
Best Practices

1

Xinyu Chang, Director of Customer Solutions

 | GRAPHAISUMMIT.COM | #GRAPHAISUMMIT

Agenda

1. Schema Design Best Practices
2. Native Storage and MPP Architecture
3. How does a SELECT statement work
4. Query Writing Best Practices

2

Schema Design Best Practices

© 2019 TigerGraph. All Rights
Reserved

Choosing an Edge Type: Undirected? Directed?

Reversed?

Undirected Edge

4

A B A can traverse to B, and B can traverse to A

Directed Edge

A B A can traverse to B, but B cannot traverse to A

Directed Edge + Reverse Edge

A B
A can traverse to B via e1, B can traverse to A via e2
(e2 is automatically created upon creation of e1.
e2's attributes have the same values as e1's)

e2

e1

● What is the difference
between undirected edge
and directed edge + reverse
edge?

● What to know when making
edge type choices？

© 2019 TigerGraph. All Rights
Reserved

Choosing an Edge Type: Undirected? Directed?

Reversed?

Undirected Edge

5

A B

A can traverse to B, and B can traverse to A
Pros: Simple when working with undirected (symmetric) or bidirectional
relationships.
 Example: "A friend_of B" ⇔ "B friend_of A"
Cons: Does not carry directional info.Directed Edge

A B

A can traverse to B, but B cannot traverse to A
Pros: Saves memory and correctly describes a direction-restricted relationship
 Example: "A parent_of B" ⇏ "B parent_of A"
Cons: Can not traverse back from target to source.

Directed Edge + Reverse Edge

A B
A can traverse to B via e1, B can traverse to A via e2
Pros: Flexibility to traverse in either designated direction.
 Example: e1 type is "parent_of" and e2 type is "child_of"
Cons: Need to remember two edge types.

e2

e1

© 2019 TigerGraph. All Rights
Reserved

Given Schema:

6

Choosing an Edge Type: Undirected? Directed?

Reversed?

User

User_Has_Email

with undirected edge:

user_share_email = SELECT t FROM start-(User_Has_Email*2)-:t;

with directed edge + reverse edge

user_share_email = SELECT t FROM start-(User_Has_Email>)-email-(reverse_User_Has_Email>)-:t;

Find users share the same email

In this case, it is more concise to use undirected edge

EmailOr

© 2019 TigerGraph. All Rights
Reserved

Choosing an Edge Type: Undirected? Directed?

Reversed?

7

In this use case, the question is hard
to answer by using undirected edges,
since they do not provide any
directional info (parent vs. child)

However it can be easily solved by
using directed edge + reversed edge.

When querying for parent companies
it can use the red edge, and when
querying for child companies it can
use the reverse edge (blue).

c2

c1

c3

c4 c5 c6

c7 c8

c2

c1

c3

c4 c5 c6

c7 c8

Undirected Edge Directed Edge +
Reverse Edge

Use Case:
Given an
enterprise graph
and an input
company, find its
ultimate parent
company and the
ultimate child
branches

© 2019 TigerGraph. All Rights
Reserved

Attribute or Vertex?
Given a column, should it be defined as an attribute or
a vertex?

8

Product Name Color Brand Type Price

product 1 blue Apple phone 1000

product 2 red LG laptop 2000

...

Product Table

Product 1 Product 2

Color: blue
Brand: Apple
Type: phone
Price: 1000

Color: red
Brand: LG
Type: laptop
Price: 2000

… ... … ... … ...

Searching for a
red product scans
over ALL
products

© 2019 TigerGraph. All Rights
Reserved

Attribute or Vertex?
It can be beneficial to represent a column (attribute) as a
vertex type if you will frequently need to query for
particular values of the property. This way, the vertices act
like an search index. E.g., all the red products are
connected to the Red vertex under Color type.

9

Apple LG Blue Red Phone Lapto
p

Product 1 Product 2 Product 3 Product 4 Product 5

Brand Color Type

© 2019 TigerGraph. All Rights
Reserved

Multiple Events/Transactions Between Two Entities

10

User 1 Tran 1 User 2

Tran 2Trans
Attr1

Trans
Attr2

OR User 1 User 2
Edge Attribute:
LastTransactionDate:2018-01-01
FirstTransactionDate:2015-08-21
TotalTransactionAmount:12233.23
event_dates:[2018-01-01, 2018-02-01,
2015-08-21]

● Create a vertex for each transaction event.
● Connect transactions with the same

attributes via attribute vertices.

