
1

Buyer's Guide

Cloud Native Security
Platform

2

Table of Contents
Introduction3

Holistic, full lifecycle cloud native security ... 6

Critical capabilities .. 7

Scanning: Containers, VMs, and functions .. 7

Risk-based vulnerability management ... 9

Implementing assurance policies for cloud native applications 11

Protecting against supply chain attacks ...15

Secrets management ... 16

Cloud account security.. 18

Kubernetes security posture management ...20

Runtime protection...22

Identity-based segmentation ...26

Integrations and environment support .. 27

Demonstrating compliance for cloud native environments28

Separation of duties across teams using cloud native security30

Summary ..32

3

Introduction
This guide is intended to help DevOps, engineering, security, and compliance managers
understand and define the capabilities required to secure their cloud native applications
and the infrastructure on which those applications run.

New security challenges introduced with
cloud native applications
Security teams are accustomed to planning and operating in an environment that, unlike
a cloud native environment, is composed of discrete, infrequent releases with little open
source, and in which workloads are persistent, the host has a permanent address, and the
hypervisor or hardware is isolated.

Buyer's Guide | Introduction

4

Key security concepts for cloud native environments

But Security and DevOps teams must incorporate new concepts and methods, as
well as take a holistic approach to integrate security into the fabric of the cloud native
environment, from CI/CD to Kubernetes and cloud infrastructure. A summary of these new
concepts includes:

Shifting left with automated testing
Frequent, automated releases where fixes are not made in production mean that security
must shift left, testing earlier in the software development process. And security teams
must work with developers and DevOps teams to become part of the CI/CD
automation flow.

Software composition analysis and vulnerability management
Open source is everywhere, and many applications are assembled from open source
components. The incorporation of open source code and the dependencies involved
creates an entirely new attack surface.

Multi-cloud

CI/CD

Open source everywhere

Shared kernel, obscured OS

Orchestrated pods

Reuse of public images & libraries

Ephemeral workloads

Cloud Native Reality

Discrete, infrequent releases

Very little open source

Hypervisor or hardware isolation

Permanent address

Proprietary software

Vertical control of the stack

Persistent workloads

Traditional environments

Buyer's Guide | Introduction

Cloud Native Security

Detecting cloud service
account misconfigurations

Enforce least privilege on
each workload

Software supply chain risk

ldentity-based segmentation

Software composition analysis

Contextual runtime controls
that follow the workload

Shifting left with
automated testing

5

Software supply chain risk
Developers will freely use others’ images, which themselves may be based on third-party
images, and so on, obscuring visibility into the contents and true activities of any image.
Managing vulnerabilities, protecting against malware, and other classic security concepts
must take this supply chain risk into account.

Contextual runtime controls that follow the workload
In a cloud native environment, workloads are ephemeral and are spun up and down as
needed, pods are orchestrated, and the kernel itself is shared. As a result, the traditional,
primary focus on the hosts and the OS must be replaced with focus on:

• Networking activity at the pod, container, orchestrator, and host levels

• Differences between the intent of the image or container in the build versus the actual
behavior in runtime

• Runtime policies for containers, VMs, and functions

Identity-based segmentation and enforcing least privilege on each
workload
Identity verification must function on every asset that is trying to access resources on
your network, regardless of whether it is inside or outside a network perimeter. This
means assigning appropriate behavior across subnets, security groups, resource groups,
and labels so that traffic can be controlled while pods are continually orchestrated.

Multi-cloud environments
Organizations are working strategically across multiple cloud providers to take advantage
of cost efficiencies, optimize performance, and avoid being locked in with one vendor.

Now that we have a summary of the requirements for a cloud native security solution, we
need a framework to gauge an organization’s capabilities and needs in more depth.

Buyer's Guide | Introduction

6

Holistic, full lifecycle
cloud native security
Cloud native security should involve a comprehensive set of capabilities across the build,
infrastructure, and workloads.

