
Product & Supply Chain Security
for Connected Vehicles

Rising Product & Supply Chain Risk for
ECUs and Connected Vehicles

Typical embedded system firmware, including the firmware
used in connected vehicles, is composed of 80-95% third-
party and open source components. The supply chain for
these components is complex and opaque, leaving vehicle
manufacturers in the dark when it comes to security issues
inherited from these components. In an environment with
long product lifecycles and limited opportunities for firmware
updates, today’s connected vehicles must be secure by design.

You can’t protect what you can’t see

Finite State’s automated platform helps connected vehicle
manufacturers break through these opaque supply chains and
gain deep visibility into each component, providing your team
with the data and guidance to rapidly address security issues
and supply chain risks. With Finite State’s robust firmware
analysis capabilities you can quickly analyze products across
your portfolio and business units, including each new security
patch and firmware update. By scanning final firmware images
before they are released, you can ensure the continued
security of your products throughout their development
lifecycle.

Key challenges:

• Regulatory risk due to the ever-changing landscape of
cybersecurity compliance.

• Time-to-market challenges caused by costly, time
consuming, and unscalable manual testing.

• Third-party and open source risk, including legal risk
from unknown, undisclosed, or expired licenses.

• Lack of device-specific security tooling. AppSec tools
don’t have the ability to analyze and support embedded
system architectures, tools, and binary formats.

• Protecting brand and reputation from increasing high
profile attacks and breaches.

The Finite State Platform:
Benefits at a Glance

Manage supply chain risk
See where your code is coming from and
how it could expose you to risk, allowing
you to make informed component sourcing
decisions.

Enhance product cyber resilience
Discover and remediate security issues such
as hard-coded credentials, known open
source vulnerabilities, configuration errors,
and crypto materials.

Create comprehensive SBOMs
Know the composition of every firmware
version, so that components containing
newly-identified zero-day vulnerabilities can
be traced and patched quickly.

Reduce time-to-market
Drastically reduce or even eliminate the need
for costly, time consuming, and unscalable
manual testing.

Resolve security issues early
See every firmware version for easy
comparison, to ensure new ECU firmware
versions are secure before production line
FOTA updates.

Prioritize remediation
Learn which security issues could have the
biggest impact so fixes can focus on the
problems most likely to pose major business
and customer risks.

Comply with evolving standards
Maintain compliance with UNECE WP.29, EO
14028, and other standards and regulations
for connected vehicles.

Hard-coded credentials
When passwords or other authentication is
hard-coded in firmware, attackers can use
these credentials to gain trust and access to key
systems.

CVEs
Known vulnerabilities often exist for years in
firmware code, leaving potential backdoors open
to black hats or even nation-state level attackers.

Unsafe function calls
Code containing unsafe function calls can leave
firmware vulnerable to injection attacks that can
cause denial of service, privilege escalation, or full
takeover of the device.

Today, most firmware security testing is done at
the time of development of first-party code, and
typically looks only at this code. This completely
ignores the 80-95% of third party and open source
code found in connected vehicle components.

Finite State takes a different approach to firmware
analysis, examining the fully compiled code in the
form of binaries for each firmware version and
identifying security issues present from first party,
third-party, and open source components.

By analyzing binaries after they are compiled and
ready to be flashed onto a device, Finite State is
capable of detecting security issues that would
typically be missed during the development phase,
including:

Cryptographic material
Poorly configured systems may contain files such
as private keys that may serve as a backdoor or
let attackers impersonate the system, and expired
or self-signed certificates can present weaknesses
attackers can use to compromise the system.

Insecure configurations
Some security issues are generated during the
build process, such as not using compiler flags for
exploit mitigations. Binary analysis allows these
weaknesses to be identified and remediated.
Other security issues may be introduced after
the build process, such as network facing service
configurations that leave the device open to
attackers.

Overview: Automated
Firmware Analysis

www.finitestate.io

The Billion Dollar Question for Vehicle Manufacturers

If a zero-day vulnerability is discovered tomorrow in an open-source library that is used in
your product firmware or in a vendor supplied component, how long would it take you to

determine which devices and firmware versions were impacted?