● Connect users who have transactions with
a single edge

● Aggregate historical info or use a container
to hold a set of values

Method 1: Each Event as a Vertex Method 2: Events aggregated into one
Edge

© 2019 TigerGraph. All Rights
Reserved

Multiple Events/Transactions
Between Two Entities

11User 1 Tran 1 User 2

Tran 2Trans
Attr1

Trans
Attr2

User 1 User 2

● Create vertex for each transaction event.
● Connect transactions with same attribute via

attribute vertices.

Pros: Easy to do transaction analytics, such as finding
transaction community and similar transactions.
Able to do filtering on the transaction vertex attributes.

Cons: Uses more memory, takes more steps to
traverse between users.

● Connect users who had transactions with a
single edge

● Aggregate historical info to edge attributes

Pros: Significantly less memory usage (if
without container). Takes fewer steps to
traverse between users.

Cons: Searching on transactions is less
efficient. Slower update/insert when using a
container.

© 2019 TigerGraph. All Rights
Reserved

Design Schema Based on Use Case

For any given data set, there can be multiple choices for creating a graph schema.
Design the schema that can solve your business problem and provide the best performance.

12

Event ID IP Server Device UserId EventType Message

001 50.124.11.1 s001 dev001 u001 et1 mmmmmmm

002 50.124.11.2 s002 dev002 u002 et2 mmmmmmm

...

But which one serves your use case the best?

IP

user

server

device

Event
Type

Event IP

user

server

device

Event
Type

Event

IP

user

server

device

Event
Type

Event

© 2019 TigerGraph. All Rights
Reserved

Design Schema Based on Use Case: Two
Common Styles

13

IP

user

server

device

Event
Type

Event

Event-centered schema

Pros: All info of an event is in its 1-hop
neighborhood.

Cons: Users are 2 hops away from the
device or IP she used

IP

user

server

device

Event
Type

Event

User-centered schema

Pros: Easy to analyze the
connectivities between the users.

Cons: Events are 2 hops away from
their related server and IP. It is hard to
tell which IP is used for which event.

Suitable use cases:

1. Starting from an input user, detect
blacklisted users in k hops.

2. Given a set of blacklisted users,
identify the whitelisted users
similar to them.

3. Given two input users, are they
connected with paths?

Suitable use cases:

1. Finding communities of events
2. Finding the servers that processed

the most events of a given event
type

3. Finding the servers visited by a
given IP

Distributed Native Graph Storage

© 2019 TigerGraph. All Rights
Reserved

Distributed Native Graph Storage

“USER123” <---> 1234321 IDS: Bidirectional external ID to Internal ID mapping

1234321, John, 33, john@abc.com
1234322, Tom, 27, tom@abc.com

...
Vertex Partitions: Vertex internal ID and attributes

1234321, 1234322, 2020-04-23, 3.3
 1234321, 1234324, 2020-02-13, 2.3

...
Edge Partitions: Source vertex internal ID target
vertex internal ID, edge attributes

mailto:john@abc.com
mailto:john@abc.com

© 2019 TigerGraph. All Rights
Reserved

Distributed Native Graph Storage

1 2 3
4 5 6

1 2 3

4 5 6

1 2 3
4 5 6

7 8 9
10 11 12

7 8 9

10 11 12

7 8 9
10 11 12

13 14 15
16 17 18

13 14 15

16 17 18

13 14 15
16 17 18

Data of different
components are split

into segments.

The segments are stored
distributedly across the cluster.

The segments of different components with
same ID stores data for the same set of
vertices under the same vertex type.

The location of a vertex can be
calculated based on its internal ID

IDS

VERTEX
EDGE

1392273

Server 1 Server 2 Server 3

MPP mechanism of TigerGraph

© 2019 TigerGraph. All Rights
Reserved

MPP mechanism of TigerGraph

18

1 2 3
6 7 8

1 2 3

6 7 8

1 2 3
6 7 8

IDS

VERTEX
EDGE

4 5

9 10

4 5
9 10

4 5
9 10

user_set = {User.*};
user_set = SELECT s FROM user_set:s
 POST-ACCUM
 …. // some logic;

● A thread will be assigned to each vertex
segment to perform the logic defined in the
POST-ACCUM clause in parallel.

● Once the task of one segment is done, the
thread move to next unprocessed segment.