Build: All artifacts must be scanned for vulnerabilities,
secrets, bad configurations, malware, and permissions.
Issues must be prioritized. Developers must be enabled
to shift left and move to a prevention-first model. Security
teams must set policies to flag and block potentially
harmful artifacts from making their way through the build
pipeline. Supply chain attacks also must be detected
and remediated.

Infrastructure: In a cloud native environment, securing
the infrastructure of public cloud, infrastructure as
a service (IaaS), and orchestrators relies heavily on
proper configuration. For example, accidentally enabling
anonymous access to the kubelet could allow an attacker
to gain control of an entire cluster. There are dozens of
configurations for each orchestrator and cloud service, so
checking automatically and continually for issues is critical.
Remediation can be automatic or customized via policies,
and compliance benchmarks for hardening must be met.

Workload: Workloads run in different places, so security
instrumentation and interception points must be specific
to each of these locations. Effective workload protection
partially depends on appropriate protection in the build,
knowing what a clean artifact (image, function, or VM)
looks like to enforce its intended use and permissions.

Secure the
Workload

Protect Runtime Workloads

Secure the
Infrastructure

Harden the Environment

Secure the
Build

Prevention First

An integrated platform is required to provide critical contextual information. For example,
workload protection requires a full understanding of the contents of build artifacts to be
able to enforce container immutability. And knowing what workloads are running gives
critical context into which vulnerable artifacts should be prioritized for remediation in
the build.

A great, initial heuristic for organizations in determining the effectiveness of their current
cloud native security posture is whether they have controls across the build, infrastructure
and workloads, and whether those controls share contextual information to increase the
effectiveness of security across the board.

Buyer's Guide | Holistic, full lifecycle cloud native security

7
7

Critical capabilities
Scanning: Containers, VMs, and functions
Shifting left and incorporating security into the build via image and function scanning is
essential to detect low-hanging fruit such as known vulnerabilities, malware, hardcoded
secrets, and open source dependencies. Scanning also performs the critical function of
populating profiles for artifacts so that policies aimed at controlling the behavior of those
artifacts are accurate and effective.

Essential capabilities: Image and cloud VM scanning

Detect vulnerabilities in open components

Scan multiple languages and binaries, including C++, PHP, NodeJS, Golang, .NET,
Java, and Python

Scan OS packages (e.g., RPM, Deb, Alpine)

Automatically scan Linux and Windows hosts for OS vulnerabilities, malware,
and login attempts

Acknowledge security risks in images and allow them to be remediated upstream

Detect and enumerate sensitive data and secrets

Provide an image bill of materials (e.g., packages, files, OSS license information,
layer history)

Detect if an image user is defined as root

Scan VM and container images against configuration security
best practices

Use custom compliance checks (e.g., via SCAP, custom scripts) to scan for
sensitive data

Detect vulnerabilities in base images for fast remediation across all subsequent
image builds

View vulnerability origins throughout the image hierarchy and layers and validate
the chain of custody

Provide actionable remediation information on detected vulnerabilities

Enforce effective security hygiene in the CI/CD build process via scanning plugins to
any CI/CD tool (e.g., Jenkins, VSTS, Bamboo)

Buyer's Guide | Critical capabilities

8
8

Scan functions to detect vulnerabilities, embedded secrets, configuration errors,
and sensitive data

View relationships between a function and its dependencies for end-to-end
vulnerability visibility and traceability

Detect risks and amend identity and access management privilege issues
associated with functions

Detect secrets embedded in functions

Generate an audit trail of all scan events, vulnerability status, scan timelines, and
remediation trends

Essential capabilities: Serverless function scanning

Key considerations: Scanning
• Does the artifact (image, function) include sensitive data or embedded secrets (e.g.,

API key, SSH key)? Do you have visibility into these issues for serverless code?

• Are there vulnerabilities in the base image itself?

• Are there vulnerabilities in open source components that were added?

• Can your developers see the key remediation information required to continue
shipping code quickly from within their preferred CI/CD tools?

• Do you have insight into OS packages in the same solution that provides data on
vulnerabilities and application dependencies?

