How To

Configure
CI/CD on
MedStack

MEDSTACK

SiteRocket’ Labs

&

SiteRocket’Labs M MEDSTACK’

How to Configure CI/CD
on MedStack

What is CI/CD? Why use it?

Continuous integration and continuous delivery (CI/CD) is a set of tools and
practices that automate the process of building, testing and deploying software
updates on an ongoing basis.

In the early days of the internet, many developers would often just copy their
latest code onto the server whenever they wanted to update a web application.
This might have been easy and convenient - but pasting code into a live
application is like performing brain surgery on a patient who's awake and
conscious. (Meaning, it's not very safe!)

Many things can go wrong: Files can be corrupted in transit, redundant files might
fail to be deleted from the server (posing security risks), the update might need to
coincide with database changes, the developer might spill coffee on their
keyboard while uploading their files, etc.

Enter CI/CD: An automated way of deploying frequent updates to live applications
in @ manner that's secure, reliable and poses minimal risk. While teams aren't
required to set up an automated CI/CD pipeline, we do recommend it, and it's
never been easier to do so using the MedStack API.

CI/CD pipelines also reinforce good software development practices such as
protecting production secrets and controlling exactly which service container
images run in production, two practices that are especially important for health
and medical apps that handle sensitive data.

n info@medstack.co 6? medstack.co m info@siterocket.com 69 siterocket.com

&

SiteRocket’Labs M MEDSTACK’

Getting started

Before rolling out CI/CD in your organization, a number of software development
best practices need to be in place. Here is a brief list.

Culture of ongoing enhancements

In order for CI/CD to succeed, everyone involved in the evolution of your application
- from your company’s executives and product managers to the Ul designers and
developers - needs to buy into the CI/CD philosophy. In a hutshell, all stakeholders
must be willing and able to continually translate major product goals into a series of
small, ongoing enhancements that can be rolled out and supported incrementally.
Needless to say, if your organization can’t get away from performing one very large
upgrade every few months, you may not realize the true benefits of CI/CD as it
relates to deployment speed and autonomy.

Staging environment

You should have a separate staging environment up and running where you can
test the latest branches and versions of your applications before they make it into
production. Many consulting companies also make use of an additional “UAT" (user
acceptance testing) server on which their clients can perform their tests. Regardless,
at least two environments (staging and production) will be needed.

Well-defined version control and code branching strategy

It's critical to use code branching and merging strategies consistently across your
organization. Most development teams use “feature flags” or “version control
branching” techniques to define the parts of the code that need deployment. (For
the purposes of this guide, we'll assume that your code resides in separate branches
which mirror the code that's deployed to your staging, production, and sometimes
UAT environments.)

n info@medstack.co 6? medstack.co m info@siterocket.com 69 siterocket.com

<®

SiteRocket’Labs M MEDSTACK’

Security

When dealing with protected health information (PHI), security best practices need
to be well-ingrained into your operations.

For example, using a company-wide password manager is recommended - and it's
good practice to have separate password vaults for production and staging
credentials. (The production vault should be shared with highly trusted developers
and devops staff only.)

Production deployments should only be handled by senior and trusted developers -
and we will show you later how to configure this.

Ability to deploy database schema changes

When you need to launch a new update that requires a change to the database,
you'll need to be able to automate this change. A common way to do so is to use a
SQL script that can be run during the deployment and can perform the necessary
changes. Many development frameworks include a mechanism to do this.

Automated unit tests

Automated tests are important because they provide an easy way to ensure that
parts of the system work as expected.

While relatively few companies have full 100% test coverage for their code, it's good
to automate at least some basic “sanity checks” to ensure that major parts of the
system will work after being deployed. This way, deployments can automatically
stop if a test has failed.

n info@medstack.co 6? medstack.co n info@siterocket.com 69 siterocket.com

<®>

SiteRocket’Labs M MEDSTACK’

How to Configure CI/CD

Now that we've covered the “soft skills” and practices that are prerequisites for a
successful CI/CD implementation, we'll provide the technical details on how to
configure CI/CD on MedStack Control. We'll also provide a sample Cl (continuous
integration) script that you can tailor to your needs.

Overview

There are many ways to configure a CI/CD pipeline. In this example, our CI/CD
pipeline works with our source control, Slack, and MedStack Control to perform a
series of steps that control and inform our team on the release of new deployments.

