
The Four Reasons
Software Modernizations Fail
(and Twelve Strategies for Success)

1The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

A modern, intuitive customer experience that is

delivered digitally is a prerequisite for maintaining

brand/service relevance, growing customer

relationships, and acquiring new ones. We all demand

user-friendly technology in every transaction. The

financial services companies that provide the best

digital customer experiences will earn the loyalty

of their customers and attract others fed up with

complex, outdated, and ineffective websites and

mobile apps.

According to a study conducted by
Bain and Company, a financial services
firm that increases its customer
retention by just 5% will increase its
profits by 25% or more.

EXECUTIVE SUMMARY

Retention

Profit Increase

5%

25%+

http://media.bain.com/Images/BB_Prescription_cutting_costs.pdf

2The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

Software
Investment

StrategyDesign Technology

ROI Analysis of
Phase 1

User Experience
Framework

User Interface
Framework

Clear Problem
Statement

Objectives

Phased Roadmap

Application
Documentation

Usage Context

Design Objectives

Evolutionary
Architecture

Software Delivery
Pipeline

Reusable API Layer

PILLAR

FIRST

SECOND

THIRD

FOURTH

STRATEGY DESIGN TECHNOLOGY

You can do it! We can guide you.

EXECUTIVE SUMMARY (CONTINUED)

Modernizing or replacing legacy customer-facing

software is easier said than done. Poorly formulated

strategy, design flaws, and unchecked technical

complexity can make the success of a large

development initiative a remote possibility, even

before the first line of code is written.

The key to success is a strong modernization

foundation built on three pillars: strategy, design, and

technology. Within each pillar are four strategies that

build upon one another to ensure success.

3The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

Background

4The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

18%
That reported a poor

experience don’t

The advantages of delivering a great customer

experience (CX) have never been greater. In a recent

survey of 10,000 US consumers, 87% that reported

a very good customer experience said they plan to

repurchase from the same company, compared to just

18% that reported a poor experience.

This is, of course, obvious. When you have a great

experience with a company, your loyalty to its brand

increases. This is particularly true in the case of

financial services, where the products are complex

and where customer experience has become one

of the few opportunities available to many firms to

differentiate through service.

The message is simple and clear.
Good customer experience pays off.
According to a study conducted by
Bain and Company, a financial services
firm that increases its customer
retention by just 5% will increase its
profits by 25% or more.

Does Customer Experience
Matter?

8 7%
That reported a very good
customer experience said

they plan to repurchase

https://www.xminstitute.com/
https://media.bain.com/Images/BB_Prescription_cutting_costs.pdf

5The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

Does Your Software Support
Customer Experience?

28%

25%

Increasingly, customer experiences are being delivered

by websites and mobile apps. However, in a survey

of 171 organizations only 28% believe they deliver a

‘good’ or ‘very good’ customer experience through

their website and only 25% believe the same about

their mobile app.

Believe they deliver
a good customer experience
through their website

Believe they deliver
a good customer experience
through their mobile app

https://www.xminstitute.com/
https://www.xminstitute.com/

6The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

It’s all in the Delivery...

Why are established companies struggling so mightily

to deliver a great digital customer experience? The

answer for many mid-market financial services firms

(and perhaps for you) is that they are caught between

a rock and a hard place, or more specifically, an

irresistible force and an immovable object.

The irresistible force is the ever-increasing set of

customer expectations for convenience and simplicity,

accelerated by the example set by tech giants (you

know who) and upstart, born-digital competitors.

The immovable object is the suite of custom software

applications that got you to where you are today; your

business model depends on them. However, truly

understanding your dizzying web of legacy systems is

a tall order--let alone modernizing or replacing them.

Legacy codebases
routinely exceed one
million lines of source
code, the equivalent of
20% of the data contained
in the entire human
genome--and they can be
just as hard to decipher.

7The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

Mission Critical:
Modernize your

software

Meet Increased
Customer
Expectations

Overcome
Complexity of
Legacy Software

Justify
ROI

Impact

Lead
Cultural
Change

Mission Critical

The bottom line: to remain relevant to your customers,

you have no choice but to replace or modernize your

applications. However, justifying the cost and leading

the necessary cultural change might feel like the next

installment of Mission Impossible. But you know it’s

actually Mission Critical.