Buyer's Guide | Critical capabilities

9
9

Track attempts to exploit vulnerable packages

Check for vulnerable, deprecated versions of Kubernetes

See the severity of vulnerabilities on the host

Use multiple resource feeds for scans (e.g., public CVEs, vendor-issued, proprietary
vulnerability data streams, malware) to achieve refined results

Get detailed information on a vulnerability’s exploits and the available fixes

Use vendor’s specific severity ranking as a factor in prioritizing vulnerabilities

Prioritize vulnerabilities based on actual risk to the environment (e.g., exploitable
workloads)

Visualize running workloads with a live map to better identify the security
posture of each component

Provide the capability to remediate, mitigate, or acknowledge the vulnerability
upon discovery

Automatically mitigate vulnerabilities with surgical policies that can prevent exploits
in a non-intrusive way

Use mitigation capabilities as a feedback loop to further prioritize highest impact
vulnerabilities for remediation

Essential capabilities: Risk-based vulnerability management across
 images, Kubernetes, and hosts

Risk-based vulnerability management
Gartner’s vulnerability management model suggests that to effectively manage
vulnerabilities, you must prioritize them based on their relevance in your environment;
choose whether to accept the risk or to mitigate or fix the issue; and then assess the
results to improve your accuracy and effectiveness in identifying and
prioritizing vulnerabilities.

Buyer's Guide | Critical capabilities

https://blogs.gartner.com/augusto-barros/2019/10/25/new-vulnerability-management-guidance-framework/

10
10

Key considerations: Prioritizing vulnerabilities
• Can you get insights on actively used packages?

• Does your runtime environment have workloads that are impacted by the CVE?

• From a single dashboard, can you review all running workloads and assess the
security posture of each component?

• How easily can you search for a specific vulnerability or a software component that is
running in many containers?

• Can you filter business-critical applications and view a simple list to prioritize
contextual risks?

• Can you stop an exploit from occurring without fixing or patching the vulnerable
artifact?

• How will you prioritize and review only the vulnerabilities that are relevant to running
workloads?

• Can you check whether you are running a vulnerable, outdated version of
Kubernetes?

Buyer's Guide | Critical capabilities

11
11

Scan images before deploying them in production

Auto-scan images that did not originate from registries in your environment

Rescan modified images before reintroducing them into production

View timeline and scan results of both registry images and user CI image scans

Control the criteria for which images are scanned (e.g., image creation date, image
name or tag, schedule)

Automatically scan private registries upon image push across any platform

Discover and maintain an up-to-date inventory of image repositories

View the relationship between an image and its base image

Prevent unapproved images from running in your environment

Create flexible rules based on the security needs of different applications

Enable multiple image assurance policy settings (per image name, label, registry)
for effective mitigation

Provide a broad set of predefined image assurance policies (e.g., for popular
container images)

Use image labels to restrict usage in certain environments (e.g., production, non-
production)

Essential capabilities: Real-time image assurance policies

Implementing assurance policies for
cloud native applications
Assurance policies are critical for both security and DevOps teams to create a shared
sense of trust around the guardrails for allowing artifacts into production. In an
environment where implementing trusted code is critical across multiple pipelines and
rapid code commits, using assurance policies to control the parameters of what should
and shouldn’t be allowed will lower the overall amount of noise, ultimately reducing the
overall attack surface and making runtime policies more effective. Assurance policies
should apply across images, VMs, serverless functions, and orchestration tools such
as Kubernetes.

Buyer's Guide | Critical capabilities

12
12

Key considerations: Image assurance policies
Is every artifact (image, function) that is used in the CI/CD pipeline scanned?

• Did you scan all image registries to ensure that images that either skipped the CI/CD
process or have gone stale are secure?

• How can you prevent users from running images from outside the pipeline?

• Can you customize the scan time of your images?

• Can you define which images will be pulled from your registry for scanning?

• Does the image include only the executables required for its ongoing operations?

• Can you stop images from being used based on CVE severity and risk scores?

• Can you customize assurance policies based on the security needs of
different applications?