The CI tool first springs into action when it detects a code merge to the /stage or
/master branch in your code repository. It then performs the following tasks:

1.Notifies you via Slack that the process has been initiated

2.Creates a new Docker container for the release

3.Downloads the required applications (nginx, MariaDB, etc.) and installs them in
the Docker container

4.Clones the code from the Git branch into the Docker container

5.Runs some automated unit tests if required

6.Sends the built Docker image to the registry

7.Instructs MedStack Control via its API to pull the Docker image (among other
things)

8.Notifies you via Slack that the deployment has concluded

Just like magic!

n info@medstack.co 6? medstack.co n info@siterocket.com 69 siterocket.com

&

SiteRocket’Labs M MEDSTACK’

Configure MedStack Control and other tools
Here's how to configure your CI/CD tools for the pipeline described above.

e Assign permissions to your code branches in order to allow a limited number of
trusted engineers to merge to specific branches such as /stage or /master, and
deploy to your various servers. If you use GitHulb, you can configure it as
documented here.

o Generate a token in MedStack Control, which will be used to access the
MedStack Control API, allowing you to control the Docker resources in your
clusters. Ensure that you have created a cluster with all of the nodes/services that
you need. MedStack Control runs Docker in a swarm mode: according to
Docker's documentation, it's better to run at least a Manager node and a Worker
node (both with service replicas) so you minimize service interruptions on
deployments. We encourage you to test when using replicas as there might be
some odd behaviors (like cron jobs being executed multiple times). If such a
case occurs you should try to split tasks to two or more services to avoid that.

e You will need a place to store container images after they have been built by the
Cl tool and before they are deployed to Docker on MedStack Control. GitLab
provides a significant amount of free storage space and might be a good fit for
this. Docker Hub, on the other hand, provides free container image scanning
with Snyk on their Pro and higher subscriptions. You can host your container
images on whatever registry works best for your team’s needs.

e If your application contains an “environment file” that stores database credentials
and application parameters, we encourage you to store these parameters in
Secrets and Environment Variables instead. Environment Variables are set at
runtime with global scopes in a service instance (containers). Secrets are data in
Docker that write to an encrypted file on disk that can be used by select services.
Only containers that have been configured to use select Docker Secrets have the
ability to decrypt its contents. All other containers will perceive the contents of
Secrets files as encrypted.

n info@medstack.co 6? medstack.co m info@siterocket.com 69 siterocket.com

<®>

SiteRocket’Labs M MEDSTACK’

e We advise against environment files because they tend to not be encrypted, and
if they were, decryption would need to be handled in the application layer rather
than in the orchestration layer which MedStack Control manages.

e Once you've completed the above steps, it's time to create the “Cl script” which is
what the CI tool will run when performing the continuous integration workflow.
Create the script and store it in your code repository. If you use Travis Cl, you
must call it .travis.yml. Just make it blank for now; we'll give you a sample script
in the next section.

Create your Cl script

Now it's time to create the script that your Cl tool will run. Popular Cl tools include
TravisCl, CircleCl and others. We have created a sample script that runs on Travis ClI
and works beautifully with MedStack Control. This script may be found here:
https://github.com/siterocketlabs/MedStack_CICD.

The script makes use of the following four files, which you'll want to copy into your
code repository and modify for your needs. We'll go through each of these files and
explain what they do.

.travis.yml
Dockerfile
Api.sh
index.php

@ If you use a different CI tool (such as CircleCl) with MedStack Control and are willing to share
your script with us, please get in touch with us at support@medstack.co. The more samples we
can help our users with, the better. If we use your script, we'll even send you a free T-shirt!

n info@medstack.co 6? medstack.co n info@siterocket.com 69 siterocket.com

<®>

SiteRocket’Labs M MEDSTACK’

Build the Server Image

First it's time to build your server image. To do this, we'll start with .travis.yml and will
go through this script section by section to explain how it works. (Note that the
variables that start with $TRAVIS _are predefined by Travis Cl; some are OS
environment variables, like $HOME; while others are custom defined by users like
you.)

First, this script gets Travis Cl to install a specific development language and
database. In this case, we're specifying that this application uses PHP v8.0 and
MySQL.