● By default, the maximum # of CPU cores of
a thread will be assigned.

Server

CPU

Processing Vertex-Induced ACCUM/WHERE clause
or POST-ACCUM/HAVING clause

© 2019 TigerGraph. All Rights
Reserved

MPP mechanism of TigerGraph

19

1 2 3
6 7 8

1 2 3

6 7 8

1 2 3
6 7 8

IDS

VERTEX
EDGE

4 5

9 10

4 5
9 10

4 5
9 10

user_set = {User.*};
user_set = SELECT s FROM user_set:s-(:e)->:t
 ACCUM
 …. // some logic;

● A thread will be assigned to each edge
segment to perform the logic defined in
ACCUM clause in parallel.

● Once the task of a segment is done, the
thread move to next unprocessed segment.

● By default, the maximum # of CPU cores of
a thread will be assigned

Server

CPU

Processing Edge-Induced WHERE/ACCUM clause

© 2019 TigerGraph. All Rights
Reserved

MPP mechanism of TigerGraph

1 2 3
6 7 8

1 2 3

6 7 8

1 2 3
6 7 8

4 5

9 10

4 5
9 10

4 5
9 10

Server 1

CPU

11 12 13
16 17 18

11 12 13

16 17 18

11 12 13
16 17 18

14 15

19 20

14 15
19 20

14 15
19 20

Server 2

CPU

Processing Edge-Induced WHERE/ACCUM clause distributedly

IDS

VERTEX
EDGE

© 2019 TigerGraph. All Rights
Reserved

21

Single Server mode

Server 1 Server 2 Server 3

Single Server Mode
Query

Single Server Mode

● The cluster elects one server
to be master for that query.

● All query computation takes
place on query master.

● Vertex and edge data are
copied to the query master
as needed.

● Best for queries with one or a
few starting vertices.

● If your query starts from all
vertices, don't use this mode.

© 2019 TigerGraph. All Rights
Reserved

22

 Distributed mode

Server 1 Server 2 Server 3

Distributed Query
(Master Node)

Distributed Mode

● The server that received
the query becomes the
master.

● Computation executes
on all servers in parallel.

● Accumulators are
transferred across the
cluster.

● If your query starts from
all or most vertices, use
this mode.

Distributed Query Distributed Query

@@ communication @@ communication

How Does a SELECT Statement Work

© 2019 TigerGraph. All Rights
Reserved

24

Accumulators

A

E

B

D

C

Accumulator

2

1
1

Accumulators are special type of variables that accumulate information about the graph during the traversal.

Accumulating phase 1: receiving messages, the messages received will be temporarily put to a bucket that
belongs to the accumulator.

Accumulating phase 2: The accumulator will aggregate the messages it received based on its accumulator
type. The aggregated value will become the accumulator’s value, and its value can be accessed.

Graph

2,1,1

Value: 0Value: 4

© 2019 TigerGraph. All Rights
Reserved

Accumulators

25

For example:

The teacher collects test papers from all
students and calculates an average score.

Teacher: accumulator

Student: vertex/edge

Test paper: message sent to accumulator

Average Score: final value of accumulator

Phase 1: teacher collects all the test paper

Phase 2: teacher grades it and calculate
the average score.

© 2019 TigerGraph. All Rights
Reserved

Local Accumulators:
• Each selected vertex has its own

accumulator.

• Local means per vertex. Each vertex does
its own processing and considers what it
can see/read/write.

26

Global Accumulators:
• Stored in stored globally, visible

to all.

• All vertices and edges have
access.

e.x. SumAccum @A;

4

@@B

2,1,1

 15
 @A

1,4,10

10

4

1

2

1
1

e.x. SumAccum @@B;

@A

@A

@A

@A

Accumulators

© 2019 TigerGraph. All Rights
Reserved

Accumulators
The GSQL language provides many different accumulators, which follow the
same rules for receiving and accessing data. However each of them has their
unique way of aggregating values.

27

Old Value:
2

New Value:
11

1, 3, 5

1 3 5

SumAccum<int>

Old Value:
2

New Value:
5

1, 3, 5

1 3

MaxAccum<int>

Old Value:
2

New Value:
1

1, 3, 5

1 3

MinAccum<int>

 Old Value:

2

New Value:
2.75

1, 3, 5

1 3

AvgAccum

5 5 5

Computes and stores the
cumulative sum of numeric

values or the cumulative
concatenation of text values.