Automatically discover and maintain secure function inventory

Protect functions without altering the functions’ code

Identify abnormal usage trends in function runtime duration and
invocation frequency

Detect and block attempts to run malicious executables via functions

Block malicious code injection

Prevent non-compliant functions from running

Essential capabilities: Serverless assurance policies

Key considerations: Serverless assurance policies
• Can you automatically fail a function if it contains sensitive data?

• Can you prevent a function from significantly changing its form and purpose
in runtime?

• Can you prevent functions from containing excessive permissions?

Buyer's Guide | Critical capabilities

13
13

Essential capabilities: Virtual machine assurance policies

Automatically discover and maintain secure function inventory

Protect functions without altering the functions’ code

Identify abnormal usage trends in function runtime duration and invocation frequency

Detect and block attempts to run malicious executables via functions

Block malicious code injection

Prevent non-compliant functions from running

Key considerations: Virtual machine assurance policies
• Can you ensure least privilege for OS and host resources?

• Can you prevent the creation of new, compromised hosts?

Protect Kubernetes workloads that don’t meet assurance policies based on pod or
node configuration

Apply out-of-the-box best practice rules for secure Kubernetes configurations

Address least privilege security gaps for Kubernetes privileges access

Reuse and standardize on Rego rules used with the Open Policy Agent (OPA)

Block DDoS attempts with CPU limits and specified resource requests

Enforce segmentation by label hosts and containers as production or non-
production, by sensitivity level, purpose, etc.

Essential capabilities: Kubernetes assurance policies

Buyer's Guide | Critical capabilities

14
14

Key considerations: Kubernetes assurance policies
• Can you determine, with granularity, least privilege access across all the options

for Kubernetes workloads?

• Are you able to make least privilege remediation recommendations based on
best practices?

• Are your Kubernetes policies written in Rego, to ensure OPA compatibility?

• Can you create or import your own custom Kubernetes policies?

• Can you integrate your Kubernetes policies into the CI/CD process?

Buyer's Guide | Critical capabilities

15
15

Protecting against supply chain attacks
It’s common practice for developers to recycle the base images of popular projects from
public libraries or third parties in order to work faster. But this can inadvertently insert
malicious images into the build, and attackers have found ways to evade
traditional scanning.

To check images while importing them from third-party sources, or to set up a last stop
for the production registry before going into production, a container sandbox should
analyze how an image would behave in runtime.

Run images in a secure sandbox before production to see detailed information on
malware tactics

Detect behavioral anomalies and encrypted or obfuscated files that execute inside
the container while it’s running

Find container escapes, reverse shell backdoors, malware, cryptocurrency miners,
and code injection backdoors, packers (including encrypters), and downloaders

See the results of a forensic analysis on the behavior of an image across the
MITRE ATT&CK framework, detailing tactics such as command and control, sleep
tactics, etc.

Detect malware and zero-day attacks without known signatures

Prevent the use of malicious base images in supply chain attacks

Essential capabilities: Dynamic image analysis

Key considerations: Dynamic image analysis
• Can you see the runtime behavior of images before running them in production?

• Can you use dynamic analysis results to mark images as compliant or non-compliant
in your CI/CD pipeline?

• Can you identify malicious behavior in the build that is guaranteed to be present
in production?

• Can you find the exact cause of an image’s malicious behavior and perform
forensic analysis?

Buyer's Guide | Critical capabilities

16
16

Secrets management
Managing secrets, such as API keys and security tokens, is particularly challenging in
cloud native environments due to the dynamic and ephemeral nature of containers and
functions. And while secrets are generally included in image and serverless function
scanning, secrets management in runtime is many times an afterthought when designing
a cloud native environment. Passwords are set up manually and shared through e-mail,
and password rotation is often ignored because it is time-consuming and error prone.

Common security challenges for secrets include:
• Storing secrets inside a container image or function risks exposing secrets to anyone

with access to that object, the registry, or CI/CD pipeline, and to potential intruders.

• Embedding secrets in an image means the image is tied to the life cycle of the secret.
To rotate a secret, a new image must be built.

• Providing secrets as an environment variable when running a container exposes
the secret to end users, since it’s a common practice for software to log its
entire environment.