8The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

A Model For Success:
The Modernization Foundation

The key to success with software modernization

projects is to prepare by building a strong foundation

on three pillars: Strategy, Design, and Technology.

To extend the metaphor, a strong foundation can

safely support the weight of a major new investment in

software modernization.

Software
Investment

StrategyDesign Technology

StrategyDesign Technology

An unbalanced or insufficient foundation will put your investment at risk,
not to mention your sanity.

The Four Reasons Software
Modernizations Fail

10The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

The Four Reasons
Software Modernizations Fail

Over my 25-year career in custom software

development, I have had the opportunity to work

with more than 300 companies on their initiatives,

and have consulted with thousands. While I have led

the development of net new software applications,

the majority of my experience has come from

modernizing, enhancing, or replacing existing software

systems.

With the benefit of this experience, it is clear that

software modernization failures can always be

attributed to one or more of the following three

causes:

• Poorly Formulated Strategy:

Misaligned business and technology strategy.

• Design Flaws:

Inadequate requirements and user interface design.

• Unchecked Technical Complexity:

Introduced during software development.

In addition, there is a fourth factor that acts as a risk

multiplier to the first three:

• Unmanageable Release Size:

Long release cycles that delay valid user feedback.

MODERNIZATION RISK

Poorly
Formulated

Strategy

Design
Flaws

Unchecked
Technical

Complexity

Unmanageble
Release Size

11The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

Poorly Formulated
Strategy

As with most organizational endeavors, the biggest

obstacle to success with software modernization is

the lack of a clear, mutually understood definition of

success. In addition to securing buy-in from all relevant

stakeholders, your objectives must also make sense

financially. If they do not, support for your effort will

wane when you need it most.

In addition to delivering a better customer experience

and improved market differentiation, software

modernization initiatives often provide benefits across

an organization such as:

• Marketing: Streamline content publishing,

offer upsells to customers, and drive renewals.

Technology: Reduce technical debt and

train developers on new technologies and

methodologies.

• Project Management Office (PMO): Trial a new set

of program management best practices.

While these goals are all worthwhile, if they are not clearly outlined and agreed upon
in advance, the allocated budget may not be sufficient. This, in turn, could cause
stakeholders in these different departments to work at cross-purposes, proverbially
rowing in opposite directions as they contend for scarce project resources.

• IT: Migrate infrastructure to the cloud, enhance

security, increase uptime, and decrease hosting

costs.

• Operations: Streamline existing processes to save

time and money, while also reducing customer

service errors.

12The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

Design Flaws

When I work with business leaders planning

to modernize or enhance their software, they

often center our conversations on the disruptive

technologies we could employ to achieve their vision.

For example:

• Can we use blockchain to manage our transactions?

• Would a combination of computer vision and

machine learning enable us to eliminate time-

consuming data entry processes?

• Could a chatbot handle the majority of our routine

customer service inquiries?

In reality, and counter-intuitively, the success of a modernization initiative rarely hinges

on the integration of these more recent innovations. First, these technologies often play

a limited role relative to the overall software implementation. Second, there is almost

always an open source software library, or third-party product/service that will provide

80% of the solution, right out of the box. If fact, beware if there’s not.

13The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

Where initiatives do fail is in the definition of business

requirements and user interface designs. When

designing custom software, the details really matter.

Missing even a few details can doom your project

schedule and budget, or result in an application with

low utilization. When customers choose to place

a phone call or send an email, rather than use the

software you have developed, the value of your

software investments is greatly reduced.

Incorrect assumptions, missing requirements, and

ineffective user interface designs aren’t readily

apparent and this can create a false sense of

confidence in your team’s progress. Project teams

often report they are 80-90% complete with a

software release, only to find that when real end users

begin testing it, the software is too confusing or its

functionality completely misses the mark. Design flaws

results in costly rework and a seemingly endless series

of delays that, in about 25% of all cases, results in the

cancellation of the project before the software ever

launches.

In short: it’s not the development of an augmented

reality investment advisor that will risk your

modernization effort; it’s remembering to develop and

test the compliance disclaimer shown only to New

York residents that reside in Florida for more than 40%

of the year.

Project teams often report they are
80-90% complete with a software
release, only to find that when real end
users begin testing it, the software
is too confusing or its functionality
completely misses the mark.

When designing
custom software,
the details really
matter. Missing
even a few details
can doom your
project schedule
and budget,
or result in an
application with
low utilization.