The MaxAccum types
calculate and store the
cumulative maximum of

a series of values.

Calculates and stores
the cumulative mean of

a series of numeric
values.

The MinAccum types
calculate and store the
cumulative minimum of

a series of values.

© 2019 TigerGraph. All Rights
Reserved

The GSQL language provides many different accumulators, which follow the
same rules for receiving and accessing data. However each of them has their
unique way of aggregating values.

28

Old Value:
[2]

New Value:
[2,1,3,5]

1, 3, 3, 5

1 3 5

SetAccum<int>

Old Value:
[2]

New Value:
[2,1,5,3,3]

1, 5, 3, 3

1 3

ListAccum<int>

Old Value:
[1->1]

New Value:
1->6
5->2

1->2
1->3
5->2

1->2 1->3

MapAccum<int,SumAccum<int>>

 Old Value:
[userD,150]

New Value:
[userC,300,
UserD,150,
userA,100]

userC,300
userA,100

(“userA”, 100)

HeapAccum<Tuple>

5 5->23 3 (“userC”, 300)

Maintains a collection of
unique elements.

Maintains a sequential
collection of elements.

Maintains a collection of
(key -> value) pairs.

Maintains a sorted collection of
tuples and enforces a

maximum number of tuples in
the collection

Accumulators

© 2019 TigerGraph. All Rights
Reserved

ACCUM Clause
What is the age distribution of friends that were registered in 2018?

29

CREATE QUERY GetFriends(vertex<User> inputUser) FOR GRAPH Social {

 MapAccum<uint, SumAccum<uint>> @@ageMap;
 Start = {inputUser};
 Friends = SELECT t FROM Start:s-(IsFriend:e)-:t

 WHERE e.connectDt BETWEEN to_datetime(“2018-01-01”)

 AND to_datetime(“2019-01-01”)

 ACCUM @@ageMap += (t.age/10->1);
 PRINT @@ageMap;

}

Input
User

User
A

User
B

User
C

Start Friend
s

IsFriend

s

s

s

t
25e

2018-05-11
e

2018-08-01
e

2019-01-22

t
28

t
35

@@ageMap

(2->1)

(2->1)

(3->1)

(2->1)
(2->1)
(3->1)

User
D

s
e

2018-02-22 t
31

WHERE

ACCUM

AGGREGATE

(2->2)
(3->1)

Select the matching edges

Local compute + send messages

Aggregate the messages
to accumulator

● Each edge satisfying the FROM &
WHERE clauses performs the ACCUM
clause statements.

● ACCUM has access to s, e and t.

●In ACCUM, vertices do not see each
other's updates b/c updates aren't
processed until the AGGREGATE step.

●The AGGREGATE phase is done
automatically after ACCUM. After that, the
updated accumulator value can be
accessed

● += means sending message to accumulator

© 2019 TigerGraph. All Rights
Reserved

ACCUM Clause
Given an input user. Output the average age of their
common friends.

30

CREATE QUERY GetFriends(vertex<User> inputUser) FOR

GRAPH Social {

 AvgAccum @avgAge;

 Start = {inputUser};

 Friends1Hop = SELECT t FROM Start:s-(IsFriend:e)-:t;

 Friends2Hop = SELECT t

 FROM Friends1Hop:s-(IsFriend:e)-:t

 ACCUM t.@avgAge += s.age;

 print Friends2Hop;

}

Input
User

User
A

User
B

User
C

Start Friends1Hop

User
D

User
E

User
F

User
G

Friends2Ho
p @avgAge

@avgAge

@avgAge

18,23,33

23,33

46

age:18

age:23

age:33

age:46

ACCUM AGGREGATE

Send the messages to
target nodes

Aggregate the
messages to
accumulator

24.67

28.00

46.00

● Update of local accumulator cannot be seen during ACCUM phase

● The messages will be aggregated during AGGREGATE phase
based on accumulator type.

Query Writing Best Practices

© 2019 TigerGraph. All Rights
Reserved

2. Think twice before starting a query
with all vertices (of a given type).

Start = {TYPEA.*}
Start = {ANY};

Is it possible to start from a small set
of vertex IDs?

Only start from an entire vertex type
when you have to.

CREATE QUERY q1 (vertex v) FOR

GRAPH g1 {

 Start = {company.*};

 Start = SELECT s FROM Start:s

 WHERE s == v;

 ...