Essential capabilities: Secrets management

Inject and rotate secrets in runtime (no downtime or restart)

Encrypt secrets in transit

Integrate with the preferred secrets store (e.g., CyberArk, HashiCorp, AWS KMS,
Azure Vault)

Ensure that secrets are visible only inside the workload that uses them

Ensure that secrets are not accessible via the network, host,
or orchestrator

Buyer's Guide | Critical capabilities

17
17

Key considerations: Secrets management
• Where are secrets stored today? Are they hardcoded into images?

• Can you map secrets to relevant containers?

• Are secrets activities logged (e.g., secrets delivery, rotation, revocation)?

• Is there a roll-back procedure?

• Once a secret is revoked, how do you confirm it is deleted from volumes and that
access permissions to resources are also revoked?

• If a secret is rotated or revoked, do you have an automated way to propagate the
update or revocation to all relevant containers that use the secret?

• Can you ensure that secrets do not persist on the host once the container is
spun down?

• How do you ensure that secrets are delivered and rotated based on your
established security policies?

• Can routine rotation be done with no downtime to the running container and with
no restarts?

• Can you ensure that only certified, designated running containers can
retrieve secrets?

Aqua recommends mounting secrets as tmpfs volumes, where they’re accessible
to the application as a virtual “file” resident in memory. Most orchestrators use
this delivery method for secrets to containerized applications.

Buyer's Guide | Critical capabilities

18
18

Cloud account security
A single misconfiguration in a cloud account or IaaS can expose a system or your sensitive
data to the outside world. Cloud security posture management (CSPM) solutions are
specifically designed to protect against such misconfigurations, scanning for threats in
cloud account and infrastructure as code (IaC) configurations to ensure compliance and
best practices. To prosper in advanced, multi-cloud environments, it is critical to receive
alerts on issues and fix or remediate the riskiest misconfigurations automatically.

Gain visibility into hundreds of configurations across multiple services in multiple
clouds

See configuration issues in popular IaC solutions (e.g., Terraform, AWS
CloudFormation)

View configuration issues in light of compliance requirements and best practice
guidelines

Detect risks and implement security features before infrastructure is launched

Gain immediate visibility into the severity and impact of misconfigurations

Set up alerts and notifications for issues as your cloud services evolve

Set up auto-remediation to fix the biggest issues quickly via a RESTful API

Integrate with third-party monitoring services

Essential capabilities: Cloud account security

Buyer's Guide | Critical capabilities

19
19

Key considerations: Cloud account security
• Is there a central place where you can view the riskiest misconfigurations across

multiple cloud providers and service accounts (e.g., AWS, Azure, GCP, Oracle)?

• Do you have a remediation process for misconfigurations? Is it manual or automated?
If automated, is it via a RESTful API?

- How do you delegate specific permissions for each API key?

- Can you track each API call?

• Are you aware of all the accounts you have on each cloud (e.g., AWS accounts, Azure
subscriptions, GCP projects, Oracle Cloud compartments)?

• Can you integrate cloud service configuration issues into a CI/CD pipeline?

• What compliance and regulatory requirements do you have to adhere to with your
cloud infrastructure? Can you access compliance reports via API?

Buyer's Guide | Critical capabilities

20
20

Essential capabilities: Kubernetes security

Kubernetes security posture management
Kubernetes-based infrastructure is a complex system that is spread across an IT
infrastructure. Some Kubernetes components are close to the OS system, some are
internal configurations, and some run as workloads. Many Kubernetes settings are non-
secure by default, making security difficult and confusing for both DevOps and security
teams. Kubernetes security must address these configurations with policies across
namespaces, nodes, containers, and network connections.