File: .travis.yml
programming language
language: php

list any PHP versions you want to test against

php:
- 8.0

install mysql to run phpunit tests
services:
- mysql

Next, we specify that Travis Cl should run if you push into master or stage code
branches. Of course, if you have a UAT branch, add it here too.

build only on specific branches
branches:
only:
- master
- stage

n info@medstack.co 6? medstack.co n info@siterocket.com 69 siterocket.com

<®>

SiteRocket’Labs M MEDSTACK’

Update Slack

If your company uses Slack, you might want Travis Cl to update Slack when the
deploy process is about to start. That's what the curl command does, below. (Be sure
to replace $YOURSUBDOMAIN, $TOKEN and $CHANNEL with your Slack
subdomain, Token and Channel. These appear further down in the script as well.)
Disabling xdebug improves performance.

before_install:
- curl -s --data "Starting build job on $TRAVIS_BRANCH branch."
"https://$YOURSUBDOMAIN.slack.com/services/hooks/slackbot?token=$TOKEN&channel=$CHANNEL '
- export PATH=$HOME/.local/bin:$PATH
- phpenv config-rm xdebug.ini

It's a good idea to configure your CI/CD pipeline to run automated unit tests; this
way the deployment will stop if any test fails. Even if you don’t have full test
coverage of your code, it's a good idea to add at least a few automated “sanity tests”
to be safe. A good place to initiate these unit tests is in the script section of the file,
which is shown below. You might also need to add other scripts here too, to do
things like copy or rename files, for example.

add script(s) here, such as unit tests
script:
[insert desired script(s) here]

Push Image to the Registry

Now it's time for Travis Cl to build and push the server image to your registry of
choice (GitLab in this case). In the next section, we'll instruct the MedStack Control
API to pull and run these images. You'll need to add a registry (username/password
to log into your registry of choice to pull images) so that MedStack can use them on
every pull.

n info@medstack.co 6? medstack.co n info@siterocket.com 69 siterocket.com

b

SiteRocket’Labs M MEDSTACK’

To do this, we need to set five Travis Secrets, and these are:

URL with the URL of MedStack’s API

AUTH with your MedStack API token

SECRET with the secret string you want to create
DOCKER_USERNAME and DOCKER_PASSWORD (registry credentials)

You'll notice that our script calls Dockerfile which is one of the files in our code
repository. This file provides instructions to build the Docker image - but we’ll ignore
that for now. (We will describe it later in this document.)

prepare the build for deployment
before_deploy:
- docker build -f Dockerfile --build-arg URL=$URL --build-arg AUTH=$AUTH --build-arg
SECRET=$SECRET -t registry.gitlab.com/siterocket/medstacktest/apachephp:$TRAVIS_BRANCH .
- echo "$DOCKER_PASSWORD" | docker login -u "$DOCKER_USERNAME" --password-stdin
registry.gitlab.com
- docker push registry.gitlab.com/siterocket/medstacktest/apachephp:$TRAVIS_BRANCH

Deploy the Image to MedStack Control

Now we call the MedStack Control API to instruct it to fetch and deploy the new
image; this is the first curl statement below. Then we notify your desired Slack
channel that the deployment is about to begin; hence the second curl. Finally, we
add skip_cleanup in order to prevent Travis Cl from resetting your working directory
and deleting all changes made during the build. (The parameter all _branches is
needed because the branch name is hot known ahead of time.)

deploy
deploy:
- provider: script
script:
curl -X POST -H "Accept:application/json" -H "Authorization:Basic $AUTH"
"$URL/$(docker run --rm registry.gitlab.com/siterocket/medstacktest/apachephp:$TRAVIS_BRANCH
echo \$company_id/clusters/\$cluster_id/services/\$service_id)/refresh_image"
curl -s --data "Deploying APP for $TRAVIS_BRANCH branch."
"https://$YOURSUBDOMAIN.slack.com/services/hooks/slackbot?token=$TOKEN&channel=$CHANNEL '
skip_cleanup: true
on:
all_branches: true

n info@medstack.co 6? medstack.co n info@siterocket.com 69 siterocket.com

SiteRocket’Labs M MEDSTACK’

Now let’s look at the file named Dockerfile, which lets us build the Docker
container with all the necessary services in it. This file contains all the commands
necessary to install the packages that we require (like PHP 8.0 and Apache) in order
to deploy an index.php file with a congratulatory “hello world"-type message in it.

File: Dockerfile
we use ubuntu 20.04
FROM ubuntu:20.04

update packages, add PHP 8 repository and install jq and curl

RUN apt update && apt -y install ca-certificates apt-transport-https
software-properties-common && add-apt-repository ppa:ondrej/php && apt -y install jq curl
php8.0 libapache2-mod-php8.0

copy files
COPY ./index.php /var/www/html/index.php
COPY ./api.sh /root/api.sh

make api.sh executable and rm Apache's default index.html
RUN chmod +x /root/api.sh
RUN rm -f /var/www/html/index.html

assign Travis secrets to variables so we can pass them as parameters
ARG URL=${URL}

ARG AUTH=${AUTH}

ARG SECRET=${SECRET}

call MedStack's API and create a secret (and pass it 3 parameters)
RUN /root/api.sh $URL $AUTH $SECRET

set the secret on env on the build
ENV THESECRET=${SECRET}

start apache
CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

n info@medstack.co 6? medstack.co n info@siterocket.com 69 siterocket.com

<®

SiteRocket’Labs M MEDSTACK’

You'll notice that the above script references api.sh which is the third file in our code
repository. This file contains all the necessary MedStack Control API calls to do the
following things:

1.Get your company ID, cluster ID and service ID in MedStack Control. The script
will request changes to the specific cluster’s service.