}

CREATE QUERY q1 (vertex<company>

v) FOR GRAPH g1 {

 Start = {v};

 ...

}

32

A Better Traversal Plan

© 2019 TigerGraph. All Rights
Reserved

4. Avoid hub nodes
Hub Nodes or Super Nodes are vertices having a
huge number of neighbors. When traversal
encounters such nodes it has to touch a very
large portion of the graph, which hinders the
query.

Design the traversal plan to avoid starting from
the hub nodes.

33

A Better Traversal Plan

© 2019 TigerGraph. All Rights
Reserved

4. Avoid hub nodes

Example: Given a company A, find all companies that are in the same country and were ran
by the same CEO

A

B

C

D

EF

Jill

GH
John

Bill

Xu
Zach

US

A

B

C

D

EF

Jill

GH
John

Bill

Xu
7

US

H H

Companies: A,B,C,...
CEOs: Todd, John, Bill...

34

A Better Traversal Plan

© 2019 TigerGraph. All Rights
Reserved

4. Avoid hub nodes

Alternatively, when an approximated result is good enough, you can also
consider filtering the hub nodes out in your WHERE clause. Or use the
SAMPLE clause to sample a subset of the neighbors.

WHERE t.outdegree() < 100000

SAMPLE 100 EDGE WHEN s.outdegree() > 1000000

35

A Better Traversal Plan

© 2019 TigerGraph. All Rights
Reserved

4. Avoid hub nodes

Split the hub node at schema level.

hub
node

millions and millions

hub
node

day1

day2

day3

36

A Better Traversal Plan

© 2019 TigerGraph. All Rights
Reserved

Techniques to optimize memory usage

2. Split the query load into batches
When is this needed?
1. The query involves all or a significant fraction of all vertices.
2. Each hop accumulators a significant amount of data in

every local accumulator or in global accumulator(s).
The memory usage issue can be mitigated by splitting the query
into batches.

37

© 2019 TigerGraph. All Rights
Reserved

38

2. Split the query load into batches
Foreach company, find majority type of the subsidiaries.
// split the calculation into k batches
CREATE QUERY split (int k) FOR GRAPH exampleGraph {
 MapAccum<string,int> @map;
 SumAccum<string> @majorityType;
 // define local and global accumulators
 comps = {Company.*};
 FOREACH i IN range [0, k-1] DO
 tmp = SELECT s FROM comps:s
 WHERE getvid(s) % k == i;
 tmp = select s from tmp:s-(subsidiary:e)-:t
 accum s.@map += (t.comp_type, 1)
 Post-accum foreach (k,v) in s.@map do
 …
 End,
 s.@map.clear() ...
 END;

}

● k is the number of
batches that the job will
be split into

● Splitting the query into
batches increases the
execution time, but
decreases peak memory
usage.

Techniques to optimize memory usage

© 2019 TigerGraph. All Rights
Reserved

Parallelization

1. Run queries in parallel
CREATE QUERY sequentialExample () FOR GRAPH exampleGraph {

 SetAccum<VERTEX> @@verSet;

 Start = {TYPEA.*};

 Start = SELECT s FROM Start:s ACCUM @@verSet +=s;

 FOREACH v in @@verSet DO

 Start = {v};

 Start = SELECT s FROM Start…. # Nested query

 End;

}
39 ● FOREACH executes sequentially for each

vertex.

● Sequential execution is slower and does not
make full use of available CPU resources.

© 2019 TigerGraph. All Rights
Reserved

CREATE QUERY subQuery (VERTEX input) FOR GRAPH exampleGraph RETURNS …{

 Start = {input};

 Start = SELECT s FROM Start:….;

}

CREATE QUERY parallelExample () FOR GRAPH exampleGraph {

 Start = {TYPEA.*};

 Start = SELECT s FROM Start:s ACCUM subQuery(s);

}
40

Parallelization

1. Run queries in parallel

● ACCUM executes multiple threads
concurrently, so subqueries run in parallel.

● For some use cases, ACCUM and/or
subquery can simplify the logic or data
structures.