14The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

Unchecked
Technical Complexity

The final root cause of software modernization

failures is unchecked technical complexity. Software

systems composed of multiple applications can be as

complex as a machine with a hundred thousand or

more moving parts, intricately constructed over the

course of several years (or decades) by a team whose

membership changes frequently. The challenge can

bring to mind the famous Sir Walter Scott quote,

“What a tangled web we weave…”

This level of technical complexity can overwhelm

the progress of even the most senior software

development teams, if not carefully managed. In fact,

the term ‘technical debt’ is often used to describe the

concept of incremental additional cost with increased

technical complexity, because, like financial debt,

even strong organizations can fall victim to it if it’s not

managed carefully.

SIR WALTER SCOTT

What a tangled web we weave…

https://praxent.com/blog/brief-history-technical-debt#:~:text=Technical%20debt%20(or%20%E2%80%9Ctech%20debt,custom%20software%20developers%20and%20organizations.

15The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

THE COMPOUNDING COST OF

TECHNICAL DEBT

One goal of every software development team is to

use software design and development best practices

to keep the Software Complexity line (shown above)

as close as possible to the Essential Complexity line.

Essential Complexity is inherent in the non-negotiable

business requirements for the software application.

Design Complexity stems from the decisions made in

the user experience design and requirements step for

each feature.

Keeping Software Complexity under control allows a

development team to continue serving the business

well by moving quickly to cost-effectively add new

software features. However, even with the best

of intentions, technical debt can begin to balloon

as a result of unexpected requirements changes,

inexperienced development team members, and the

realities imposed by budget and timeline constraints.

All software applications have some level of technical

debt and it can even be useful to accrue it in the

short term to accelerate development. You just

have to be mindful of it because, like financial debt,

its exponential growth could stop your forward

momentum in its tracks.

Co
m

pl
ex

ity

Time / New Features

Essential Complexity

Design Complexity

Software Complexity

Version 1 Version 2 Version 3

Total Feature CostWasted Feature Cost due to Technical Debt

16The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

Unmanageable
Release Size

When developing software, you are forced to make

countless assumptions (consciously or unconsciously)

about how the software should function and how it

will actually function under the stresses of real-world

usage, in the hands of actual end users. The longer

these assumptions go untested, the greater the risk

that, to use an analogy, your boat won’t float when

you put it in the water.

While there are many approaches to simulate real-

world usage to validate your assumptions, there is

no equivalent to the feedback you receive when you

actually launch a software product. The next best thing

is the feedback you can gather on a prototype,

which can prevent costly development rework.

Adopting a large project strategy, where

your team works on a software release for

six months or more before launching it, acts

as a risk multiplier to the other three failure

causes: poorly formulated strategy, design flaws,

and unchecked technical complexity. Data from the

Standish Group’s Chaos Report bears this out:

LARGE PROJECT SMALL PROJECT

90% 24%
38% 4%

Precentage of projects that are
challenged or cancelled

Precentage of projects that are
cancelled prior to launch

https://praxent.com/blog/dont-trust-project-estimate-without-ux-prototype
https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf

12 Strategies for Software
Modernization Success

18The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

ROI Analysis of
Phase 1

User Experience
Framework

User Interface
Framework

12 Strategies for Software
Modernization Success

We’ve now covered why companies modernize

their customer-facing software and the pitfalls that

sometimes derail those modernization efforts.

What can you do to ensure success? As previously

mentioned, the key to success is preparing a strong

Modernization Foundation, which rests on three

pillars: Strategy, Design, and Technology.

Within each pillar, there are four strategies that

build upon one another. In other words, you cannot

effectively move on to the second strategy until you

have addressed the first:

Clear Problem
Statement

Objectives

Phased Roadmap

Application
Documentation

Usage Context

Design Objectives

Evolutionary
Architecture

Software Delivery
Pipeline

Reusable API Layer

StrategyDesign Technology

PILLAR

FIRST

SECOND

THIRD

FOURTH

STRATEGY DESIGN TECHNOLOGY

19The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

Seek funding for all phases

before beginning Phase 1,

if at all possible

 ` Demonstrate and

document how Phase 1

will pay for itself

Forget to quantify the

impact of the problem

 ` Identify one or more

compelling problems with

the status quo

Get into the details yet -

keep it big picture

 ` Collaboratively set

measurable goals and

decide on your approach

Fall into the trap of

addressing every need in

your next software release

 ` Break down your goals

into a phased approach to

produce quicker wins

STRATEGY DO DON’T

The Do’s and Don’ts
of Modernization

Clear Problem
Statement

ROI Analysis of
Phase 1

Objectives

Phased
Roadmap

STRATEGY

Head to the appendix for an in-depth guide to

each modernization strategy, along with example

deliverables and diagnostic questions.