2.Create a Secret in that cluster

3.Attach the Secret to the service

As you can see above, the Dockerfile passes three parameters to api.sh, which it uses
when calling the API. The api.sh file refers to these parameters as $1, $2 and $3.

Below are the contents of api.sh. (This file uses the jq utility, which is a command-
line JISON processor that assists it in querying the API and parsing its results.)

File: api.sh

get company

company_id=$(curl -X GET -H "Accept: application/json" -H "Authorization: Basic $2"
"$1/current" | jq -r '.id")

get cluster
cluster_id=$(curl -X GET -H "Accept: application/json" -H "Authorization: Basic $2"
"$1/$company_id/clusters" | jq -r '.data[@].id')

get services list (we have traefik and apachephp; we select the second one)
service_id=$(curl -X GET -H "Accept: application/json" -H "Authorization: Basic $2"
"$1/$company_id/clusters/$cluster_id/services" | jq -r '. | .data[1].id")

create a $SECRET on Medstack's cluster

curl -X POST -s -H "Accept: application/json" -H "Authorization: Basic $2" -H "Content-Type:
application/json" "$1/$company_id/clusters/$cluster_id/secrets" --data
"{\"name\":\"mysecret\",\"data\":\"$3\"}" | jq -r '.id’

update the service with the new secret

curl -X PATCH -s -H "Accept: application/json" -H "Authorization: Basic $2" -H
"Content-Type: application/json" "$1/$company_id/clusters/$cluster_id/services/$service_id"
--data

ll{\"secr‘ets\" : [{\"name\ll : \'Imll, \Ilfile_name\ll :\llm", \lluid\ll : \l'e\ll, \llgid\ll : \"0\“
5 \"mode\ll : \ll420\ll}] }ll

n info@medstack.co 6? medstack.co n info@siterocket.com 69 siterocket.com

<®

SiteRocket’Labs M MEDSTACK’

Lastly, index.php contains this script:

<!-- File: index.php -->
<html>
<body>

<h4>Congratulations, this demo app worked!</h4>
<p>Your MedStack Secret was set to <?php echo getenv('THESECRET'); ?></p>
<p></p>

</body>
</html>

As you can see, we added a Secret in this demo. Our “hello world” uses the PHP
getenv command to read the secret and display it.

If you access https://IP, where IP is the IP that Medstack provisioned to your node,
you will see the index.php file successfully deployed and the Secret displayed.

Get your Team on Board

Now your script is up and running, and you can run deployments simply by merging
into specific branches of your code repos.

Although the technical work is now behind you, you'll need to ensure that your
team is up to speed on how to work with your new setup. It's usually best to review
the CI/CD tools with your team, and ensure that everyone is on the same page with
your code branching strategy and release schedule. You might also want to
schedule UAT (user acceptance testing) releases and beef up the test coverage of
your unit tests.

Making the most of your CI/CD implementation will lead to safer and more reliable
deploys, a better software development lifecycle, and a more productive team.

Happy building!

n info@medstack.co 6? medstack.co n info@siterocket.com 69 siterocket.com

/
il MEDSTACK"

Acknowledgements

SiteRocket’ Labs

MedStack would like to thank the awesome team at SiteRocket Labs, who put in
the time and effort to help us create this guide. Putting together a guide of this
length and detail is not easy, especially while managing your daily company tasks,
and we would not have been able to do it without them.

Thank you.

About SiteRocket Labs

SiteRocket Labs designs, develops and
maintains health and medical
applications that solve unique and
complex challenges. Our clients range
from early stage startups to large
companies - and we work closely with
them to ensure that their digital health
applications are reliable, secure, and
compliant with privacy regulations such
as HIPAA and PHIPA.

u info@siterocket.com 6‘? siterocket.com

About MedStack

MedStack is a cloud automation technology
company that builds and manages healthcare
privacy and security compliance into cloud
hosting tools to help bring apps to market
faster, more easily and more affordably.
MedStack has powered hundreds of digital
health solution vendors and actively manages
compliance policies in several countries
around the world. The company is proudly
based in Toronto, Canada.

m info@medstack.co 69 medstack.co