Audit all Kubernetes events

Gain visibility into vulnerable Kubernetes versions

Conduct automatic penetration tests of your Kubernetes clusters against a variety
of attack vectors

Assess the Kubernetes environment according to the CIS Kubernetes benchmark,
and provide daily scans and a detailed report with the findings

Gain information into clusters, registries, hosts, namespaces, running containers,
and the images the containers are based on automatically, with minimal user
intervention

Perform risk analysis on the Kubernetes environment without requiring root
privileges on the host OS

Provide continuous visibility into the Kubernetes environment and gain clear
visibility on any policy violations

Assess the security posture of Kubernetes clusters and prioritize risks for action in
real-time

Buyer's Guide | Critical capabilities

21
21

Key considerations: Kubernetes security
• Can you be certain that your environment complies with regulatory requirements?

• Can you easily align with the compliance requirements of common standards or best
practices, such as CIS benchmarks, PCI, NIST 800-53, or HIPAA?

• Do you have a holistic view of the security posture of the Kubernetes environment
across its entire architecture, including host components, internal configuration,
management API, and workload pods?

• Can you ensure that the container engine versions are up to date and fully patched?

• Are you able to perform automated penetration tests on your Kubernetes clusters
using external Kubernetes APIs?

Buyer's Guide | Critical capabilities

22
22

Enable rescanning of deployed images on hosts

Enable revalidation of image status (allowed, disallowed) before instantiation

Create and enforce zero-configuration container behavioral profiles

Prevent stale images from running

Disable and enforce unauthorized executables, network connections, ports, and file
paths with no container downtime

Visualize across running workloads grouped by hosts, pods, Kubernetes
namespaces, image, uptime, and status (stop, run) to prioritize response

Track malicious behavior of functions during runtime

Block malicious executables in functions during runtime

Protect workloads running in host and serverless or Container as a service (CaaS)
environments (e.g., AWS Fargate, Azure container instances)

Detect and prevent containers and Kubernetes clusters from running unauthorized
images (e.g., Bitcoin miners)

Create cryptographic image fingerprinting for all layers

Detect any changes to containers (e.g., binaries, hash, system calls) against their
originating images

Runtime protection
Cloud workload protection platforms, as defined by Gartner, should protect cloud native
workloads across a mixed environment of VMs, containers, and functions, with purpose-
built controls for each. For example:

• Runtime controls for containers should protect against any behavior that’s not in line
with the container’s original intent. And enforcement should happen with minimal
management overhead and no impact to runtime.

• Protection for cloud VMs, for example Amazon EC2 instances, requires a lightweight
solution that is unified in a single dashboard with other cloud native security controls,
without the usual drag on cloud resources.

Essential capabilities: Runtime policies and controls for container
 images and functions

Buyer's Guide | Critical capabilities

23
23

Detect and prevent container privilege escalation and centrally manage and enforce
seccomp profiles

Set and control container memory, CPU consumption, and running process limits to
prevent DOS attacks

Control user activity and enforce segregation of duties

Apply and enforce custom runtime policies per environment (e.g., create disallowed
executables per namespace, disallow unregistered images
in a PCI cluster)

Apply an added layer of runtime controls per image type (e.g., all Alpine containers)
to all running containers

Associate containers to source code for end-to-end traceability and tamper-proofing

Enforce policies in offline mode

Buyer's Guide | Critical capabilities

24
24

Key considerations: Runtime protection (containers and functions)
• Can you ensure that cloud native containers and functions are granted the minimum

necessary permissions?

• Is every image deployed into production authorized? Can you ensure that the latest,
authorized image is being instantiated? How do you know if rogue containers
are running?

• Do you know how to protect your runtime applications against attacks that are not
based on known vulnerabilities, such as zero-day attacks based on host configuration
errors, privileged user error, or insider threat?

• How will you prevent executables or unauthorized processes that are not in the
original image from running, without downtime?

• How will you ensure that the cloud native apps were not changed unintentionally or
maliciously after being deployed?

• Do you have visibility into what is running inside a container?

• If the image configuration has changed, can you prevent it from running?

• When considering a shift in app stacks, can you look for the impact or the use of
specific components across all running containers?

• If Kubernetes is misconfigured, can you stop the workload from running?