20The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

Rely solely on long, written

documents to convey

requirements

 ` Create a design language

you can reuse across your

application(s)

Assume an understanding

of the status quo will

prevent innovation

 ` Educate your team on the

current business processes

and technology

Assume you fully understand

your customer’s experience

of your software

 ` Talk to your end users and

observe them using your

technology

Forget to tie your design

objectives to your

underlying business goals

 ` Identify principles you will

return to with every design

decision you make

DESIGN DO DON’T

Application
Documentation

User Experience
Framework

Usage
Context

Design
Objectives

The Do’s and Don’ts
of Modernization

DESIGN

Head to the appendix for an in-depth guide to

each modernization strategy, along with example

deliverables and diagnostic questions.

21The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

Leverage outdated UI

technology solely because of

your team’s familiarity with it

 ` Leverage a modern UI

framework that enables reuse

of common components

Attempt a hard,

irreversible cutover from

your legacy system

 ` Create a plan to

incrementally roll out your

new software

Tolerate manual, error-

prone activities that delay

feedback cycles

 ` Automate as many aspects

of software testing and

deployment as possible

Begin developing your

front-end before deciding

on your API contracts

 ` Plan ahead on your API

design and development to

prevent delays

TECHNOLOGY DO DON’T

Evolutionary
Architecture

User Interface
Framework

Software Delivery
Pipeline

Reusable API
Layer

The Do’s and Don’ts
of Modernization

TECHNOLOGY

Head to the appendix for an in-depth guide to

each modernization strategy, along with example

deliverables and diagnostic questions.

22The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

MODERNIZATION RISK

MODERNIZATION FOUNDATION

Poorly
Formulated

Strategy

Design
Flaws

Technology

Strategy

Design

Software Investment

Unchecked
Technical

Complexity
Unmanageble
Release Size

Reference Card

23The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

ROI Analysis of
Phase 1

User Experience
Framework

User Interface
Framework

Clear Problem
Statement

Objectives

Phased Roadmap

Application
Documentation

Usage Context

Design Objectives

Evolutionary
Architecture

Software Delivery
Pipeline

Reusable API
Layer

STRATEGY DESIGN TECHNOLOGY

Reference Card

24The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

If you prefer to fast-track your way to success, hop on a free

call with one of our software modernization experts, who will

personally walk you through each of the 12 strategies and

provide you with a customized readiness report you can share

with your team.

Implement these 12
strategies in your next

software modernization
project, and I guarantee

you’ll see results.

Book my Readiness Assessment

https://praxent.com/contact
http://praxent.com/contact

25The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

About Praxent

At Praxent, we know you want to be a savvy,

pragmatic innovation leader. In order to do that, you

need a modern, intuitive digital experience to serve

customers. The problem is your current applications

are too complex to easily rebuild and are becoming

more outdated by the day. Most likely, that has left

you feeling overwhelmed by the complexity of your

legacy systems and unable to align stakeholders

around the need for change.

Together, we assess your situation

and present a proposal with three

investment options.

We design and build a modern

user experience, supported by a

robust full-stack architecture.

Here’s how we do it:

You launch a modern, intuitive

software application that lives up

to the promise of your brand.

Schedule a call today, so you can stop losing customers to
born-digital competitors and, instead, enjoy the feeling of

accomplishment as you compete with confidence.

We believe there should be a way to improve your

digital customer experience without betting the farm

on an all-or-nothing rewrite. We understand your

software applications aren’t getting any younger,

which is why we have assembled a fast-moving

team of 70+ software designers and engineers

that have successfully delivered over 300 software

transformations over the past 20 years.

