers partner services like Dynatrace, Datadog, NewRelic, etc.

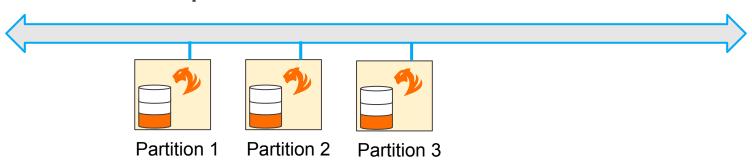
Day-zero observability support for new Google cloud services

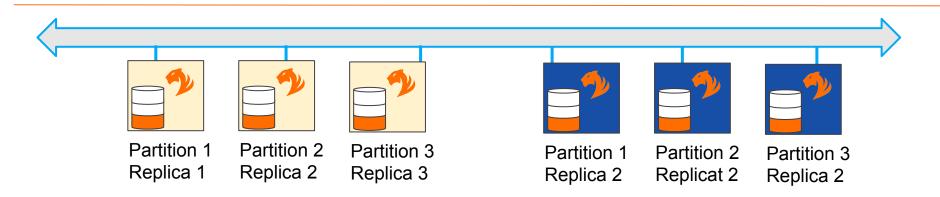
Google Cloud Users

Observability Partners

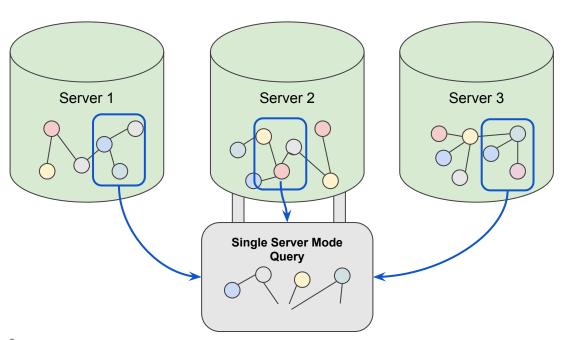


Google Product Areas (Search, Ads, Youtube, Geo etc.)

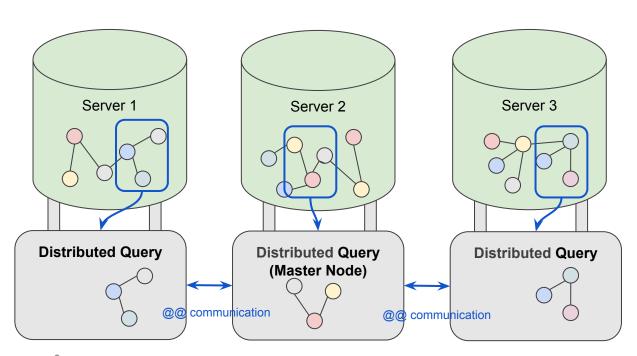

TigerGraph, a Scale Out Graph Analysis Engine



Distributed Native Graph Storage


Partition and Replication

Query - Single Server mode



Single Server Mode

- The cluster elects one server to be master for that query.
- All query computation takes place on query master.
- Vertex and edge data are copied to the query master as needed.
- Best for queries with one or a few starting vertices.
- If your query starts from all vertices, don't use this mode.

Query - Distributed mode

Distributed Mode

- The server that received the query becomes the master.
- Computation executes on all servers in parallel.
- Accumulators are transferred across the cluster.
- If your query starts from all or most vertices, use this mode.

Benchmark: LDBC-SNB Schema (twitter like)

- **70B** vertices, **533B** edges
 - Number of machines: 40
 - Machine: m1-ultramem-40

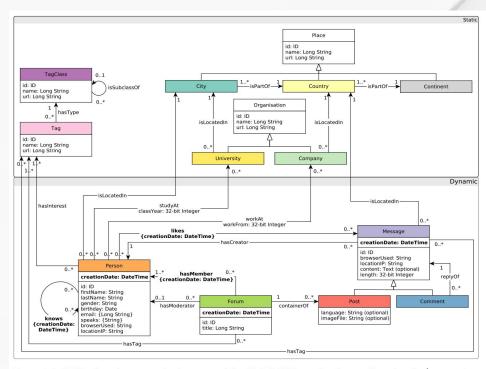
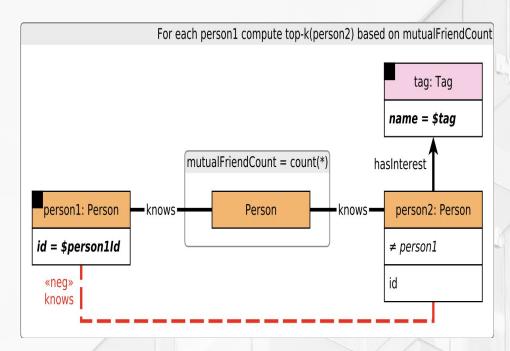


Figure 3.1: UML class diagram-style depiction of the LDBC SNB graph schema. Note that the knows edges should be treated as undirected (but are serialized only in a single direction). The cardinality of the hasModerator edge has changed between version 0.3.x (where it was exactly 1) and version 0.4.x (where it is 0..1).


Benchmark: LDBC-SNB Schema (twitter like)

Recommend new friends to a specific person

- Who is associated to in a specific tag (e.g., living in a specific country)
- Rank by the number of mutual friends

Query time: 7 seconds

More details to be published here

LDBC-SNB: Friends recommendation

Demo - Get started with TigerGraph Cloud

Please try TigerGraph cloud www.tgcloud.io

Or visit from Google Marketplace