Buyer's Guide | Critical capabilities

25
25

Monitor selected operations on Windows registry keywords, values, and path
attributes

Automatically scan the host for compliance against CIS benchmarks (e.g., Docker,
Kubernetes, Linux)

Automatically discover cloud native objects and their security posture

Alert on suspicious host activities, such as brute force login attacks

Monitor files, file attributes, and directories on your hosts for read, write, and
modify operations (FIM)

Monitor both user and application activities that are running on your VM, evaluate
and provide remediation steps

Prevent kernel operation (e.g., do not allow “chown”)

Protect the integrity of the Windows registry

Export audit data for proof of compliance

Essential capabilities: Cloud VM security

Key considerations: Cloud VM security
• Can you ensure that the OS is up to date and fully patched?

• Can you provide the same level of security to your Linux and Windows OS?

• Can you restrict and monitor all runtime activities?

• Do you know how to audit user activity on your host?

• Can you ensure the integrity of files on the host?

• Can you ensure that image packages and libraries are authorized (i.e., patched and up
to date)?

• Can you be sure that access control, networking, and authentication are all in check?

• Can you monitor and protect Kubernetes nodes and virtual machines with the same
solution?

Buyer's Guide | Critical capabilities

26
26

Identity-based segmentation
It is critical to be able to discover, visualize, and define network connections in cloud
native environments, detecting malicious network activity across VMs, containers,
Kubernetes clusters, and pods.

Automatically discover and visualize the workload attack surface, relationships
between namespaces, deployments, pods, and network traffic, and provide
continual updates based on actual workload activity

Label container groups as sensitive, use security group use security group definitions
from the orchestrator (e.g., PCI-sensitive) and apply firewall rules accordingly

Detect and prevent unauthorized network connections such as open ports (on the
same or across hosts and pods) based on automated policies

Define service-oriented firewall rules, membership scoping, bypass scoping, and
more with cloud attributes

Define which inbound and outbound ports are accessible to or from which IPs or
URLs for the workload

Define zero-trust network connections based on service-oriented firewall rules,
regardless of where the workload runs

Manually modify communication rules and policies based on actual activity, without
affecting workload performance and availability

Automatically alert on or block unauthorized communication flows (no container
downtime)

Essential capabilities: Identity-based segmentation

Key considerations: Identity-based segmentation
• Can you detect and alert on unauthorized network traffic?

• Can you block unauthorized inbound or outbound communication to and
from containers? For example, can you block an outbound connection to a
database container?

• Can you block container (e.g., PCI-related) access to a specific IP address?

Buyer's Guide | Critical capabilities

27
27

Integrations and environment support
Larger organizations require compatibility with current solutions and support for
desired environments.

Use the cloud provider, secrets vault, CI/CD, SIEM and analytics, and orchestrator
of your choice

Integrate out of the box with the private and public registry or registries of
your choice

Integrate across the ecosystem with full REST API support

Integrate across your on-premises and multi-cloud environments

Integrate with Jira and notification feeds (e.g., Slack, PagerDuty) for tracking tasks
and issues

Use SSO authentication to make team access easier (e.g., SAML-based
authentication, OpenID Connect)

Run a private threat intelligence feed for air-gapped environments

Key considerations: Integrations and environment
• Can you integrate your security workflows with your chosen cloud platform(s)

and tools?

• Do you have the choice across cloud platforms that you require to meet your
business goals?

Essential capabilities: Integrations and environment

Buyer's Guide | Critical capabilities

28
28

Demonstrating compliance for cloud native
environments
Regulators are not yet clear and consistent about how to demonstrate compliance in
cloud native environments. Many certifications do not include specific guidance for
cloud native environments, so it can be difficult to know where to start. The good news
is that concepts such as hardening, networking, and vulnerability management are all
relevant in cloud native environments. This pushes the challenge of compliance toward
demonstration with visibility, auditing, and control.