1. ASSESS 2. DESIGN & BUILD 3. LAUNCH

Schedule a call

https://praxent.com/contact

Appendix:
12 Strategies for Software

Modernization Success

Strategy

28The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

STRATEGY CLEAR PROBLEM STATEMENT

There is a reason that most marketing experts will encourage you to

sell aspirin instead of vitamins. For better or worse, current pain is a far

better motivator for change than future pleasure, even if you are just

convincing yourself to make an investment.

The first step to effectively pursuing a modernization effort is to clearly

define the problem with the status quo. Quantify the problem in dollars

and cents, even if you need to make a few assumptions to do so. These

initial calculations will prove critical in subsequent steps. At a minimum,

it is critical to quantify the problem using metrics that eventually drive

financial outcomes.

• Sales Funnel Conversion Analysis: What percentage of late-stage

opportunities are you losing to competitors due to an outdated

customer experience?

• Customer Retention Analysis: What percentage of your customers

renew? How many more might renew if you offered a better

customer experience?

• Marginal Cost of Delivery Analysis: How much manual labor could

be eliminated for your next sale through customer self-service and

automation?

• New Opportunity Analysis: Are you currently shut out of a new

market opportunity due to your customer experience? How much is

the missed opportunity worth?

 ` What inputs do you need from departments across the organization

including executive leadership, marketing, operations, and

technology?

 ` How will the investment increase sales, increase retention, create new

market opportunities, drive word of mouth, and reduce write offs?

Example Deliverables

Diagnostic Questions

29The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

STRATEGY OBJECTIVES

Example Deliverables

Diagnostic Questions

If you have successfully defined the problem, congratulations! That

truly is the hardest and most important step. Now it’s time to start

defining your goals and approach. In what ways could you enhance

your website to create a better customer experience? At which points

in your customers’ journey do they experience the most friction? How

will you measure success after you launch the new version of your

website?

To spur your creativity around your approach, there are a number of

strategy tools that can help.

• Strategy Canvas: An analysis of the value drivers in your industry

and how your firm competes on each.

• Buyer Utility Map: An analysis of the systemic customer pain points

at different stages of the buyer’s journey in your industry.

• Customer Journey Map: What touchpoints does a customer

have with your brand? Where are you excelling? Where are you

struggling?

• Generative User Research: 5-10 conversations with your current and

prospective customers will yield invaluable insights on the challenges

they face working with you and your competitors.

• Feature Prioritization Matrix: A collaborative exercise to rank the

business value versus cost for a series of potential CX enhancements.

 ` Can you map each of your objectives to one or more of the

challenges identified in your problem statement?

 ` Have you solicited input and sought buy-in from key stakeholders

across your organization?

30The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

STRATEGY PHASED ROAD MAP

Hopefully at this point you have a solid list of ideas for how you can

modernize and enhance your customer experience, as well as, a clear

and measurable definition of success.

This next step is critical. How should you prioritize the development

and launch of your exciting new CX improvements? Even if you had the

time and funds to pursue all of your objectives, it is best to phase them

out over time so you can start earning a return on your first round of

investment while your next round of enhancements is being developed.

Organize your ideas into the following four categories:

• First Release

• Next Release

• Eventually

• Maybe/Someday

• Product Roadmap: A high-level outline of the next 2-3 releases

with the capabilities that will be included in each. Note, the road

map will have to be revisited periodically as software estimates are

produced and as business priorities change.

 ` For clarity, can you organize each release in your roadmap around a

theme (i.e. ‘policyholder self-service’ or ‘streamlined underwriting’)?

 ` Are there significant dependencies or obstacles that could prevent

the launch of your first release?

 ` Are your releases focused/prioritized by value to the end user?

Grouping in this way can lessen the change management required

for each release.

Example Deliverables

Diagnostic Questions

31The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

STRATEGY ROI ANALYSIS OF PHASE 1

Example Deliverables

A well-designed road map puts you in the enviable position of a cost-

justified first release. This will enable you to be agile and iterative using

the new lessons learned during development of the first release.

Unfortunately, many organizations tend to view customer experience

optimization as once and done, meriting attention every 5-10 years,

instead of an ongoing business function. This thinking causes the scope

of these less frequent initiatives to be much longer, more expensive,

and more risky. The goal, instead, is to break up these initiatives into

several smaller efforts that each produce their own ROI.

• ROI Analysis: Spreadsheet demonstrating how improvements to

metrics such as customer retention and sales conversion rate will

produce an ROI.