© 2019 TigerGraph. All Rights
Reserved

1. Use fewer container operations
// given an input vertex set forbiddenSet, skip those vertices during the traversal

CREATE QUERY example1 (set<vertex> forbiddenSet) FOR GRAPH exampleGraph {
 …
 Start = {ANY};

 Start = SELECT t FROM Start:s-(:e)->:t

 WHERE t NOT IN forbiddenSet; // if alias t is in forbiddenSet, skip this edge
 …
}

41

● Each edge will perform the same set operation to check if vertex t is in forbiddenSet or not

● Set operation of existence checking is slow

Data Structure Optimization

© 2019 TigerGraph. All Rights
Reserved

1. Use fewer container operations

42

// given an input vertex set forbiddenSet, skip those vertices during the traversal
CREATE QUERY example2 (set<vertex> forbiddenSet) FOR GRAPH exampleGraph {

 OrAccum<bool> @isFob;
 Forbid = forbiddenSet;

 Forbid = SELECT s FROM Forbid:s POST_ACCUM s.@isFob = true;
 …
 Start = {ALL};
 Start = SELECT t FROM Start:s-(:e)-> :t

 where t.@isFob == false;

 …
}
● Create an OrAccum to mark the forbidden set first

● In each WHERE clause only a boolean check is executed

Data Structure Optimization

© 2019 TigerGraph. All Rights
Reserved

2. Avoid using container type vertex-attached accumulators
// This query prints all the shortest paths between two input vertices
CREATE QUERY example (VERTEX input1, VERTEX input2) FOR GRAPH exampleGraph {

 SetAccum<EDGE> @path;

 OrAccum<Bool> @@found;

 Start = {input1};

 WHILE Start.size() > 0 AND @@found == false DO

 Start = SELECT t FROM Start-(directedEdge:e)-> :t

 WHERE t.@path.size() == 0

 ACCUM t.@path += s.@path, t.@path += e

 POST-ACCUM CASE WHEN t==input2 THEN

 @@found = true END;

 END;

 PRINT Start;

}

43

● Start from input1, accumulate the edges along the

path

● Continue doing above till input2 is found

Data Structure Optimization

© 2019 TigerGraph. All Rights
Reserved

Data Structure Optimization
2. Avoid using container type vertex-attached accumulators
// This query prints all the shortest paths between two input vertices
CREATE QUERY example (VERTEX input1, VERTEX input2) FOR GRAPH exampleGraph {
 MaxAccum<INT> @dist;
 OrAccum<Bool> @@found1, @@found2;
 ListAccum<EDGE> @@resultPath;
 Start = {input1};
 // mark the vertices along the path with distance from input 1
 While Start.size() > 0 and @@found1 == false do
 Start = SELECT t FROM Start-(directedEdge:e)-> :t
 WHERE t.@dist < 0
 ACCUM t.@dist += s.@dist + 1
 POST_ACCUM CASE WHEN t==input2 THEN @@found1 = true END;
 END;
 Start = {input2};
 // store the vertices along the path in the result
 While Start.size() > 0 and @@found2 == false do
 Start = SELECT t FROM Start-(ReverseDirectedEdge:e)-> :t
 WHERE t.@dist == s.@dist - 1
 ACCUM @@resultPath += e
 POST_ACCUM CASE WHEN t==input1 THEN @@found2 = true END;
 END;
 PRINT @@resultPath;
} 44

● Use MaxAccum<INT> instead of SetAccum<EDGE>

● Mark each vertex traversed with the distance from

input1, until input2 is found

● When input2 is found, start from input2 and traverse

in the reverse direction. If a vertex having a distance

equal to the distance of from the vertex minus one,

then it must be on the path.

© 2019 TigerGraph. All Rights
Reserved

Data Structure Optimization

45

17

5

6

8

2

3

4

input1

input2
[input-1]

[input-2]

[input-1, input-2, 1-3, 2-3]

[input,2, 2-4]

[input-1, input-2, 1-3, 2-3, 3-input2]

[input-7]

[input-7, 7-8]

[input-5]

[input-5, 5-6]

17

5

6

8

2

3

4

input1

input2
1

2

2

1

1

2

1

2

3

Solution With SetAccum<EDGE> Solution With MaxAccum<INT>

2. Avoid using container type vertex-attached accumulators

● Every vertex traversed carries the path starting from input1

● SetAccum<EDGE> @path is memory consuming

● SetAccum += operation is expensive

● Every vertex carries the distance to input1

● MaxAccum<INT> @dist is more memory efficient

● Even when traversal distance is longer, this solution is faster in most

cases

[]3-input2 1-2 2-3 input-1 input-2

Q&A

