On Feasibility of Fluorescence-Based Bacteria Presence Quantification: *P.aeruginosa*

Introduction

Objectives:

• Investigate the possibility of fluorescence-based quantification of bacterial presence for *P.aeruginosa*

Background:

- Wound healing normally occurs in the presence of bacteria, at levels ranging from contamination to colonization to infection.
- Existing clinical bacteria load assessment methods (biopsy or swabbing in combination with culture methods) are slow, labor- and time-consuming.
- Some clinically relevant bacteria produce fluorescent compounds
- Thus, fluorescence imaging/spectroscopy can be a modality for rapid assessment of bacteria load in vivo.
- *Pseudomonas aeruginosa* is a known pathogen implicated in numerous healthcare-associated infections and is known to express fluorescent metabolites during proliferation.

METHODS

PA01 was chosen as the representative strain for this study

A. Inoculum Parameters		B. Microbial Reference Quantification	
Test microorganism	Pseudomonas aeruginosa (PA01)	Quantification Method	Spot plate technique
Growth media	3 gL ⁻¹ Tryptic Soy Broth (TSB)	Quantification period	Immediately after rinsing cells
Incubation period	16-20 hours (Overnight)	Maximum dilution factor	10 ⁷
Incubation temperature	37 °C		
Rinse solution	1x Phosphate Buffered Saline (PBS)	Growth media	3 gL⁻¹ Tryptic Soy A (TSA)
		Incubation	25 °C (Room
Centrifuge duration	4 min at 9000 x g	temperature	Temperature)
Expected inoculum load	10 ⁵ -10 ⁷	Incubation period	7 days

Microbial Rapid Quantification

For the rapid quantification of PA01 within liquid media, optical density (OD) measurements at 600nm were calibrated to CFU counts obtained from microbial reference quantification

OD-correlated Fluorescence Spectroscopy

3mL macro cuvette with 400nm as the excitation wavelength and 420-520nm as emission range (LS50B Luminescence Spectrometer, Perkin-Elmer Ltd.)

$$fl = \int_{420}^{520} \Phi(\lambda) d\lambda$$

Pre-processing

Cuvettes with a sterile TSB solution demonstrate autofluorescence while excited at 400nm. To take into account substrate autofluorescence, we used a ratio

$$FL = \frac{fl - fl_s}{fl_s}$$

Alexander Caschera^a, Gennadi Saiko^b

^aRyerson University, Toronto, Canada ^bSwift Medical, Toronto, Canada

RESULTS

Calibration procedure shows the following dependence between bacteria concentration N (CFU/mL) and optical density OD (R^2=0.991):

 $N = (5 * 10^9 * OD)^{0.97}$

We have performed three types of experiments:

- 1. dependence of bacterial growth and fluorescence on temperature
- . dependence of bacterial growth and fluorescence on inoculum concentration
- 3. dependence of bacterial growth and fluorescence on initial nutrient concentration

3. Dependence on Initial Nutrients **Concentration:**

The growth and fluorescence of P.aeruginosa were investigated for various initial nutrients' concentrations: 0.3, 0.6, 1.5, and 3 g/L. Temperature was held at 38C.

Agar

2. Dependence on Inoculum **Concentration:**

The growth and fluorescence of *P.aeruginosa* were investigated for various inoculum concentrations at 38C. Inoculum concentrations: original stock (blue rhombs ◊), 1/20 (red, squares \Box), 1/40 (green, triangles Δ), 1/60 (purple, cross x), 1/80 (blue, x). The initial nutrient's concentration was 3 g/L.

- production of pyoverdine
- pyoverdine almost immediately
- Other caveats:

 - production [3]

REFERENCES

- Tissues, in Proc. BioImaging 2020, Valletta, 2020

- remains metabolically active even at 43C.
- availability.

CONTACT INFORMATION

Gennadi Saiko, VP Strategic Innovations, gennadi.saiko@swiftmedical.com

RYERSON UNIVERSITY

DISCUSSION

• We have performed simultaneous measurements of optical density (OD600) and fluorescence of *P.aeruginosa* (PA01) in media, which allow direct correlation between fluorescence and bacterial concentration. • Pyoverdine production is affected by numerous factors, including ambient temperature, inoculum concentration, and initial nutrients concentration • In nutrient-rich media (1.5 and 3.0 g/L) bacteria demonstrate delayed

• In nutrient-poor media (0.3 and 0.6 g/L) bacteria start producing

• Pyoverdine fluorescence is affected by two additional factors [1]: a) iron bound to pyoverdine quenches fluorescence, b) pyoverdine production is affected by iron availability. Thus, *P.aerugenosa* fluorescence can be diminished near blood vessels.

• *P. aeruginosa* isolated from acute infections differs substantially in phenotype from those isolated from chronic infections [2] • *P.aeruginosa* can sequester the iron in ways other than pyoverdine

• Fluorescence in the tissue can differ significantly from experiments in the media. It was estimated [4] that for pyoverdine fluorescence the correction factor can be in the range of 2-2.25

• In future work, we plan to investigate feasibility of bacterial load quantification for another model: porphyrins production by *S.aureus*.

1. Meyer JM, Abdallah MA (1978) The Fluorescent Pigment of Pseudomonas fluorescens: Biosynthesis, Purification and Physicochemical Properties. J Gen Microbiol 107:319–328 2. Smith EE, Buckley DG, Wu Z et al. (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. P Natl Acad Sci USA 103: 8487–8492

Cornelis P., and Matthijs S. (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol. 4, 787–7898 4. Saiko G, Douplik A, Extraction of Intrinsic Fluorescence in Fluorescence Imaging of Turbid

CONCLUSIONS

• *P.aeruginosa* is a versatile and opportunistic microorganism. It

• Pyoverdine production is affected by numerous factors, including ambient temperature, inoculum concentration, and nutrients

• Feasibility of *in vivo P.aeruginosa* load quantification seems problematic at this point. Further experiments are required.