The most impactful decision you can make to
succeed with custom software development is
to adopt a small project strategy; it’s the closest
thing to a ‘silver bullet’ you have in your arsenal to
stack the odds in your favor.

Diagnostic Questions ` What can be deferred from your first release to the second while

still earning an ROI on your first release?

 ` What budget threshold should you stay under for your first release

to streamline approval?

 ` Can you include a 20-30% contingency in your budget to reduce the

likelihood of requiring a second budget request to complete your

first release?

32The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

Design

33The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

DESIGN APPLICATION DOCUMENTATION

One of the single greatest mistakes leaders can make is to disregard

the strengths and lessons learned from your current software when

considering a rewrite or modernization. It is usually done to avoid the

constraints imposed by what ‘is’, but like trees that have outlived the

people around them, your software likely contains information not

available in any other document or person’s mind.

Carefully documenting your current software will prevent you

from overlooking key details that, once discovered, could delay

or derail your project. Asking a new team member to create this

documentation, if you do not already have it, is a great way to make

them an expert on your current technology and business operations.

• Feature Inventory: A list of each of the features included in a

software application, as experienced by an end user.

• Site Map: A diagram that outlines the different areas of an

application and how they are connected.

• Data Dictionary: The purpose and contents of the tables and

columns in a database.

• Software Architecture Diagrams: Physical and logical architecture

diagrams that describe the technical layout of a software system.

• API Specification: A description of the purpose, inputs, and outputs

of API endpoints used to support a customer-facing software

application.

Example Deliverables

 ` Do we understand the current software well enough to prevent a

missed requirement for the next version (that could result in a costly

and unexpected delay)?

Diagnostic Question

34The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

DESIGN USAGE CONTEXT

Building on that documentation will enhance your understand of the

usage context of your current software.

A data dictionary can begin to answer those questions, but there is no

replacement for seeing for yourself how your customers actually use

your software. By watching and listening to end users, you will identify

bottlenecks, pain points, and unanticipated usage scenarios that you

may never otherwise design for.

• Usage Statistics: Data from a source like Google Analytics that

show how your software is used.

• User Persona: A document describing a specific set of end users,

such as their job responsibilities, needs from the application, and

current pain points.

• Customer Journey Map: A chart visualizing how a customer

interacts with your company over time.

• Heuristic Analysis: An evaluation of the usability of your software

from a UX expert’s perspective.

• Usability Testing: User research study conducted to understand

how usable your software is.

• Contextual Observation and Inquiry: A series of meetings with end

users, ideally in-person, where they demonstrate how they currently

use your software and their frustrations, if any.

Example Deliverables

 ` Have you spoken with enough end users to begin noticing clear

patterns in how they use your software and the obstacles they must

overcome to do so?

 ` Are there any underutilized parts of the system? Who uses them?

Are they still necessary?

Diagnostic Questions

35The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

DESIGN DESIGN OBJECTIVES

What overarching goals should your software designers keep in

mind in order to set design goals for the software that align with the

business objectives?

• Minimize the steps to complete each process?

• Increase end user productivity?

• Provide clear direction at every step?

• Educate customers on your products?

• Highlight the availability of upsell options?

Collectively, these ideas comprise a “North Star” for your software

designers to follow. In addition to design goals, other deliverables can

help you set the high-level design direction for your new software.

• Epic Backlog: A list of features and capabilities the first version of

your software must include to launch.

• To-Be Process Flows: Process flow diagrams that show how

different end users, both internal and external, will collaborate

through the software.

• Security Roles: Different levels of security access that will be

granted to different user types (i.e. personas).

• Data Visibility Hierarchies: A rule for how much data different end

users can see. For example, an HR manager can only see their data

and that of their team.

Example Deliverables

 ` Where have you posted your design objectives? How can you make

them more visible?

 ` Can you visually and operationally align your design goals with your

business objectives?

Diagnostic Questions

36The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

DESIGN USER EXPERIENCE FRAMEWORK

Stephen Covey wrote that all things are created twice -- first

conceptually (i.e. ‘on paper’) and then in real life.

When it comes to software, the best way to build software ‘on paper’

is through a design prototype. This allows your team to quickly spot

deficiencies and missed expectations from key stakeholders instead

of using long written documents most often for this purpose that

are skimmed, ignored, or interpreted in very different ways. Before

beginning development, design the most important features and

define your application’s branding (i.e. look-and-feel), navigation

(i.e. menu structure), and user interface components such as your

dashboard elements, data tables, data inputs, report formats,

notifications, and help messages.