Provide full user accountability and controlled super-user permissions

Get real-time alerts on policy violations

Generate granular audit trails of all access activity, and scan events and coverage,
Docker commands, container activity, secrets activity, system events, blocked
image executables, blocked user access and replacement of high risk containers

View built-in alerts and reports for key compliance mandates (e.g., PCI, GDPR,
HIPAA, NIST SP 800-190)

Use CIS benchmark (Docker, Kubernetes, and Linux) assurance policies
and reports

Gain audit data around the impact of CVEs and vulnerabilities

Ensure timeliness of scans

Track key changes in vulnerability status

Maintain vulnerability vs. remediation trends

Essential capabilities: Audit and compliance

Buyer's Guide | Critical capabilities

29
29

Key considerations: Audit and compliance
• Can you measure remediation trends based on KPIs (e.g., open vs. remediated)?

• How will you log user and container activity?

• Are alerts set up to warn of any behavior deviation in container activity?

• Do you keep a history of security configuration changes?

• Is the history related to your secrets rotation logged and stored?

• Do you have compliance visibility across Kubernetes, images, and hosts all in the
same solution?

Buyer's Guide | Critical capabilities

30
30

Provide separation of duties for your cloud workload protection platform to limit
access to super-user permissions, tasks, and cloud native resources (e.g., images,
containers, nodes, networks, pods, volumes, orchestrators)

Define central policies that are read-only for subordinate teams

Create permission sets per role that provide view or edit access to policies, events,
assets, and system components

Provide self-service portals for auditors, security admins and developers to
maintain segregation of duties while fostering collaboration

Derive user access privileges based on application definitions in the orchestration
system

Assign Docker subcommands to users on a specific host

Assign Kubernetes master node operations to users by cluster, deployment,
and node

Derive roles and privileges from existing AD/LDAP groups and
authenticate users

Log all access activity for investigations and regulatory compliance

Provide log-in authentication via SAML SSO (e.g., Okta, Microsoft ADFS, Google
Identity servers)

Monitor and alert on unauthorized user activity

Essential capabilities: Separation of duties

Separation of duties across teams using
cloud native security
Large organizations also need to securely manage a solution across multiple, matrixed
teams including compliance, security, development, and DevOps. App development and
security teams in large enterprises consist of multiple groups working on different projects
with segregated artifacts such as images and workloads. These projects are defined by
namespaces and cluster, and it’s important to granularly define permissions across teams.

Buyer's Guide | Critical capabilities

31
31

Key considerations: Separation of duties
• Can you assign and enforce user access permissions to cloud native security tools?

• Can you customize the user’s role in your cloud workload protection platform per
your organization’s requirements?

• Can you assign Kubernetes master node operations to users by cluster,
deployment, and node?

• How do you alert on unauthorized user activity on a host?

• Can you assign Docker subcommands to users on a specific host?

Buyer's Guide | Critical capabilities

32

Summary
Cloud native security can seem intimidating and overwhelming, especially when many
teams are responsible for different pieces of the cloud native application life cycle. To be
successful, and agree on steps to close the security gap, a few other nuances are helpful
to keep in mind:

• Partnering strategically with those who invest in the open source community means
benefiting first-hand from innovation in the space.

• Cloud native security can - and should - match your consumption model strategy,
whether you prefer on-premises or SaaS solutions.

• Cloud native security will block business goals if it can’t scale along with the
application or applications it is protecting.

Aqua Security helps enterprises secure their cloud native applications from development
to production, whether they run using containers, serverless, or virtual machines.
Aqua bridges the gap between DevOps and security, promoting business agility, and
accelerating digital transformation. Aqua’s Cloud Native Security portfolio provides full
visibility and security automation across the entire application lifecycle and

infrastructure, using a modern zero-touch approach to detect and prevent threats
while simplifying regulatory compliance. Aqua customers include some of the world’s
largest financial services, software development, internet, media, hospitality, and retail
companies, with implementations across the globe-spanning a broad range of cloud
providers and on-premise technologies.

 Copyright ©2021 Aqua Security Software Ltd., All Rights Reserved

https://www.youtube.com/channel/UCLstqAtOx2t0xy8YaYMjkWg
https://aquasec.com/
https://twitter.com/AquaSecTeam
https://www.linkedin.com/company/aquasecteam/
https://www.facebook.com/AquaSecTeam