• Wireframes: Drawings of specific screens within the application that

range from low-fidelity (i.e. rough sketches) to high-fidelity (fully-

designed, branded screenshots).

• Design Prototypes: A clickable prototype that demonstrates how

an end user will move through key parts of the system, one screen

at a time.

• Prototype Validation: Interactive sessions where a UX designer

asks an end user to perform tasks in the prototype and observe how

user-friendly it is.

• Digital Style Guide: A set of design choices such as colors, font

styles, icons, buttons, and user messages that, when followed, will

create consistency throughout your application.

Example Deliverables

 ` Will your stakeholders be surprised the first time they see a demo

of your new software? (If so, you could be facing one or more costly

rounds of rework)

Diagnostic Question

https://www.franklincovey.com/the-7-habits/habit-2.html

Technology

38The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

TECHNOLOGY EVOLUTIONARY ARCHITECTURE

Example Deliverables

 ` Can both your new and old software run side-by-side?

 ` Does your chosen approach provide flexibility in which features you

modernize first?

Diagnostic Questions

Embarking on a large software rewrite can be like a long sea voyage.

The longer you sail between safe ports of harbor (i.e. releases), the

more likely you are to be blown off course or encounter a storm you

cannot overcome. Fortunately, there is a better way.

For small applications, it is usually manageable to rewrite them from

the ground up. For complex software applications, a more incremental

approach is necessary.

By building new modules and integrating them with your existing

software in iterations, you can remain relevant for existing users while

attracting new ones with a fresh digital experience, delivered quickly

and with less risk. This also allows you to replace critical features in

a prioritized order for faster impact. To employ this strategy, you

will need a game plan to connect your new features with your older

software.

Strangler Pattern: A best practice conceived by software pioneer

Martin Fowler to combine old software with new, often supported by

the creation of a new service layer.

• Database/Service Reuse: Reusing a database and/or service layer

between major versions of an application to support the integration

of the two.

• Single Sign-On: Enabling end users to move seamlessly between

a newer and an older web application, without the need to sign on

again.

https://martinfowler.com/bliki/StranglerFigApplication.html

39The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

TECHNOLOGY SOFTWARE DELIVERY PIPELINE

Example Deliverables

Diagnostic Questions

Software developers are often among the mostly highly paid

individual contributors at a company. However, in many companies

the technical environments in which they work render them highly

unproductive. Why?

Software development is all about trial-and-error. When I developed

software, it was not uncommon for me to attempt 5-10 solutions to

a problem before finding one that worked well -- and I was far from

alone. That’s just how it works.

The key to optimizing your productivity in software development is to

compress your feedback cycles. Fast feedback empowers developers

to deliver value more efficiently, but very few organizations are

successful at this. A well-designed software delivery pipeline will help

your entire development team move from requirements to completed

software features with minimal delays and wasted effort.

• Continuous Delivery Pipeline: Automated deployment processes to

promote secure, quality software from local developer workstations

to testing, staging, and production environments.

• Source Control: Best practices for managing and integrating the

source code of multiple developers to prevent defects and rework.

• Automated Testing: A companion software application designed

to automatically test the features in your primary application as

developers make changes to it.

 ` Is your process of deploying your software to an environment where

you can test it error-prone? Where is the process breaking down

today?

 ` Do you only deploy your software during off hours, for fear

something will go wrong?

40The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

TECHNOLOGY REUSABLE API LAYER

 ` Are the data included in your wireframes and prototypes available

today via an existing API or one you plan to develop as part of

phase 1?

Diagnostic Question

In 2002, Jeff Bezos famously issued an ultimatum to every software

team at Amazon: build APIs to access all of the software you are

developing or be fired. This visionary mandate put Amazon in a

position to modernize and extend its platform indefinitely, laying the

foundation for its AWS business unit, which now generates $35B in

annual revenue.

Fortunately, the development of APIs is a natural fit for how web and

mobile-based applications are developed today. Because modern

applications run directly on a user’s laptop or mobile device, APIs

are required to simplify software development and enforce security.

However, the first generation of web applications were mostly

developed without APIs.

Before proceeding on your modernization journey, it is imperative you

plan out which APIs you have now and which you will need to support

your new customer-facing applications.

• Secure Design: While there are multiple dimensions to security, your

API layer will serve as your most important bulwark against data

breaches.

• Cloud-Based Deployment: Cloud-based platforms like AWS and

Azure help address the “ity’s” more cost-effectively than ever

before: scalability, security, extensibility, business continuity, etc.

• SOLID Design Principles: SOLID design is the antidote to technical

debt. Taken together, the SOLID principles reduce the incremental

cost of new feature development over the long term.

Example Deliverables

https://api-university.com/blog/the-api-mandate/
https://en.wikipedia.org/wiki/SOLID

41The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

TECHNOLOGY USER INTERFACE FRAMEWORK

Digital customer experience has come a long way, and so have the

software development technologies that support it. Perhaps the best

way to appreciate the rapid evolution of these technologies is to scroll

through screenshots of Amazon.com from 1995 until today. How far

down did you have to scroll until you found a version of Amazon.com

that resembles your own website today?

Websites built to serve customers are no longer simple web

pages with images, text, and battleship gray buttons. They are

sophisticated, responsive systems unto themselves, built to support

complex workflows and rich content types. They radically adapt their

appearance based on the end user’s preferences, screen size, spoken

language, country of residence, and even disability such as reduced

vision.

Before moving into the development of a modern front-end, make

sure your team is ready with the skills necessary to ensure you are not

investing in yesterday’s technologies today.

• Front-End Frameworks: Frameworks, such as those developed

in Javascript and CSS, streamline the development of rich user

experiences and make your systems available to mobile users.

• Accessibility: While often overlooked, it is critical to design for users

with disabilities from the beginning. Doing so later will likely require

a complete rewrite.

Example Deliverables

 ` Will your user interface framework enable you to support the

modern user experience envisioned by your designers?

 ` Can users easily access your systems using a mobile device?

Diagnostic Questions

https://www.versionmuseum.com/history-of/amazon-website

42The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

Conclusion

A modern, intuitive customer experience, delivered

digitally, is becoming a prerequisite for growing

customer relationships and acquiring new ones. We

all crave better, more user-friendly technology. As

evidence, we replace our mobile devices on average

every 1-2 years. The financial services companies that

provide the best digital customer experiences will earn

the loyalty of their customers and attract others fed

up with confusing and ineffective websites and mobile

apps.

Modernizing or replacing legacy customer-facing

software is easier said than done. Poorly formulated

strategy, design flaws, and unchecked technical

complexity can make the success of a large

development initiative a remote possibility even

before the first line of code is written. The key to

success is a strong modernization foundation built on

the three pillars: strategy, design, and technology.

You can do it! We can guide you.

The key to
success is a strong
modernization
foundation built
on the three pillars:
strategy, design, and
technology.

43The Four Reasons Software Modernizations Fail (and 12 Strategies for Success)

Kevin Hurwitz

Kevin’s passion for computers began in 1982 when

his family bought him a Tandy home computer on

which to play and eventually program games. Kevin’s

childhood hobby of computer programming led to a

lifelong passion for turning code into tangible business

outcomes, starting with internships and contract

engagements throughout high school and college.

Kevin has consulted with more than 250 organizations

to deliver proprietary technology solutions, ranging

from startups to Fortune 500 companies such as

ExxonMobil, GE, Sysco Foods, Flex, Verizon, and Dell.

Kevin’s recent positions include Headspring where

he served as EVP of Client Success, Better Insights,

and Praxent where he joined as Managing Partner in

2016. At Praxent, Kevin is responsible for business

development and client success. Kevin holds a B.S. in

Computer Engineering from Texas A&M University and

an MBA from Jack Welch Management Institute.

AUTHOR PROFILE

MANAGING PARTNER, PRAXENT

Digital innovation can
be a game-changer or a
costly distraction. The
difference lies in the
people and processes
you use to go after it.

4330 Gaines Ranch Loop, Suite 230

Austin, TX 78735

(512) 553-6830 | hello@praxent.com

P R A X E N T. C O M

Dramatically improve your customer
experience with a modernized digital

system built specifically for your
business—with minimal risk—so you

can compete with confidence.

Schedule your free call at
praxent.com/contact today.

Book my Readiness Assessment

http://praxent.com/contact
http://praxent.com/contact
http://praxent.com/contact

